+ All documents
Home > Documents > AROOOI53 - Records Collections

AROOOI53 - Records Collections

Date post: 24-Mar-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
446
Final Design Submission Remedial Design for Bush Valley Landfill Design Analysis Report Prepared for Harford County Department of Public Works 220 South Main Street Bel Air, Maryland 21014 Prepared by EA Engineering, Science, and Technology 15 Loveton Circle Sparks. Maryland21152 (410)771-4950 October 1999 61131 01 AROOOI53
Transcript

Final Design Submission

Remedial Designfor

Bush Valley Landfill

Design Analysis Report

Prepared for

Harford CountyDepartment of Public Works

220 South Main StreetBel Air, Maryland 21014

Prepared by

EA Engineering, Science, and Technology15 Loveton Circle

Sparks. Maryland 21152(410)771-4950

October 1999 61131 01

AROOOI53

Project No. 61131.01

Final Design Submission

Remedial Designfor

Bush Valley Landfill

Design Analysis Report

Prepared for

Harford CountyDepartment of Public Works

220 South Main StreetBel Air, Maryland 21014

Prepared by

EA Engineering, Science, and Technology15 Loveton Circle

Sparks, Maryland 21152(410)771-4950

October 1999

ftROOOISU

CONTENTS

Page

LIST OF FIGURES .........................................................................................................

LIST OF TABLES...........................................................................................................................v

LIST OF ACRONYMS AND ABBREVIATIONS ...................................................................... vi

1. INTRODUCTION..........................

1.1 Project Scope ............................................................................................................. 1-11.2 Site History................................................................................................................ 1-11.3 Existing Conditions.................................................................................................... 1-21.4 Geology and Hydrogeology....................................................................................... 1-3

1.4.1 Site-Specific Geology.................................................................................... 1-31.4.2 Site-Specific Hydrogeology........................................................................... 1-4

2. PRE-DESIGN ACTIVITIES................................................................................................ 2-1

2.1 Topographic and Property Boundary Survey ............................................................ 2-12.2 Delineation of Waste Limits...................................................................................... 2-12.3 Geotechnical Investigation......................................................................................... 2-22.4 Landfill Gas Migration Investigation......................................................................... 2-32.5 Landfill Gas Production Evaluation........................................................................... 2-5

2.5.1 Potential for Landfill Gas Production............................................................ 2-52.5.2 Potential for Landfill Gas Utilization and Destruction.................................. 2-6

2.6 Monitoring Well Installation...................................................................................... 2-6

2.6.1 Monitoring Well Borings.............................................................................. 2-72.6.2 Monitoring Well Construction....................................................................... 2-82.6.3 Well Development....................................................................................... 2-8

2.7 Monitoring Well Abandonment................................................................................ 2-82.8 Wetland Delineation .................................................................................................. 2-92.9 Ecological Monitoring.................................—........................—..........—••••••—•—•••• 2-10

2.9.1 Sampling Program ............„..................................................——............—.2-112.9.2 Analytical Protocols..................................................................."-"...."...—2-122.9.3 Results.....................................................——.-—.—.—....—————.2-13

flROOOISS

CONTENTS (continued)

Page

2.10 Monitoring Well Sampling......................................................................................2-14

2.10.1 Sampling Event One (25-26 August 1998).................................................. 2-162.10.2 Sampling Event Two (6-7 May 1999) .........................................................2-172.10.3 Discussion of Natural Attentuation.............................................................. 2-19

2.11 Air Sampling and Analysis...................................................................................... 2-21

2.11.1 General Field Sampling Procedures............................................................. 2-212.11.2 Field QA/QC (Collocates and Field Blanks)............................................... 2-23

2.12 Site Access and Easement Requirements ................................................................2-24

3. LANDFILL CAP DESIGN.................................................................................................. 3-1

3.1 Scope and Purpose..................................................................................................... 3-13.2 Site Grading...............................................................................................................3-13.3 Stormwater Management and Site Drainage ............................................................. 3-2

3.3.1 Surface Drainage............................................................................................ 3-23.3.2 Subsurface Drainage...................................................................................... 3-33.3.3 Sediment Control........................................................................................... 3-3

3.4 Capping System Components.................................................................................... 3-5

3.4.1 Geosynthetic Cover System........................................................................... 3-53.4.2 Soil Cover System.......................................................................................... 3-8

3.5 Landfill Gas Management.......................................................................................... 3-8

3.5.1 Passive Gas Venting System.......................................................................... 3-93.5.2 Active Gas Withdrawal System................................................................... 3-113.5.3 Gas Monitoring Program ............................................................................. 3-13

3.6 Slope Stability Considerations................................................................................. 3-133.7 Groundwater Monitoring Program .......................................................................... 3-143.8 Ecological Monitoring Program .............................................................................. 3-143.9 Future Use................................................................................................................ 3-15

3.9.1 Deed Restrictions.....................................................................................—3-15

3.10 Site Access Control.................................................................................................. 3-15

UR000156

CONTENTS (continued)

4. ENVIRONMENTAL PERMIT REQUIREMENTS INVESTIGATION............................4-1

5.' PROJECT SCHEDULE .......................................................................................................5-1

APPENDIX A: BORING LOGS, WELL CONSTRUCTION AND WELL DEVELOPMENTRECORDS

APPENDIX Ai GEOTECHNICAL BORING LOGSAPPENDIX A2: MONITORING WELL BORING LOGSAPPENDIX A3 WELL CONSTRUCTION DIAGRAMSAPPENDIX AA WELL DEVELOPMENT RECORDS

APPENDIX B: SVCA PROCEDURESAPPENDIX C: MAXIMUM LANDFILL GAS GENERATION CALCULATIONSAPPENDIX D: WETLAND DELINEATION DATA FORMSAPPENDIX E: GROUND WATER MONITORING ANALYTICAL DATA TABLESAPPENDIX F: CLOSURE CAP CALCULATIONSAPPENDIX G: SURFACE WATER DRAINAGE CALCULATIONSAPPENDIX H: SEDIMENT TRAP DESIGNAPPENDIX I: VENT WELL SPACING CALCULATIONSAPPENDIX J: WELL ABANDONMENT REPORTS

in RROOOI57

LIST OF FIGURES

Number Title

1-1 Site location map.

2-1 Location of geotechnical borings.

2-2 Cross section A-A*.

2-3 Cross Section B-B'.

2-4 SVGA sampling locations.

2-5 Wetland locations.

2-6 Ecological monitoring sampling locations.

2-7 Ambient air monitoring locations.

2-8 Required easements.

3-1 Typical geosynthetic closure cap detail.

3-2 Final grading plan

3-3 Passive landfill gas venting system estimated radii of influence.

3-4 Future active gas extraction well detail.

5-1 Project schedule.

IV AROOOI58

LIST OF TABLES

Number Title

2-1 Summary of soil samples collected.

2-2 Summary of geotechnical analyses.

2-3 Ecological screening values and surface water data.

2-4 Ecological screening values and sediment data.

2-5 Ecological screening values and marsh sediment data.

2-6 Air monitoring and sampling program.

2-7 Meteorological data for ambient air sampling events.

2-8 Summary of ambient air sampling TO-14 results.

3-1 Hydrology summary.

3-2 Summary of vent well construction.

AROOOI59

LIST OF ACRONYMS AND ABBREVIATIONS

ASTM American Society for Testing and MaterialsAWQC Ambient Water Quality Criteria

bgs Below Ground SurfaceBOD Biological Oxygen DemandBTAG Biological Technical Assistance GroupBVL Bush Valley Landfill

cf Cubic Feetcftn Cubic Feet Per Minutecfy Cubic Feet Per YearCFR Code of Federal Regulationscfs Cubic Feet Per SecondCOMAR Code of Maryland Regulationscm Centimeter(s)CN Curve NumberCOD Chemical Oxygen DemandCOPC Constituent(s) of Potential Concerncy Cubic Yards

DHMH Department of Health and Mental Hygiene

EPA Environmental Protection Agency

FS Feasibility Studyft Foot/Feet

GC/MS Gas Chromatograph/Mass SpectrometerGGR Gas Generation Rate

HDPE High Density PolyethyleneHSA Hollow Stem Auger

ID Inside DiameterIDL Instrument Detection Limitin. Inch(es)

L Liter(s)LLDPE Linear Low Density Polyethylene

m Meter(s)MDE Maryland Department of the EnvironmentMDL Method Detection LimitMES Maryland Environmental Service

vi

LIST OF ACRONYMS AND ABBREVIATIONS (continued)

mg Milligram(s)Mg Megagram(s)min Minute(s)ml Milliliter(s)MS/MSD Matrix Spike/Matrix Spike DuplicateMSL Mean Sea Level

NMOC Non-Methanogenic Organic CompoundsNPL National Priorities List

ORP Oxidation-Reduction Potential

pcf Pounds Per Cubic FootPID Photoionization Detectorppb Parts Per Billionppbv Parts Per Billion Volumeppm Parts Per Millionppmv Parts Per Million Volumepsi Pounds Per Square InchPVC Polyvinyl Chloride

QA/QC Quality Assurance/Quality ControlQC Quality ControlQAPP Quality Assurance Project Plan

RBC Risk-Based ConcentrationRDWP Remedial Design Work PlanRL Reporting LimitROD Record of DecisionROI Radius of InfluenceRI Remedial Investigation

sec Second(s)SI Site InspectionSVCA® Soil Vapor Contaminant Assessment

TAL Target Analyte Listtc Time of ConcentrationTCL Target Compound ListTOC Total Organic CarbonTSS Total Suspended Solids

Hg Microgram(s)USAGE U. S. Army Corps of Engineers

vn A R O O O I 6

LIST OF ACRONYMS AND ABBREVIATIONS (continued)

USDA U.S. Department of AgricultureUSCS Unified Soil Classification System

VOC Volatile Organic Compound(s)

yr Year(s)

viii IROOOI62

1. INTRODUCTION

1.1 PROJECT SCOPE

EX Engineering, Science, and Technology has been contracted by Harford County to perform alandfill closure remedial design at Bush Valley Landfill in accordance with a Record of Decision(ROD), which was signed by Region III of the United States Environmental Protection Agency(EPA) on 26 September 1995, and an Administrative Order on Consent with an effective date of3 October 1997. A Consent Decree was lodged with the court in January 1998 and entered by thecourt in March 1998. Harford County is conducting the remedial design.

The remedial design Scope of Work incorporates the following components:

• Pre-Design Investigations—Includes topographic and property boundary surveys,monitoring well installation, monitoring well abandonment, geotechnicalinvestigation, landfill gas migration investigation, landfill gas production evaluation,wetland delineation, groundwater monitoring, ecological monitoring, and site accessand easement requirements.

• Drawings—Includes a title sheet with a drawing index, existing conditions plan, finalgrading plan, erosion and sediment control features, landfill gas venting system,landfill sections, and site details.

• Specifications—Includes sections pertaining to cap barrier layer, cap drainage layer,landfill gas venting system, site stabilization and vegetation, and clearing and materialdisposal.

• Opinion of Cost— Engineer's cost estimate for the remedy at Bush Valley based onthe design.

• Plans—A Site Safety and Health Plan for Construction, an Operation andMaintenance Plan, a Post Construction Sampling and Analysis Plan, and aConstruction Quality Assurance Plan.

M AROOOI63

1.2 SITE HISTORY

The Bush Valley Landfill (BVL) site was owned by the Harris and Braxton families for manyyears. They used the land for grazing cattle and raising crops. In 1974, the Harris family leasedthe BVL site from a group of family members for use as a landfill. In 1975, the Harris familysubmitted documentation to the Department of Health and Mental Hygiene (DHMH, apredecessor to the Maryland Department of the Environment) along with a permit application.The permit application was approved by the DHMH on 25 August 1975. Landfilling operationsbegan using the trench fill method; however, the operators were cited by DHMH for notfollowing proper filling procedures. On 20 October 1978, the DHMH ordered the Harris familyto take corrective action. The Harris family failed to comply, and on 16 May 1979 the DHMHordered the site owners to take corrective action by retaining Maryland Environmental Service(MES) to operate the BVL. However, these efforts were unsuccessful, and on 2 May 1980 theDHMH again ordered the Harris family to correct violations.

The site was still accepting solid waste in 1982, when the capacity of the site was reached. On3 December 1982, the Harris family discontinued landfilling and the site was abandoned.According to the Remedial Investigation (RI), there was generally insufficient cover material in-place at the time the landfill was abandoned, and poor grading.

In 1983, the Maryland DHMH (now renamed the Maryland Department of the Environment,MDE) conducted a preliminary assessment of the site, which was submitted to EPA in August1984. A Site Inspection (SI) report was finalized by the NUS Corporation in December 1985.EPA subsequently used data from the SI to develop a hazardous ranking score for the BVL, andthe site was proposed for listing on the National Priorities List (NPL) in June 1988. The site wasfinalized on the NPL in March 1989. Harford County conducted an RI of the site, which wasaccepted as final by EPA on 7 March 1995. Harford County then conducted a Feasibility Study(FS), which was accepted as final by EPA on 8 June 1995.

1.3 EXISTING CONDITIONS

The BVL is located in eastern Harford County, approximately Vs mile south of MarylandRoute 7 and Vz mile north of U.S. Route 40 (see Figure 1-1). The site is accessed from BushRoad, which forms the western border of the site. The approximately 29-acre parcel is borderedon the north, east, and west by woodlands, and on the south by partially wooded residentialproperty. To the north and east of the site lie freshwater marshes. Bynum Run Creek flows to

.

1-2o AROOOI61*

GRAPHC SCALE IN FEET(APPROXIMATE)

BUSH VALLEYLANDFILL

EA ENGINEERING.SCIENCE. ANDTECHNOLOGY

REMEDIAL DESIGN WORK PLANBUSH VALJLET LANDFILLWRFORO COUNTY. UARYUM)

PROJECT MGRPAP

DESOCDBrJBJ

ORWNBrFOV

OCCffiD BT

PAPsouAS SHOWN

(WE5-24-99

HRQOOI65

the north of the site, until its confluence with James Run, which in turn flows into a tributary ofthe Bush River. The area to the north and east of the site is part of the Bush Declaration NaturalResources Management Area, and consists of lowlands and a freshwater marsh area.

The landfill itself consists of a mound of covered landfilled material sloping up from the• southern site boundary. The mound peaks approximately in the center of the site, then slopesdownward to the north at a somewhat steeper slope than on the south side of the site. The gradedsite also slopes gently to the east and west towards the marsh area and Bush Road, respectively.An overgrown, unpaved access road traverses the top of the site from the west towards the east,but stops before reaching the eastern site boundary. The site is covered by tall grasses, scrub, andmostly small-diameter trees.

On the eastern side of the site, there are the remains of two stormwater ponds left over from theoperational period. These ponds are in disrepair, but both have pipe outfalls to the marshland tothe east. There is an underground sanitary sewer line, which lies to the north and east of the site.Harford County maintains an easement for access to this sewer.

There are 17 existing groundwater monitoring wells on or surrounding the site, most of whichwere installed during the RI (Geraghty & Miller 1995). Four of these wells, including theupgradient background well, were installed by EAin April 1999.

1.4 GEOLOGY AND HYDROGEOLOGY

The following sections discuss site-specific geology and hydrogeology at the BVL site. A moredetailed discussion is presented in the RI report.

1.4.1 Site-Specific Geology

The Quaternary alluvial deposits and the Potomac Group, which underlie the BVL site, consist ofunconsolidated beds of gravel, sand, silt, and clay. These beds may be continuous ordiscontinuous. Using boring logs from the onsite and offsite groundwater monitoring wells, thefollowing site-specific geologic characterization was developed. Cross sections developedduring the RI and supplemented by information gathered during the pre-design activities, arepresented by Figure 2-2 and Figure 2-3.

RROOOI66

The uppermost soil material (i.e., 5 to 20 ft, depending on location) found at each of the drillinglocations across the site is dominated by clay- and silt-fraction-sized particles. Although soiltextures were dominated by finer particles, the sand fraction tended to increase with depth atsome locations. Two sand layers are found next separated in places by a finer grained material ofvariable thickness and texture. The uppermost sand layer is encountered approximately 5 to 18 ftbelow ground surface and varies in thickness from 1 to 12 ft. The upper sand zone tends tobecome thinner to the south-southeast of the BVL site. Based on lithologic descriptions, theupper sand zone does not exist or becomes non-distinct to the east of the midpoint of the BVLsite. The upper sand zone is characterized as a sandy loam and SP-SC soil based on the U.S.Department of Agriculture (USDA) soil classification system and the Unified Soil ClassificationSystem (USCS), respectively. The typical upper sand zone sample observed in split-spoonsamples contained more than 40 to 50 percent gravel-sized particles.

The upper and lower sand zones are separated by a layer of finer grained material that is variablein thickness and texture. The separation layer was observed to range from 10 to 15 ft inthickness. The fine-grained material separating the upper and lower sand zones is dominated byclay and silt, and the sand fraction tends to increase with depth as the lower sand zone isapproached.

The second or lower sand zone is encountered approximately 35 ft below ground surface on thewest side of the BVL site and less than 20 ft below ground surface on the east side of the BVLsite. The upper contact of the lower sand zone appears to slope to the south-southeast. Thelower sand zone is dominated by the sand fraction. The upper portion of the lower sand zone isclassified as a sandy loam/loamy sand, SC/SP SC soil type based on the USDA soil classificationsystem and USCS, respectively. Portions of the lower sand zone had increased amounts ofgravel-sized particles.

1.4.2 Site-Specific Hydrogeology

Two water-bearing zones were identified at the BVL site, the upper sand zone (which containslimited perched water) and the lower sand zone (which represents the uppermost continuouswater-bearing unit).

The upper sand zone was observed to contain water at only one location, GM1US. Theproduction of groundwater at GM1US is very limited (i.e., the monitoring well has 4 in. of water,bails dry, and requires 24 hours to recover). Insufficient information is available to determine a

flROOOI67

direction of flow for groundwater in the upper sand zone. However, based on the limited extentand nature of saturation observed for the upper sand zone, this unit may not contributesignificantly to the groundwater flow characteristics of the BVL site. It is possible that limitedgroundwater described at GM1US could be perched and could migrate in the upper sand zone.

The lower sand zone is considered the uppermost continuous water-bearing unit. The horizontalcomponent of groundwater flow in the lower sand unit across the BVL site is generallyperpendicular to the slope of the topography. Groundwater moves from topographically highpositions (i.e., recharge areas) to topographically low positions (i.e., discharge areas) such asBynum Run Creek to the north and the tidal marsh to the east of the BVL site. In general, thedirection of flow is from west to east across the BVL. There is some component of flow to thenorth, toward Bynum Run, and some component of flow to the southeast, toward the tidal marsh.The horizontal component of flow is controlled to some extent by the potential head energydifferences between the recharge and discharge areas.

Based on the water-level information collected during the RI and the pre-design activities, thearea to the west of the BVL site is hydraulically upgradient. It is important to note that the waterelevation at PZ1 (which is located adjacent to the boundary of solid waste placement) is lowerthan water elevations measured at GM1-LSS and GM9, indicating that a significant "reversegradient" component of flow due to mounding effects within the landfill does not exist at thislocation. This observation is valid for water-table conditions observed in January and May 1993.However, the information collected to characterize potential mounding at the BVL site islimited. In addition, the gradient between PZ1 and GM9 is relatively flat. Therefore, somepotential for mounding to occur at the site exists.

SROOOI68

2. PRE-DESIGN ACTIVITIES

Pre-design activities conducted at the BVL site have consisted of a topographic and propertyboundary survey, geotechnical investigation, landfill gas migration investigation, landfill gasproduction evaluation, monitoring well abandonment, monitoring well installation, wetland_delineation, groundwater monitoring, ecological monitoring, and determination of site access andeasement requirements. The results of these pre-design activities are summarized in this section.

2.1 TOPOGRAPHIC AND PROPERTY BOUNDARY SURVEY

In order to provide an up-to-date topographic map of Bush Valley Landfill, an aerialphotogrammetry survey of the site was conducted in April 1998 by Purdum and Jeschke ofBaltimore, as a subcontractor to EA.

A 1 in. = 50 ft scale topographic map of the site was produced with 1-ft contour intervals. Otherexisting features (power lines, wells, roads, trees, etc.) which could be identified by the aerialsurvey were also plotted. Horizontal and vertical control points for the aerial survey wereestablished onsite using the Maryland State Plan Coordinate system. The topographic surveymap is presented in the Drawings (Drawing No. C-l). In order to accurately plot the limits of thesite, a first-order property boundary survey was also conducted by Purdum and Jeschke.

2.2 DELINEATION OF WASTE LIMITS

The limit of waste was delineated by test pitting operations conducted from 1 June 1998 through5 June 1998. The limit of waste from this effort is indicated on Drawing No. C-l.

Where feasible, each test pit was begun outside the approximated limit of waste to minimizedisturbance of the waste material, and advanced through the limit far enough to confirmidentification of the main body of the landfill. Each test pit was advanced to a depth of 8 to 10ft. A total of 26 test pits were completed, which included 23 at the limit of waste and 3 outsidethe limit. The test pits outside of the limit of waste were used to verify that landfilling activitiesdid not include placement of waste beyond the Rl-identified limit of waste and to verify thenature of various mounds located beyond the limit of waste.

Following completion of each test pit, any waste removed was replaced in the pit and coveredwith the original cover material.

2-1 IROOOI69

2.3 GEOTECHNICAL INVESTIGATION

A geotechnical investigation has been conducted along the southern and eastern landfillboundaries to evaluate local soil characteristics for potential vertical gas interceptors and toaddress cap stability. The geotechnical investigation was completed in two phases. The firstbegan 1 September 1998. Six borings (EASB1 through EASB6) were planned, as detailed in the 4Final RDWP (EA 1998). Due to site inaccessibility encountered during drilling activities,EASB-4 and EASB-5 were not collected. An additional boring (named EASB-1 A) was located

H

approximately 150 ft east of Bush Road. These five geotechnical borings (EASB-1, EASB-1 A,EASB-2, EASB-3, and EASB-6) were advanced during the first phase of the geotechnicalinvestigation. They were advance to a depth of 25 ft along the southern BVL boundary in the flocations shown in Figure 2-1. In order to assess local subsurface conditions, EA developed frcross-section A-A' (Figure 2-2), shown in plan view on Figure 2-1.

The borings were completed by E2SI under subcontract and supervision of EA in accordance•V

with the Final RDWP (EA 1998). The borings were advanced by hollow stem auger (HSA)using a CME 75 drilling rig with a 31/4-in. inside diameter (ID) auger, and 2-in. split barrelsampler. Soil was continuously logged by an EA geologist and one sample each was collected at *a uniform depth, via Shelby tube, from borings EASB-1, EASB-1 A, EASB-2, and EASB-3, for *geotechnical analysis of soil type, in-place density, grain size distribution, permeability, and a

y.Atterburg limits. (Shelby tube sample collection was attempted in EASB-6; however, the sample £collected was saturated sand, which was lost from the sampler upon removal from the borehole.)Each sample collected for the geotechnical analyses noted above was predominately low- i.permeability silt/clay. Soil boring logs and grain size distribution curves are provided inAppendix Ai and A:, respectively. Table 2-1 presents a summary of the soil samples collected ifor geotechnical analysis. Table 2-2 presents a summary of the geotechnical analyses. *Continuous split-spoon sampling was conducted during the soil boring activities. Samples from reach boring were collected and evaluated (using a procedure later deemed inappropriate by ;regulators) with a photoionization detector (PID) for headspace organic vapor screening analysis.The data collected from the geotechnical analyses was required for remedial slurry wallconstruction designs (no longer identified as a remedial action).

Following regulatory review and comment a second geotechnical investigation phase was **initiated. Five additional soil borings (EASB-7 through EASB-11) were advanced via direct- _push technology on 5 through 9 November 1998 to address concerns for potential vapor |jmigration through deeper subsurface sand layers. Continuous cores were collected and lithologic

*1yc° ^- 2-2 flROOOI70

ftROOOI7l.

3«rMOU33s\ioicu9\sia3rau\5

9< I

_ii»——' 3 1(MM Hsna _ , , „ _ , , , , _ „ _ ...* 8

i ^ I 1 I I8 2 o S 8

IBSll i• *»isi

-gg

i i *« § -

RROOOI72

<Jt<y>I

CMICM

TABLE 2-1 SUMMARY OF SOIL SAMPLES COLLECTED

BoringNumber

EASB-1

EASB-1 A

EASB-2

EASB-3

SampleDepth(ft)

4-6

6-8

6-8

6-8

SoilDescription

Brown-gray ,moist silty clay

Brown moistsilty clay

Gray silty clay

Brown moistsilty clay

GrainSize

Analysis

PermeabilityAnalysis

In-PlaceDensity

AtterburgLimits

Note:No sample was collected and analyzed from EASB-6 due to poor sample recovery in the Shelby Tube.

AROOOI73

TABLE 2-2 SUMMARY OF GEOTECHNICAL ANALYSES

Sample

EASB-1

EASB-1 A

EASB-2

EASB-3

DryDensity(pcf)

129.3

85.7

110.5

106.5

Permeability(cm/sec)

5.397 x 10'8

6.927 xlO'8

4.295 x 10'B

1.831 x 1Q-7

LiquidLimit

31

31

31

32

Plastic Index(AtterburgLimit)

13

13

11

10

Grain SizeDistribution(percent)

silt/clay - 93.5sand - 6.3gravel - 0.2

silt/clay - 89.0sand- 11.0gravel - 0.0

silt/clay -95. 5sand - 4.5gravel - 0.0

silt/clay -93.1sand - 6.9gravel - 0.0

USCSClassification(soil type)

CL

CL

CL

CL

Note:No sample was collected and analyzed from EASB-6 due to poor sample recovery in the Shelby Tube.

RROOOI7I*

evaluations were completed by an EA geologist to supplement previous data, and to characterizesubsurface conditions along the western and southwestern sides of the landfill. The objectiveswere to further characterize subsurface conditions at the BVL site and to assess the potential forlandfill gas to migrate through a more permeable subsurface medium. During the second phaseof,the geotechnical investigation unsaturated sand layers were identified and target depths foradditional soil vapor samples were established. The additional work began 4 November 1998and was completed on 9 November 1998. Soil boring logs for the "second phase" borings areprovided in Appendix AI. EA used the data from these additional borings to develop cross-section B-B' (Figure 2-3), shown in plan view in Figure 2-1.

Data collected from the EA geotechnical investigations were also used to supplement and refineexisting information (i.e., RI data) as they relate to the subsurface physical, chemical, andbiological conditions at the landfill. Previous subsurface characterizations (i.e.,RI), for example, included discussions of distinct "upper" and lower" sand aquifers below thesurficial silt and clay deposits, separated by a 1 to 3 ft clay confining. The RI groundwatermonitoring well network was developed on that premise. The data collected during the EAgeotechnical investigation indicates that the confining layer, defined in the RI, is not continuousbeneath the landfill and the sand layers merge to a single unit south and east of approximatelythe east-west midpoint of the landfill.

2.4 LANDFILL GAS MIGRATION INVESTIGATION

EA conducted a Soil Vapor Contaminant Assessment (SVGA®) survey between 18 and28 August 1998 as part of the pre-design activities at the BVL site. The data collected were usedto evaluate the nature and extent of subsurface vapors and, where applicable, to assist in thedesign of a landfill gas management system. A total of 77 SVGA samples were collected in bothonsite and offsite locations at soil depths that ranged between 3 and 6 ft. The SVGA samplelocations are presented on Figure 2-4. The SVGA samples were analyzed for the representativesuite of chlorinated and aromatic hydrocarbons shown in Appendix B. The soil vapor analysesalso included evaluation of carbon dioxide, oxygen, methane, and carbon monoxideconcentrations. Appendix B describes in detail the procedures followed during the SVCA at theBVL site.

The analytical results (Appendix B) indicate the presence of trace concentrations of chlorinatedcompounds within, north of, and at the southwest corner of the limit of waste. Results indicatethe highest concentrations of hydrocarbons occurring near the northeast and southwest portions

RROOOI7S

of the limit of waste. Elevated concentrations of methane (greater than 10,000 ppm) weregenerally limited to within, north of, and west of the limit of waste.

The landfill gas concentrations detected in the surficial clay layer along the southern boundary ofthe landfill were minimal. Similarly, the concentrations of methane along the southern boundaryof the site were minimal, ranging from <5 to 17 ppm.

In response to regulatory concerns for potential deeper landfill gas migration, additional soil gassamples were collected from the unsaturated subsurface sand zone and analyzed forhydrocarbons. Lithologic characterizations completed during the geotechnical investigation wereused to target permeable soil vapor sample collection locations. Eight deep soil gas sampleswere collected from the upper sand layer via direct-push technology at depths of approximately17 ft. These deep soil vapor sample locations (EASG-2, EASG-3, EASG-7, EASG-8, EASG-9,EASG-10, EASG-11, and EASG-12) are located along the southern and western landfillboundary and are shown on Figure 2-4. The deep soil vapor samples were numbered tocorrespond to the co-located geotechnical borings described in Section 2.3. The soil vaporsampling point depths are illustrated in cross sections A-A' and B-B' (Figures 2-2 and 2-3,respectively).

The analytical results of the deep soil vapor samples are provided in Appendix B. Elevatedmethane concentrations were detected in seven out of the eight samples collected. Methaneconcentrations, measured in percent, ranged between 21.7 and 48.9. The methane migration isoccurring in the unsaturated sand layer, beyond the limits of the landfill. In general, chlorinatedand aromatic hydrocarbon concentrations in the deep soil vapor samples were essentially tracevalues (i.e., less than 20 ng/L).

It should be noted that methane levels reported by the investigation exceeded the lower andupper explosive levels of 5 to 15 percent. Based on these results and concerns of USEPA andMDE, additional subsurface gas vents and gas monitoring probes were added to the design(Chapter 3).

In response to request by several homeowners, Harford County also conducted sampling ofresidences in the area of the landfill. The following table lists the residences recently sampledfor landfill gas levels and the results of that sampling:

T]ii

AROOOI76

. S S 8 2 im I I 1 I I I

TU

01-OSV301-8SW3

a s o

b

e-J1

CN

O

0

!i><oz-3ogozzzujjji

agp

fiROOOI77

HROOOI78

Address Date Sampled Results

1234 Bush Road 26 January 1999 All readings consistent withbackground

J 308 Bush Road 2 February 1999 All readings consistent withbackground

1234 Bush Road 23 April 1999 All readings consistent withbackground

2.5 LANDFILL GAS PRODUCTION EVALUATION

The goals of the landfill gas production evaluation, in conformance with the ROD, are to:

• Investigate the potential for landfill gas production• Evaluate the potential for gas utilization and destruction• Evaluate the methods for protecting human health and cap integrity

Each of these goals are addressed in detail in the sections below.

2.5.1 Potential for Landfill Gas Production

The potential for landfill gas production exists based on the nature of municipal solid waste. Theamount of gas produced was estimated using the EPA Emissions Estimation Program Version1.1 a. In accordance with 40 CFR 60.755 (a)(l), and in lieu of site-specific data, the values forthe methane generation rate constant (k) and the methane generation potential (L0) that were usedwere those presented in the EPA Emission Factors and Inventory Group in the documententitled, "Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and AreaSources" (AP-42). Specifically, k is 0.05 yr-1 and LO is 6,000 ft3 CH4/Mg refuse. The value forNMOC (non-methanogenic organic compounds) was taken from the results of the SVGA andwas assumed at 34 ppmv [average of total flame ionization detector (FID) hydrocarbons]. Thetotal landfill capacity was estimated to be 1 million cubic yards (cy) and was considered in themodel along with a time period of 8 years, which is the estimated active life of the landfill. Theresults of the model indicate that for 1998, the total landfill gas emission rate from Bush Valleyincluding methane, carbon dioxide, and NMOC is approximately 1.2x10* cubic feet per year(228 cfin). It should be noted that these references are conservative and are best used as a

2'5 RROOOI79

screening tool for landfill gas alternative analysis such as for BVL. Calculations detailing theestimation of the expected gas flow rate are included in Appendix C.

2.5.2 Potential for Landfill Gas Utilization and Destruction

The analytical results from the pre-design activities indicated that the average concentration ofmethane at the sampling points across the site is approximately 15,000 ppm (1.5 percent). Theaverage concentration of NMOC is 34 ppm as shown in Table B-l of Appendix B. For thepurpose of determining the method of landfill gas venting (passive or active), 40 CFR Parts 51,52, and 60 are utilized as a guideline. If the landfill has a maximum design capacity less than100,000 megagrams (Mg) (111,000 tons), an active landfill gas collection and control system isnot required. If capacity equals or exceeds 111,000 tons, then the NMOC emission rate must becalculated. The capacity above (1 x 106 cy) is equivalent to approximately 550,000 tons. If thecalculated NMOC emission rate is less than 150 Mg per year (167 tons per year), then an activesystem is not required. NMOC emission rate is calculated by procedures provided in 40 CFRPart 60.753.

The calculated NMOC emission rate for the BVL site is 0.412 Mg per year. Therefore, a passivegas venting system will be adequate for controlling and removing landfill gas.

The utilization or destruction of landfill gas requires (1) sufficient concentrations of methane,and (2) a potential user in close proximity to the landfill. The concentrations of methane in theshallow ground as determined during the SVGA were low. The higher methane concentrationsseen in the deeper sand zone were offsite, and due to the age of the landfill, methane productionat the high rates seen is not anticipated to be sustainable. In addition, there are no potential usersfor the landfill gas located near the BVL site.

Based on the low methane concentrations in the shallow subsurface, the absence of a potentialuser, and no technically based justification for an active gas extraction system, there is littlepotential for landfill gas utilization and no requirement for destruction.

2.6 MONITORING WELL INSTALLATION

Four new groundwater monitoring wells (EA10 through EA13) were installed during the week of12 April 1999 to monitor groundwater quality (along with selected existing wells) near theperimeter of the BVL. The new well locations are presented in Figure 2-1. The new welllocations include one upgradient well and three perimeter wells downgradient of the BVL. The

AROOOI79A

upgradient well (EA10), located approximately 900 ft northwest of the landfill, a backgroundwell, geochemically independent from the BVL. The three downgradient wells (EA11 throughEA13) located south and southeast of the landfill will be used in conjunction with 10 existingonsite wells to assess long-term natural attenuation. The downgradient wells were installed inthe sand aquifer that underlies surficial clay and silt deposits. Monitoring well installation and^construction was completed in accordance with the Final RDWP (EA 1998) and expanded WorkPlan (EA 1999).

2.6.1 Monitoring Well Borings

Drilling and well installations were performed by E2SI, a licensed Maryland well driller, as asubcontractor to and under supervision of EA. Monitoring wells EA10 and EA12 were installedin accordance with EA standard operating procedures (GtS-201) and Maryland Department ofEnvironment (MDE) specifications (MDE 1991). Due to soft ground in the marsh area east ofthe landfill, monitoring wells EA11 and EA13 were driven to target depths using a tripodmounted cathead.

Soil was continuously logged via 2-in. split barrel samplers, and lithologic characterizationscompleted during drilling activities for EA10 and EA12. Due to marsh conditions, lithologiccharacterizations for EA11 and EA13 were completed by evaluation of soil cuttings collectedwhile advancing a soil boring adjacent to each marsh well site via tripod-mounted augers. Thedrill cuttings derived from the downgradient borings were containerized in 55-gal drums andmoved to the fenced staging area along the western landfill boundary. Boring logs are providedin Appendix A3.

EA10 was bored to a depth of 18 ft below the ground surface (bgs). In general, interlayered bedsof wet silt, sand, and clay, ranging in thickness from 1 to 4 ft, were encountered over the 18-ftboring interval. Headspace readings on soil samples collected from boring EA10 revealed nodetectable organic vapors.

EA12 was bored to a depth of 26 ft below ground surface. Silt/clay was predominant from thesurface to approximately 11 ft. Wet sand and gravel were encountered from 11 ft to a depth ofapproximately 20.5 ft and running sand was recorded at a depth of 18 ft (Appendix A3>. Theboring was terminated in a silt/clay layer at 26 ft. The saturated sand and gravel aquiferencountered from 11 to 20.5 ft represents the single underlying sand unit discussed in Section2.3. Trace levels of organic vapors (i.e., <2 ppm) were detected at depths of 4 and 12 ft.

2-7 AROOOI80

Tripod-mounted auger refusal was encountered at approximately 13 ft bgs in the soil borings atEA11 and EA13. The lithology identified at both marsh well sites was similar and consisted of aclayey silt from the surface to approximately 13 ft. Sand content appeared to increase with depthand auger refusal was likely due to the lithologic change from clayey silt to sand at each location.The lithologic change is believed to be the contact between the surficial silt and clay deposits andthe underlying sand aquifer.

2.6.2 Monitoring Well Construction

Monitoring wells EA10 and EA12 were constructed of 4-in diameter schedule 40 PVC casingwell casing and 0.010-in. slotted PVC well screen. The screen interval in Well EA10 extendsfrom 7 to 17 ft below ground surface (bgs). The screen interval in Well EA12 extends from 8 to18 ft bgs. Well construction diagrams are presented in Appendix A}. Water levels gauged inmonitoring wells EA10 and EA12 on 13 and 15 April 1999 were 8.2 and 8.7 ft, respectively.

Following auger refusal, Wells EA11 and EA13 were driven to depths of 17 ft and 18 ftrespectively via a tripod-mounted cathead. A three ft section of pre-packed stainless steel wellscreens is seated within the underlying sand aquifer at the base of each well. Well constructionfor EA-11 and EA-13 diagrams are presented in Appendix AS. Groundwater levels in the marshwells were at, or near grade.

2.6.3 Well Development

Well development was completed for each well in accordance with the expanded Work Plan (EA1999). During pumping, water quality parameters were measured to assess well stabilization.The parameter measurements included temperature, specific conductivity, and pH readings. IEach well will be developed until the above-mentioned parameters stabilized over three readings utaken at 5-minute intervals. Well development records are presented in Appendix A .

2.7 MONITORING WELL ABANDONMENT

Four existing groundwater monitoring wells (MW1 through MW4) were abandoned 4-7 May1999. The location of the four wells are illustrated in Figure 2-1. These wells were initiallyinstalled at the landfill in the 1970s and constructed with solid steel casings that extended fromapproximately 2-3 ft above grade to the bottom of the hole. Well depths for MW 1-4 were 52, j42,22, and 21 ft, respectively. L

*

1

U

;;{ ,»;*/! 2"8 flROOOISI

The well abandonment process for each well began by attaching the casings to the drilling ng inan attempt to "unseat" and remove each casing by using the weight of the rig to physically "pull"the casings from the ground. Casing removal was unsuccessful. Consequently, each well wasabandoned by perforating the steel casings through the use of a pneumatic device. This deviceconsisted of a drill bit equipped with a "spiked" wheel that, when lowered into the well, puncheda straight series of 2-in. holes in the casing every 3 in. This device was used to create threeevenly spaced "punch lines" in each well that extended from the surface to the bottom of thecasing/hole. After perforation, the well was grouted and the casing in each well was cut offbelow grade. Preparations were made to capture and contain any water displaced during thegrouting process; however, no displacement water was generated. Displaced water is believed tohave escaped through the perforated casings, a good indication that perforation was thorough.

Well abandonment reports are included in Appendix J.

2.8 WETLAND DELINEATION

EA conducted a wetland delineation at the BVL site on 5 and 6 August 1998. Poor grading andlocalized subsidence of the various fill areas created depressions throughout the BVL site thatsupport wetland vegetation and/or have other wetland characteristics. The objective of this studywas to identify, delineate, and characterize the wetlands on the existing cap and in those areaspotentially encroached upon by the installation of the future cap.

The guidance contained in the 1987 U.S. Army Corps of Engineers (USAGE) WetlandDelineation Manual (USACE 1987) was used to determine the wetland-upland boundaries.Flagging labeled "Wetland Delineation" was hung along the wetland-upland interface. Each flagwas labeled in the field with a unique designation. A survey crew surveyed the wetland flagsand mapped the locations of the wetland areas to provide a mechanism of determining wetlandacreage and distribution.

Since the wetlands on the existing cap and immediately adjacent to the limit of waste wereinduced by past grading activities, a Corps-approved variation to the Corps' RoutineDetermination (i.e., three-parameter approach) was used for wetlands in these areas. The three-parameter approach relies upon the existence of wetland vegetation, wetland hydrology, andhydric soils. Because this site is dominated by (relatively) recently disturbed soils (i.e., fill andcover material placed during past landfilling activities), the presence of hydric soils could not beused to determine the wetland boundaries on and adjacent to thejimit of waste. Vegetation andhydrology were used as field indicators to determine wetland edges in these areas. ,

2"9 BROOOI82

Data sheets were completed for each wetland area and are included as Appendix D. Plantsoccurring within a wetland area were identified to genus and species whenever possible. Noteson hydrology were also recorded on the data sheets.

The majority of the wetlands present on the BVL site are the direct result of poor gradingactivities associated with past landfill operations. Areas with wetland characteristics onsite (i.e.,wetland vegetation and wetland hydrology) have developed in depressed areas (due to poorgrading and/or subsidence of fill material) or in drainage areas that developed due to excesssurface water.

Twenty-six wetland areas were delineated at the BVL site on 5 and 6 August 1998 (Figure 2-5).Wetland types present onsite include emergent, scrub-shrub, and forested wetlands. Emergentand scrub-shrub wetlands are the dominant wetland types at the BVL site. The wetland areasrange in size from extremely small (approximately 100 ft2) to those that are somewhat larger(less than 7,000 ft2). Most of the wetlands are distributed throughout the existing fill areas, witha few larger wetland areas along the perimeter of the property. These larger wetlands aretypically beyond the anticipated extent of disturbance to be caused by remedial action.

Approximately 57,061 ft2 (1.3 acres) of wetland areas are anticipated to be disturbed at the BVLsite by final closure activities. The wetland areas to be disturbed are on or adjacent to theexisting cap, small in size and low in quality, and are a direct result of previouslandfilling/grading activities. The majority of the wetland areas delineated on the existing capcontain only one or two common wetland plant species (e.g., Juncus effusus, and Scirpuscyperinus),

Wetland areas outside of the proposed limit of disturbance are larger in area, have greater plantr

species diversity, and greater habitat value. These areas are associated with the floodplain ofBynum Run and the Bush Declaration Natural Resources Management Area. These higherquality wetlands (i.e., those wetlands not previously impacted by historical site activities) willnot be disturbed by final capping activities.

2.9 ECOLOGICAL MONITORING

The selected remedy for the BVL site includes an ecological monitoring program to determinethe effectiveness of the remedial action in protecting the ecological resources. The PerformanceStandards in the ROD (p. 53) specify that: ;"JJ;' '

So - Ori; 2'10AROOOI83

RROOOI8U

• The Ecological Monitoring Program shall include monitoring of the adjacent wetlandand stream surface water, sediment, and benthic environments.

• An ecological reference station for wetland/marsh samples shall be established.

Ten sampling stations were established for monitoring the wetlands and streams (Bynum RunCreek, Bush River Tributary, and the unnamed tributary). The marsh reference station was sitedin the Church Creek basin. Sampling locations are shown on Figure 2-6.

The first round of sampling, or baseline monitoring, was conducted as part of the pre-designactivities. The monitoring plan will be developed as part of the remedial design.

* **

2.9.1 Sampling Program

As described in the RDWP, sampling locations were designated SW/SD 1, 2, 3, 4, 5, 6, and 7and two marsh sediment locations were designated MSD08 and MSD09. Sites 1 and 5 areupstream of the BVL site and were considered to be background locations on Bynum Run andJames Run. Sites 2, 3, and 4 are located on Bynum Run and Site 6 is located on the Bush RiverTributary near its confluence with the Bush River. Site 7 is located east of the landfill on theUnnamed Tributary to the Bush River. An additional sediment location, MS-13, was added afterapproval of the Work Plan. It is located in the northeast section of the site in an area thatfunctions as a sediment basin.

Samples were collected in accordance with the procedures specified in the RDWP (EA 1998).Each of the surface water and sediment sampling locations, as well as.the two marsh locations,were staked and later located by field survey.

Samples were collected during the low tide window on 5 and 6 August 1998. Low flowconditions were further defined by occurrence of less than 0.2 in. of rainfall in the prior 72 hoursas measured at Martin State Airport. MS-13 was sampled on 11 September 1998.

At sampling location SW-7 the water level was too low to allow for collecting a water samplewithout disturbing bottom sediment. The collected sample had a total suspended solids (TSS)concentration of 2,620 mg/L. Since this does not represent a water-column sample, all resultswere rejected in the data useability review.

Sediment samples were collected from areas estimated to have a minimum of 50 percent fines(percentage of sediments that can pass through a 63-micron sieve). Strict compliance with thisspecification was not possible due to the material present in the system. However, all sampleswere collected in depositional areas and, with one exception (SD-6), contained at least 50 percentmaterial with a particle size less than 100 microns. The remaining material was mostly finesand.

2.9.2 Analytical Protocols

Samples were analyzed for the suite of parameters listed below:

• Surface Water—Temperature, dissolved oxygen, pH, TSS, alkalinity, ammonia,hardness, biological oxygen demand (BOD), chemical oxygen demand (COD), totalorganic carbon (TOC), Target Analyte List (TAL) metals, and cyanide.

• Sediment—Grain size, TOC, ammonia, TAL metals, and cyanide.

Leachate influence on surface water and sediment quality is best distinguished from othersources by evaluating a profile of analytes that typically represent indicators of leachate insurface water. The most significant of such analytes are alkalinity, ammonia, aluminum, barium,copper, iron, lead, nickel, manganese, and zinc. Since the complete TAL scan was run, data foradditional metals were also obtained. Among the metals that are not characteristic leachateindicators, standard laboratory reporting limits for cobalt, cyanide, mercury, and silver aregreater than the EPA or MDE screening values. Since these analytes were not considered to beCOPC by the other ROD, more sensitive analysis protocols were not provided for in theapproved work plan. In addition to the TAL metals, alkalinity and ammonia data are essential toeffectively assess whether leachate may be affecting the surface water system. In addition tobeing an indicator of leachate, ammonia is a potential toxic constituent in surface water andsediment.

Grain size and TOC data are essential to the accurate interpretation of sediment data. Sinceconstituents of concern tend to adsorb to finer grained sediment particles, it is essential thatsamples are representative of similar media. TOC is necessary to define biological availabilityof some chemicals and thus to derive benchmarks that indicate whether there is a potential foradverse ecological impact.

2'12 HROOOI86

SW/SD5^\

SW/SD4jT

BUSH VALLEYLANDFILL

TRAILERARK

GRAPHIC SCALE IN FEET(APPROXIMATE)

EA ENGINEERING,SCIENCE, ANDTECHNOLOGY

ECOLOGICAL MONITORINGSAMPLING LOCATIONS

BUSH VALLEY LANDFILL CLOSUREHARFOftO COUNTT, UARVLWO

RROOOI87

2.9.3 Results

The results of the sampling program are shown in Tables 2-3, 2-4, and 2-5. The findings arereviewed in relation to the principal objectives of the study below.

1. Screening of chemical concentrations against ecological screening values todetermine whether there is a potential for adverse ecological effect

The only screening values or water quality standards for surface water (with theexception of sample SW-7, which was excluded based upon data useabilityevaluation), that were exceeded were aluminum and dissolved oxygen. Exceedancesor, in the case of dissolved oxygen, deficits were recorded at all stations, bothreference locations, and potentially impacted locations. These results are consistentwith the findings of the RI, that there were no constituents of potential concern(COPC) in surface water.

Screening values that were exceeded for stream sediments include chromium, copper,iron, manganese, nickel, and TOC. These analytes exceeded screening values atstations that are upstream of the landfill as well as downstream. These same analyteswere found to exceed screening values in marsh sediments. Two of the reference areamarsh samples also exceeded the lead screening criteria by a minimal amount andwere generally similar to concentrations found elsewhere. One result for zinc (MS-8)was 9,930 mg/L, an order of magnitude higher than the screening level and all otherresults.

2. Evaluation of whether the distribution of leachate indicator analytes shows a landfill-related effect

The analytes that have typically been found to be indicative of leachate impacts arealkalinity, ammonia, aluminum, barium, copper, iron, lead, nickel, manganese, andzinc (IT Corporation 1993). There is some indication that ammonia, barium, copper,and iron, in sediments to the east of the landfill, are elevated compared to upstreamand reference locations. These analytes are also elevated in the groundwater samplesof GM-3 and/ or GM-4 LSS.

3. Assessment of whether there are leachate-related effects that are potentially toxic tobiota and recommendation for toxicity testing, if necessary

2-13 RROOOI88

Of the potentially leachate-derived analytes, only copper and iron have ecologicalscreening values. These screening values, as previously noted, are exceeded atlocations upstream of the landfill as well as downstream. There are no indicationsthat the observed conditions would adversely affect ecological resources in thesurface water system. Therefore, there is no need to conduct further evaluations suchas toxicity testing. f

Surface water and sediment data were analyzed in accordance with the Quality AssuranceProject Plan (QAPP.) and are usable for evaluation of environmental conditions, with theexception of the surface water sample for SW-7. Sample SW-7 was taken in a location withshallow standing water and, as indicated by the TSS concentration of 2,620 mg/kg, is not a ?•representative surface water sample. Therefore, this sample was rejected from consideration in Jthe data evaluation as being unusable.

The laboratory qualified several of the antimony results for the sediment samples with the Nr

qualifier indicating that spiked sample results were outside control limits (75-125 percent).These results are useable with the recognition that results may be biased low.

t

The detection limit for cyanide exceeds the reporting limit identified in the QAPP for sediment. *The reporting limits identified for sediment samples are based on the limits achievable for soils. ?However, the detection limits that can actually be achieved for sediment are dependent on the ;.percent moisture of the samples since the wet weight result is converted to dry weight by

9

calculation for reporting.i

Several analytes are reported as estimated values at levels well below the reporting limits. Such Iresults are above the level detectable by the instrument but below the level that is considered to *be reliably quantified. r

»

2.10 MONITORING WELL SAMPLING

Two groundwater sampling events have been completed. The first sampling was conducted25-26 August 1998. The second sampling event was conducted 6-7 May 1999. A general *discussion of both sampling events is provided in the following sections. A discussion on »natural attenuation processes in groundwater at BVL is also provided. The data will also be used ?in the development of the long-term BVL groundwater monitoring program. Table 2-6 presents ia comprehensive list of the BVL monitoring wells monitored during the two sampling events and

2'14 flROOOI89

tzJ

*• ^4* f 1 i^d" g,*

"S i—

£ Sea

§kB "V 3L_ W5 >

r-•t "O^ •*— *«

11

en

^

£

«

M

^

x

WN . "3tn =^ w o

« 1 "g> W 3!? « o

1

& «(V ^ M•< _E

V**

Ma

£

|TALMeta

sOH03pCN

gmCNrN

CQNO

caop-

m•t

CQmp-

CQoCN

CQONO00

NO

.d

SOHCQOd

CQVI

3o1-4

o

"3p»

o

3o

o

oNO

(Antimony

ONS

WQ

o

3oCN

CQp-C*l

3oCN

3oOJ

3oCN

3oCN

3CN

O

3_o

•—•

O

CQgOo4

CQO

CQen^

CQCNOO

CQ

O r

CQ

*

CQmS

CO

5

g<N

'irn

soHCQ

£

CQ

3oo

3CNO

3oCNO

3o:o

3od

3oCMd

«n

{Beryllium

ONO\

*""!

3o

3o*+Jo

NO1o

3o

*o

Do%o

3od

3

d

d

u

OP-ON

S

<**O

"gr~>n

O

gOo*

S<N

§m

31

5|n)

SON

UQS::

CNm

3o~ f

3o^

3pf

3o

3o

o

o

- -S

9

1

CoON^

a.33p

CQmj

3o

3o^

3op

3p(-**

3o

3o

2

i

mON

WQ

CN

ONON

3orN

3oCN

3ofNj

3oC4

3o

3o(N

O

u

n

rnONON

UQSvi

3o

3o

3o

3o•

3o•

3o

3o

o

1

Ua|oo<— 1

ogON*-•CN

OOON

r-

00

p-00

*rn

fNO

g

1

ONON

UJSSCN

O

CN

DOM

3o

3o»4

3oW4

3o

3o

m

)|

omr-

o

VO

O

vO

O

omNO

O*nON

OooNO

§f—

' I

§

OOv«

p

p-ten

O0000

00

Ji

m*

«n

(*•

j

mOv

WQSCNSO

op-1cs

3o

Bo

CQoo

CQ

o

CQ«nO

CQid

CQ

d

d

,u

\i

0?ON

Uao

06

3om

3o«n

3ol/

3p«n

3om

3o<n

§

L

o

orN4

oo

"O

M

O

rt

OON— •

1"

§—

!••'1 •

A.

-1

O

Hpm'

CO

•J

CQ*O

•J

3oM

3oN

CQ00p

CQ»nrj

03rM

m

,

ISelenium

mON

WQ

P-4

d

3o——

3rs*-4

3o

3oM

3o•— t

3o^

3o-

p

r/j

Ooo00"»x.

o^

J>

oooON

OO9N

Om3\

S

r

OmON

§—

1

—O

3od

3o— -4

3o••4

3o

3of+4

3o»— «

Do

~3o

"2

iThallium

—O

fflioV

OstN

3o

3om

3pro

3o"O

3am

3om

O•n.

j

•n^

WQ5o

N

33N

*"

3oP-4

3oN

3ors

3o—

3o«s

o(N

1

UBnffObB4>51^

2

1a?:"e0

e

•nON

uTQ211*/ 3-J V~jA oo

M

«

H

NO

S

£D.•M

mON

W

S

> p^*

N

ON

mNOdCN

dN

dN

enOCN

mood

Ueg

euH

CDOCDQC

3

(N

CQ<H

BJ9 ,

'5 —V r.U W

CQ

00

\om

CO

Ten

u oCQ k.w u

•W 3« O

V

fl-

-J IE <

CN

3O 00 • - 5 ~ .: S. S: «» *J

X-n Q

md

<nd

«< =

30

m

m

P-

«n

cSl1

NO

OO

NO

00

d

_ »a 4 * i ^ *- •« ^ jr

3

3

3 « rym v ^-

3

« « ta .s 5 a .s g «i »^ »-° w S « -1 (» u •• s yp^&

oom

oo

ON

"3-

m

t*— \r? """ON ™

H ON .2

ai °5~ 1

ri C

g w §• Ioo < 'a 2i\0 U -- Qrs « —1 _.~ 3 c ^•2 §

O o

^ ^vi /™\BO ;£; UJCtf ~" CT3 5* S

Si M ^3 *-*- 'h y Ho u jc .o£ £ H o

O J T3 C*> 5- S M

U4a H

Q, to c M goM "u O ^2 —« > O -S 3• o

"•c SP •aa!*- ,

* .5 JS~S3Oi_ tfl * titO 2J S oo 3> (:? rt S c w f

S < B«

K

.2«S tc IIN—• "o

. a a« & u i 1

L

3 « "E1 £ U O </>

II asi y -1S c I *O ft. . O > « „ _f a - P £ e 'sil•a k. S if Ji3*2 S S5 g « - « — »'

S XB u

"S j

33S SSm

A R O O O I 9 I

i-rtu-7"*?, 1

_1

>

onnCQ

H

QHWN—— »

QWonQ

onUJD•~j^O

Zrntur iuon-JU0OouwtUJ_]5H

W

SJ > 1= £"g w W J

(fl

O 2% > ~« i £ «S ~ j W "JO

Qen

*?Qen

Qen

Oen

Cen

m eO « cen cfl £*** M

9 <" P

enE —

< u Sw * •-

OS

>.«c

&J?"3su*EBos

rnrn

Oo

ji

1mo"

CN"

1„ ..

oCN

00*

ooCN

I Aluminum*

ZCN

Zm

O

Zp-d

Zm•od

r-NO

d

Zoo

o

CQp-d

0o

| Antimony

omm

ONO

-:

in

P-;

r-d

CN

-:

-

o—

| Arsenic

mCN

1,

NO

ON

inCNp-

rnON

P-;

ON

>nNO

OOCN

| Barium

"

OOp-d

ON

d

od

>np-d

d

mmd

od

j?

oo—

NOo

3NOOd

3CNO

3CN

d

3mOd

3

d

3CN

d

3NOOd

od

| Cadmium

oCN

(N

OON

OmriCN"

oONO_

O•O00_

oONNO

-*

O

oo

| Calcium

oo• — '

oNOCN

in

mm

odm

mrnCN

OooCN

PN1

m'rn

T.PN)

O~

| Chromium

P-;m

ON

pm

^

2

min

r-id

Om

"c3•su

oo—

os

CNNO

^

mPNJ

ON

OdCN

ooCN

NO

o—

!

3mCNd

3mCNO

3mCNd

3md

3mP-Id

3

d

3»n<NJd

CMO

u

U

cp2o"

o"

800ON"m

§

P-"

g

fN|

g

CN

1mCN

8o(N

OO

u

I

Oom

O

m

m'p-l

mON

CNNO

ON

m'

s

o«N

eno

1

op,m"

o

^

ooCN,m"

O

rn

ONO

m"

ONO

m

O00«np-T

cp-

1

ooo__"

oo•o

ONP-NO

ON

OP-.

NO

«nON

1M

NO»nr-

•n—

u8

O

CNO

CQON

d

CQONOO

CQONOd

CQmOd

CQSd

CQ£o

CQgd

—o

ggs

op-

oNO

ONOOCN

CNCNCN

NOoo

ONrn

<nNO

CNd

ONrn

O•*

1Z

op.

o

1 '

omp,

g

OCN

r-mNO

OinP-.

p-

| Potassium

3oCNd

OONO

d

CQmd

3

d

CQ00md

CQON

d

CQmd

mo

| Selenium

3od

3oo

3od

300oo

3

o

3od

3od

o—

I

mCNCN

r-

om

»n

m

ON

mm

P

!

CDr--d

CQp-o

CQCN

d

CQ

d

CQ

d

3oood

3od

o— •

| Thallium

p-

r-dm

oo

NO

ONm

NO

ONCN

inm

oin

| Vanadium

oofN

OO

CN

inm'ON

ON

PslenNO

ooON

00

m

rn

OM

i

w

"5«OTriVB

§M"3**B

?me

inoo

pONCN

OOONm

5

r-m"

5

ON

inCNOd

Btuouimv 1

o.o

cpoo

osON"

CN

o8— "

goo"

1CN"

NOcT

grfCN

g»noo"

<pNO"

Bjb

0.

| Total Or

gai

p — i« "° riM O Q

1 s S1« o .E.S ^ J" Q .1V. H flj

U '.J ^3 c T3

S -2 10 tj U— o 5« Q o

1 Is5 a ZLC- «—

Sj tn e**** G C

2 *S .2E p ur-1 CL +**

Z ^-o QM in 2 "S*- ON •£ atU ^- C C

i H S °o * S•- ^c M> i> w 73i CL. *5 S

flj W nj 'Q

** ^ S 'p*-0 w ob .2& r ^ i ^*3 s ^

'2 c x-c S*S o «-Jo u v *S3 Q '1 «n o -) *w _ . i/>"& oo v)•*•> i— e uja 0-5 —-o g g .«fit ftS 0. C .O si O v)• ~i ?• pf*pj rt ,ts *f \> |5 fil SN:O " U rS -^ * '

il i! H!l*™iifi O V "^tsfiSK= «'§• %'-Q Q~*[j[ 6 go. S '5 e <4j i,tl O V ~O ** " V*3f^ rr ^ ^ rt pi— 14

o^ °c c. f l S k ,WT ^^ C ^ ij ' ^ *>*« ^J

"8s- l8||l-S|t 6 0 0 " e 8 Its

** "(S ¥t" 1 a

- ^ 3 g - W - « «'^i iii U fit!-—^ o -^>^.e ^CQ 3 z # +

Xjp— 1UH

Z^

-J>H

UJ

,-J

__J

>

ffiCO

CQ

H

Q

2WSQOJ

on<|•M

ZonW

J

OZ

§t/3nJ

UN —— 1nOOOUJ

^Wt-JpQ

H

M)C'5uu —«£

0 •>e2O

^ W «fc

*• fc a>«w J

£ «£ *J

ONcn5

00en*

en

Qen

31g

sl i*S B*

0 i "O7 u §M * °S * on

OJDC _

<u

SBi1CflB<

I Inorganic

1

|oCN

§

mm"CN

8CNo"

O00

NO*

gp.CN"

OdCN

•tJ

| Aluminum

p

p

Zp-iood

ZCN

ZNONOd

Zod

ZooNOd

NOd

g

'Sa

om

oNO

O

rn(N

^

P-;m'

oq

in

p

| Arsenic

NOPS

CN

ONO

mP-I

ON"NO

O

m'm

J

OdfN

09

p

p

NOOOd

m

CN.ood

d

r-d

omd

I Beryllium1

oo

NO

o

3md

3CN

d

NOOd

3NOod

CQOd

3§O

CQmd

od

| Cadmium

or-ONCN

OmCN

Or-

oCNm_

O

ri

o

o<N

g

I Calcium

oo^

oNOCN

mNO"m

oONm

ON06CN

S

o06m

Odm

oq

p

I Chromium

ONNO

>noo

£

m'

en

oqrn

NO

pm*

I

Oo^

oNO

ooCNm

NO

m

rnoo"CN

OJ

CN

oqoi<N

(Nm

p

U

3md

3md

3mCNd

3mCNd

3mCNd

3m(Nd

3md

d

| Cyanide*'

poo•J

^oo

gP--in

8ONNO

8p-ONCN

800ON"

8o"

8p-~

im"

Od

\

oomfN

Om

O•op-1

fN

mp-i

m"

oqrnm

oqrn

ONpn

md

3

NO

"*

Op-«n"*

g

Op,m"

Ooo

o«nrn

gmp

g

_,

j

ooo*—"

os1

oONO"

O00

"""

r-ON

ONNO

mO

00NO

r-

in

u

|

OCN

CNO

3mO

CQOrNO

CQON

d

CQONd

CQCN

d

1d

1d

d

j

omP-

ONO

P-;

CN

ON

NOOO

ON00p-1

CN

OON

NO<N

O

Z

moo

ooCNOO

O00

OmO

mmm

NO

m

NOmm

g

•S

a.

CQod

3oCNd

SCNd

3od

CQCNd

CQod

3oPMd

md

| Selenium

3

d

3od

ONO

d

3od

3od

3od

3od

p

1Cfl

S

S

p~

«nCN

PN

in

CN

1

1

COON

d

CQNO

d

d

CQr-d

CQmd

CQ

d

CQr-d

p

i

in

TTCONO

inNO>n

2

00

NOONCN

vi

Om*

j

0oCNVI

oofN

mO

rn

ON

CNCNON

CN

CNO

NOON

2

pCN

|

8BM£Jo"eS

Bri•5S<t*•

GeIt•=BI|

mOfN

pm'

^

inoo

cnCN

in

CNd

IPmCN

|

<r>oOO

ooo'

0

^~"

100ON

NO,

ON

ON"mCN

8

800rim

8«ns"

NO"

B

r t'ud

H

*> "19 r—]

1 s•*- oc ^li ,-yw y

£ -gtn • —u J— c> .2

- s^ Q

1 gat isiT> c£ 5o isS ^r- O-u . -Q

4-1 ON 5C ON U

i H •£0 -S -S1-1 2 c1 H.IW W U£ •< «o UJ ob

M ti- "S C c:S O j2, <% a*o Z^

o *° T 13 00& o • £•o b ia & S.

ii ItC M UK B411 IS

4J CJtA "^ C S

•3 2 «

fr « SQ "** S3 2-3 +* ^^ U "O «rj

§*« $

.« C - "S 8.B fe e.J &D £ £2 a:

-JQ

RROOOI93

TABLE 2-6 GROUND-WATER MONITORING WELLS SELECTED FOR THE BUSHVALLEY MONITORING PROGRAM

~ Well

GM1-LSS

GM-2-LSS

GM-2-LSD

GM3

GM4-LSS

GM5

GM6

GM7

GM8

GM9

EA10

EA11

EA12

EA13

Rationale for Inclusion inMonitoring Program

Considered an onsite well due toimpact by organic constituents.

Onsite (downgradient well)

Onsite (downgradient well)

Onsite (downgradient well)

Onsite (downgradient well)

Onsite (downgradient well)

Onsite (downgradient well)

Onsite (downgradient well, butwill be evaluated for potentialuse as a second background well)

Onsite (downgradient well)

Considered an onsite well due toimpact by organic constituents.

Selected as a background well

Selected as a downgradient well

Selected as a downgradient well

Selected as a downgradient well

Total DepthFrom Ground

Surface

42.0

27.5

39.5

15.0

15.0

16.0

20.3

13.0

12.0

40.0

17.5

17.0

18.5

18.0

Top ofCasing

Elevation(MSL)

39.51

27.66

27.81

10.46

11.10

12.36

16.44

10.84

9.24

36.32

12.21

3.59

9.46

2.57

Elevation ofGroundSurface(MSL)

37.91

26,09

25.88

8.55

9.04

10.46

14.65

8.54

7.32

34.65

10.41

1.24

7.55

1.24

AROOOI94

selected for inclusion into the monitoring program. The new wells, EA-10, EA-11, EA-12, andEA-13, since they were installed in April 1999, were only sampled once.

Groundwater samples were collected using the low-flow method, in accordance with the FinalRDWP (EA 1998). Groundwater quality and elevation data were recorded on field purgingsheets and are included in Appendix E. Groundwater quality parameters included pH,conductivity, oxidation-reduction potential (ORP), temperature, turbidity, and dissolved oxygen.Groundwater samples were submitted to Severn Trent Laboratories (formerly EA Laboratories)and analyzed for the following:

• Target Compound List (TCL) Volatile Organic Compounds (VOC) using EPAMethod 8260

• Target Analyte List Metals (TAL) using EPA Method SW846

* Anions (nitrate and sulfate) using EPA Method 300.0

• General Chemistry (alkalinity, ammonia, cyanide, ferrous iron, hexavalent/chrome,and TOC) using Method # 310.1, 350.1,9012, SM3500DFe, ASTM 7196, and 415.1,respectively

Onsite analysis of hydrogen (Hz) and methane (CH4) was conducted during the August 1998 andMay 1999 sampling events. Field samples were collected in accordance with the Final WorkPlan.

Field Screening Analysis

Compound-specific identification and quantification was performed using an onsite gaschromatograph (GC) and reduction gas analyzer (RGA).

For the identification and quantification of CH^a Varian 3300 GC equipped with flameionization detector (FID) and packed column was utilized. Due to the nature of CR*, anisothermal temperature program was utilized. An RGA was used for the identification andquantification of HI-

Calibration was performed by injecting a known amount of a single compound vapor standard ata known concentration. This process was then repeated several times. The data from these

2"15 flROOOI95

injections was then used to determine a response factor for the analyte of interest. This thenallowed for the determination of the vapor concentration for the analytes of interest. The vaporconcentration was then transformed into an aqueous concentration using Henry's Law.

For QA/QC, multiple standard analyses, blanks, and spiking were conducted to ensure that theanalytical system was producing defensible results.

2.10.1 Sampling Event One (25-26 August 1998)

Groundwater samples were collected from 10 monitoring wells (GM-l-LSS, GM-2-LSD,GM-2-LSS, GM-3, GM-4-LSS, GM-5, GM-6, GM-7, GM-8, and GM-9) (Figure 2-1).

.Data Evaluation

Volatile Organic Compounds (VOC)

The analytical results of groundwater samples indicate the presence of 10 VOC as summarized inTable E-l (Appendix E). In general, VOC concentrations were low, typically ranging from non-detect to less than 15 ,ug/L. The highest VOC concentration'was 230 fig/L of 1,2-dichloroethanereported in the sample collected from GM-3, located along the southern landfill boundary ___ >•(Figure 2-1). Total VOC concentrations ranged from non-detect (GM-9) to 318 ng/L (GM-3).VOC occurrence and distribution is consistent with Rl-generated data, although concentrations .appear to have decreased with time, based on a comparison of data from this round of samplingand data collected during the RI. 1,1 -Dichloroethene (total), 1,2-dichloroethane, 1,2- ;

•2dichloropropane, trichloroethene, tetrachloroethene, and vinyl chloride were reported inconcentrations that exceeded US EPA Maximum Contaminant Levels (MCLs). I

Metals (Total)

The analytical results of groundwater samples indicate the presence of 14 total dissolvedinorganic constituents as summarized in Table E-2. Four metals were reported in concentrationsthat exceeded MCLs. Two of the four metals, barium and mercury, exceeded their respectiveMCLs in 10 of the 10 samples collected, however the concentrations may be representative of t»background conditions. MCL exceedances were also reported for antimony and beryllium. *Antimony MCL exceedances were reported in GM-8 and GM-9. ™

2-16 AROOOI96

General Chemistry

The analytical results of groundwater samples collected for the identified general chemistryparameters are summarized in Table E-3. Alkalinity ranged from 5.7 mg CaCO3/L atGM-l-LSS to 224 mgCaCO3/L at GM-3. Ammonia was reported at eight wells ranging from,0.11 mgN/L at GM-l-LSS to 3.1 mg/N/L at GM-3. TOC ranged from 1.2 mg/L at GM-9 to6.7 mg/L at GM-8. Nitrate was reported at three wells ranging from 0.1 mg/L at GM-8 to2.2 mg/L at GM-5. Sulfate was reported at all 10 wells ranging from 0.56 mg/L at GM-2-LSD to41 mg/L at GM-5. No MCL exceedances were reported for the general chemistry parameters.

2.10.2 Sampling Event Two (6-7 May 1999)

Groundwater samples were collected from 13 monitoring wells (GM-l-LSS, GM-2-LSD, GM-3,GM-4-LSS, GM-5, GM-6, GM-7, GM-8, GM-9, EA 10, EA11, EA12, and EA13,) (Figure 2-1).Monitoring well GM-2-LSS was not sampled due to high concentrations of methane gas andhealth and safety considerations. Off-gassing was observed at the time of sampling and vaporsamples collected and analyzed onsite by GC revealed the presence of elevated concentrations ofmethane. The well was left uncapped and reassessed for potential sampling. Off-gassing fromGM-2-LSS had not decreased after several hours. Consequently, sampling of GM-2-LSS wasdiscontinued due to health and safety concerns, and the well was recapped and locked.

Data Evaluation

Volatile Organic Compounds (VOC)

The analytical results of groundwater samples collected during the May 1999 sampling eventindicate the presence of 10 VOC as summarized in Table E-l (Appendix E). In general, VOCconcentrations were low, typically ranging from non-detect to less than 5 ug/L. The highestVOC concentration was 20 ug/L of 1,2-dichloroethane reported in the sample collected fromGM-3, located along the southern landfill boundary (Figure 2-1). Total VOC concentrationsranged from non-detect (GM-7 and GM-9) to 80 ug/L (GM-3). VOC occurrence anddistribution for the May 1999 analytical data is consistent with RI and August 1998-generateddata, and concentrations appear to decrease with time when compared to previous data. 1,1-Dichloroethene (total), 1,2-dichloroethane, and vinyl chloride were reported hi concentrationsthat exceeded MCLs.

AROOOI97

Metals (Total)

The May 1999 analytical results of groundwater samples indicate the presence of 20 totaldissolved metals as summarized in Table E-2. Six metals (antimony, arsenic, barium, beryllium,mercury, and nickel) were reported in concentrations that exceeded MCLs. MCL exceedancesfor barium were reported in each of the 13 monitoring well samples collected. The highestbarium concentration (204 mg/L) was reported in EA-10 the background monitoring well, anindication that the barium reported in onsite samples may be representative of ambientconditions. MCL exceedances were most frequent in the sample collected from GM-6. Theanalytical results for GM-6 revealed MCL exceedances for antimony, beryllium, mercury,nickel, and selenium, however, the reported concentrations for antimony and beryllium wereless than the background concentrations.

General Chemistry

The analytical results of groundwater samples collected for the identified general chemistryparameters are summarized in Table E-3. Alkalinity ranged from 8.3 mg CaCO3/L atGM-l-LSS to 268 mgCaCO3/L at GM-3. Ammonia was reported at thirteen wells ranging from0.17 mgN/L at GM-l-LSS to 2.1 mg/N/L at GM-4-LSS. TOC ranged from less than 1.0 mg/L(GM-9, EA-11, EA-13) to 6.7 mg/L at GM-6. Nitrate was reported in concentrations rangingfrom less than 0.50 mg/L at GM-3 to 1.1 mg/L at GM-5. Sulfate was reported at alll 0 wells ,ranging from 0.15 mg/L at GM-2-LSD to 94 mg/L at GM-8. For GM-7, hexavalent chromium k(0.014 mg/L) was reported in a concentration that slightly exceeded just one-tenth of the non-

r

carcinogenic RBC for hexavalent chromium of 0.11 mg/L. No MCL exceedances were reportedfor the general chemistry parameters.

silT,

fSummary of Analytical Results *

The VOC concentrations varied slightly between the August 1998 and May 1999 ground-water !sampling events and concentrations appear to be decreasing with time. The occurrence anddistribution VOC constituents, however, remains consistent with RJ-generated data. The highestVOC concentrations occur in ground water on the south side of the landfill (GM-3 and GM-2-LSS).

•Significant changes in metals concentrations were not observed between the August 1998 and _May 1999 sampling events. Although MCL exceedances for metals were reported for several £wells, background concentrations may be responsible, particularly for antimony and barium.

2-18 ffROOOI98

Background concentrations and long-term changes in groundwater quality can be better assessedas additional data becomes available through the groundwater monitoring program.

Additional discussion of water quality is provided in the following section on NaturalAttenuation.

Quality Control (QC) Evaluation

Analytical QC was evaluated on the basis of laboratory method performance and sampleperformance. Field collected QC samples included trip blanks, field duplicates (GM-DUP-1,collected from GM-5 during the August 1998 event and DUP from GM-2-LSD and MS/MSDs.In summary, the data are generally of good quality and significant impacts to data usability arenot anticipated. The analytical results of the QC samples are provided in Table E-4. Thelaboratory analytical narratives, which include comprehensive discussions of QC results, areprovided in Appendix E.

2.103 Discussion of Natural Attenuation

2.10.3.1 Background

A possible environmental impact of landfills, such as Bush Valley, is the impact of groundwaterby leachate. Dramatic changes in aquifer geochemistry and microbiology are quite commonwhen landfill leachate comes into contact with native groundwater. The introduction of organicmatter (typically indicated by total organic carbon [TOC] data) and inorganic constituents suchas methane, ammonia, hydrogen sulfide, and dissolved iron into an aerobic aquifer leads tooxidation-reduction (redox) buffering reactions. Iron is one of the primary inorganic speciesdriving these redox reactions. Redox reactions typically range from methanogenic conditions

1- ' ..• • '.»•..- ,- •' ";• , '"''.'.close to the landfill, to sulphate-reducing, iron-reducing, manganese-reducing, and denitrifyingconditions, to aerobic conditions at the periphery of a leachate plume.

2.10.3.2 Interpretation of Results Monitoring

Two groundwater sampling events were conducted as part of the remedial design. The majorityof monitoring wells are located on the periphery of the landfill area, hence it is difficult tointerpret the extent of individual redox zones. However, it is clear from the geochemical datathat highly-reducing conditions are prevalent at the landfill periphery. Dissolved oxygen (DO)concentration ranges from 0.1 to approximately 2.5 mg/L within the landfill boundary, with the

flROOOI99

exception of GM5. GM5 reported DO concentrations of 10.8 (August 1998) and 5.4 (May1999). The upgradient well to the west of the site, GM9, reported DO concentrations of 8.5 and3.3 mg/L in August 1998 and May 1999, respectively. These DO concentrations indicate thatgroundwater migrating into the landfill area is aerobic. In addition to the DO data, otherinorganic geochemistry supports the highly anaerobic nature of groundwater once it reaches thelandfill area.

Dissolved hydrogen concentrations at Bush Valley range from manganese-reducing (<0.05 nM),iron-reducing (<0.2nM), and sulfate-reducing (1-1.5 nM), to methanogenic (>5 nM). WellsGM2-LSD, EA-13, GM4-LSS, GM5, and GM6, all downgradient from the landfill, reportedhydrogen concentrations in the methanogenic range. Wells outside the landfill area andperpendicular to groundwater flow (GM8, GM7, EA-11, and GM3), reported hydrogenconcentrations in the sulfate and iron-reducing range.

Iron primarily occurs as iron oxides (Fe+3) and hydroxides in the presence of organic matter(such as organic carbon from landfill leachate) and will readily be reduced to Fe+2 or ferrousiron. Ferrous iron concentrations at the Bush Valley Landfill range from <5 mg/L in theupgradient well, GM9, to 4730 mg/L in EA-12, located downgradient of the landfill. UnlikeFe+3, Fe*2 is quite soluble in water and will migrate with groundwater flow.

The presence of excess Fe+2 (four orders of magnitude greater than that found in the upgradientwell) in groundwater is a good indicator of the redox buffering capacity of the aquifer sedimentand helps mitigate the impact of leachate (indicated by TOC) offsite. Total organic carbonvalues range from <1.0 mg/L in GM9 (upgradient) up to 6.7 mg/L in GM6. TOC concentrationswithin the landfill are likely to be significantly higher than those reported at the landfilliboundaries. The low redox environment created by groundwater deficient hi DO, has allowedredox processes such as iron reduction and methanogenesis to dominate. It is apparent from thedata collected during the two groundwater sampling events that natural attenuation processes arepositively impacting groundwater downgradient of the Bush Valley Landfill.

It should be noted that the evaluation of natural attenuation is an ongoing process. The Post-Construction Sampling and Analysis Plan proposes the continued monitoring of the groundwaterfor general chemistry parameters that are the indicators of natural attenuation. Data from thesefuture sampling events will be utilized to monitor the status of natural attenuation at the BushValley Landfill.

f, .1 2-20AR000200

2.11 AIR SAMPLING AND ANALYSIS

In order to assess the offsite transport of airborne VOC as well as the impacts that suchemissions may have upon onsite personnel and the adjacent community, an ambient airmonitoring program was performed around the perimeter of the BVL site. Two air samplingevents (8 and 22 September 1998) were conducted at the same locations with the samemethodology. To ensure the quality and accuracy of ambient air VOC measurements, a series ofgeneral field sampling procedures, field quality assurance/quality control (QA/QC), andlaboratory QA/QC procedures were employed throughout the program. A summary of the airmonitoring and sampling program is presented in Table 2-7.

TABLE 2-7 AIR MONITORING AND SAMPLING PROGRAM

Parameter

TO- 14 VOC

FieldSamples

6

QualitySam

CollocatedSamples

2

Controlpies

FieldBlanks

2

Total No.of

Analyses

10

AnalyticalMethod

TO- 14

Preser-vation

None

HoldingTimes

Analyze:14 days

Containers6-liter (L)Summacanisters

2.11.1 General Field Sampling Procedures

U.S. EPA Method TO-14 using Summa evacuated canisters was used for the sampling events.Upon receipt of the 6-L sample canisters from the laboratory, all equipment was inspected fordamage and signs of leakage. On the day of each sampling event, the Davis Weather Monitor nmeteorological equipment was installed to assess wind direction and to ensure its properfunction. Throughout each day of sampling, the wind speed and direction were checked toensure that the upwind/downwind orientation of the sampling sites was generally consistent withactual site observations. These sampling locations were selected during a preliminary site visitin September 1998 and were based on the typical meteorology for this area of Harford County(winds out of the south/southeast). One sampling site was established approximately 500 ft fromthe southeast corner of the landfill property line to measure upwind ambient air VOCconcentrations, and two were placed downwind of the landfill along the northwest limit of thelandfill waste as determined by the RI (Figure 2-7). Care was taken to establish these locationsas far as practical from vehicle traffic and other interferences. Sampling locations are shown onFigure 2-7.

The TO-14 sample canisters were transported to the sites and assembled. Each sample consistedof a paniculate prefilter, flow controller with vacuum gauge, and 6-L canister. Initial canister

RR00020I

pressures were then checked and recorded. A canister vacuum less than 25 in. of mercury wouldindicate canister or valve leakage during shipment. Canister intakes were located at a height ofapproximately 2 ft above the ground. After sampler placement, the canister valve was opened toinitiate the 8-hour sampling event, which typically ran from approximately 0800 to 1700 hours.To ensure that a Comparable volume of sample was obtained at each of the sampling locations,each canister was equipped with a flow controller that was set to obtain an 8-hour sample. Sincethe recommended sample volume is 5 L (five-sixths full), sample flow was set to approximately10.4 ml/min. This ensured that the canister was still under vacuum upon the conclusion ofsampling. After the 8-hour sample period, the canister pressure was again checked and recorded.Canister sampling was then discontinued, and the samples were dismantled and shipped to theanalytical laboratory. Gas chromatograph/mass spectrometer (GC/MS) analysis of the sampleswas conducted by Air Toxics, Ltd. of Folsom, California under subcontract to EA. Both initialand final vacuum pressures were recorded on the chain-of-custody forms sent to the laboratory.Upon receipt of the canisters, the laboratory immediately verified the final vacuum to ensure thatcanister leakage had not occurred during transport. Any out-of-the-ordinary circumstances notedduring the sampling event were also recorded. Meteorological data (wind speed, wind direction,temperature, and barometric pressure) were recorded at 15-minute intervals over the course ofthe sampling event and are presented in Table 2-8.

Results of the air sampling are presented in Table 2-9. Based on the laboratory results of the twosampling events, eight compounds were detected above TO-14 analytical detection limits:1,4-dioxane, acetone, carbon disulfide, chloromethane (methyl chloride), ethanol (ethyl alcohol),methylene chloride, toluene, and vinyl chloride. See Table 2-9 for the sampling event, location,and concentration of each compound detected. All of the eight compounds detected, with theexception of 1,4-dioxane, ethanol, and vinyl chloride, were previously detected in ambient airsampling conducted for the RJ dated November 1994. f

U

Although the source of each compound detected is difficult to assess, literature (U.S. EPAAP-42, Section 2.4, November 1998) indicates that acetone, carbon disulfide, chloromethane,ethanol, methylene chloride, toluene, and vinyl chloride may be from the landfill while1,4-dioxane may or may not be from the landfill. Based strictly upon an upwind/downwindcomparison of the results presented in Table 2-9, it appears that vinyl chloride, methylenechloride, toluene, 1.4-dioxane, chloromethane, and ethanol may originate from the landfill. :However, other possible local sources of these compounds cannot be ruled out. Also noted inTable 2-9 are the U.S. EPA Region III risk-based concentrations (RBCs) for the compounds rdetected. As shown in the table, TO-14 results for four of the compounds detected during the air L

2'22 ftR000202

&R000203

TABLE 2-8 METEOROLOGICAL DATA FOR AMBIENT AIR SAMPLING EVENTS

Bush Valley

9/8/98

TlKlE7:45am8:00am8:1 Sam8: 30am8:45am9:00am9: 15am9:30am9:45am10:00am10: 15am10:30am10:45am1 1 :00am11:1 Sam1 1 :30am1 1 :45am12:00pm12: 15pm12:30pm12:45pm1 :00pm1:1 5pm1:30pm1:45pm2:00pm2: 15pm2:30pm2:45pm3:00pm3: 15pm3: 30pm3:45pm4:00pm4:1 5pm4:30pm4;45pm5;00pm5: 15pm

INSIDETEMP<°F)65.36672.484.983.584.181.6867101.8105.1105.2105.898.197.898

102,9103,996.397

95.495.898.9101.5104.7104.4100.896.698.393.991.687,197,797.698.395.691.589.990

81.1

OUTSIDETEMP(°F)64.362.968.674.870.269.969.274.878.176.978.579.972.579.175.680.478.875.876.777.978.679.68077.174.173.173.77372.671.873.878.276.878.676.577.977.174.169.4

HI OUTTEMP(°F)69.16574.278.874.571.972.581.281.279,380.582.281

82.483.483.183.282.181.78283.583.881.478.775.775.676.575.475.175.178.481

80.480.480.280.979.977.969.8

LOW OUTTEMP(°F>60.661.864.967.567.668

67.668

75.274.275.977.167.867.867.875

73.971

71,173.572.674.178.375.572.570.870.770.870.169.870.275.174.276.374.374.775.569.968.8

BAROMETER(IN. OF HG)29.61429.61429.61829.62929.64629.64229.64229.63829.65929.6729.66929.67429.67829.67529.67629.68329.68629.67629.68229.68329.69129.70829.71829.7229.72129.7129.70229.69229.67829.66729.65829.66329.66229.66629.66129.66129.66529.65629.652

HUMIDITY(%)707169625955535041383635363536333132323230272726262727272830292728272929282832

WINDSPEED(MPH)012223323433333444443544444333343433332

HI WINDSPEED(MPH)43767107711139813910111411111391510101211139119911121010119127

WINDDIRECTIONNNWWWNWWSWWNWWWNWNWNWNWNNWWNWWNWWWNNWWWWNWNWWNWWWNWWWWNWWWWWNWWWNWNNWWWNWW

WINDCHILL(°F)64.362.968.674.870,269.969.274.878.176,978.579.972.579.175.680.478.875.876,777.978.67980

77.174.173.173.773

72.671.873.878.276.878.676.577.977.174.169.4

ftROOOm

TABLE 2-8 (Continued)

Bush Valley

9/22/98

TIME7:15am7:30am7:45am8:00am8: 15am8: 30am8:45am9:00am9: 15am9:30am9:45amI0:00am10: 15am10:30am1 0:45am1 1 :00am11:15am11: 30am1 1 :45am12:00pm12: 15pm12:30pm12:45pm1:00pm1:1 5pm1 :30pm1 :45pm2:00pm2: 15pm2:30pm2:45pm3:00pm3: 15pffi3:30pm3:45pm4:00pm4:1 5pm4: 30pm4:45pm5:00pm5: 15pmS:30pm5'45om

INSIDETEMPro73.372.572.973.373.576.584,382.281.587.989.18884.188.589.289.886.385.787.899.3103,898.697.198.994.290.796.999.296.490.383.680.780.179.980.879.778.779.178.578.578.577.1764

OUTSIDETEMPf)68.469.170.170.170.573.576.8747578.476.375.775.178.377.977.476.276.879.384.983.880.764.282.580.480.885.784.581.578.672.973.173.174.174.173.372.572.772.372-871.771.172

HI OUTTEMP(°F)68.869.670.570.371.376.780.374.976.881.278.277.877.779.979.479.676.877.581.586.886.384.387.583.78182.487.986.683.279.976.573.573.475.67573.873.273.27373.972.871.5744

LOW OUTTEMPfF)68.368.569.669.770.171.47473.273.676.374.974.37476.576.276.275.67677.381.381.178.479.18179.579.782.18379.976.572.172.572.973.373.672.67272.17272.17170.771 1

BAROMETER(IN. OF HG)

29.7929.78629.79529.79729.79729.79229.79929.80329.79629.80529.81329.81729.80929.80929.81 129.81429.80629.80229.79929.81329.82729.81329.80829.80729.80129.78629.79529.79329.78729.77829.76129.75129.74629.74329.74529.7429.73829.7529.75129.74929.75429.75129.759

HUMIDITY(%)80818181818074757569676568646363646463545152505152545049505461646667676970696969676768

WINDSPEED(MPH)0000000011211111111211111011222010122322211

HI WINDSPEED(MPH)01000113335564444335654562356610333668966777

WINDDIRECTION

-N----NSSWSWwswwswWwswSWsswWSWSWWNWSWWNWEN

NNWWWNWNNWNNWNNWNWNN

WNWNNNNNNNNNEWNW

WINDCHILL(°F)68.469.170.170.170.573.576.8747578.476.375.775.178.377.977.476.276.879.384.983-880.784.262.580.480.885.784.581-578.672.973-173.174.174.173.372.572.772,372.871.771.172

flR000205

o .CQ Q.

0)

15o

E a< •

IDa oo

OlCD

Q

JCO ••—

£ .s>

o

Compoun

Detected

Q

I"§oVQ.

CO03 I

CO

o

oo p• N-*~ CO

o> oo^ oO 00in m

Chloromethane

Acetone

SCO•<r 10°° P 9 in To o *- o - o

•«- in -CM CM CM CO -<r

o o o oO) CTf CT> O)o d c> d

O) O CO 00 t-Tf lO O> T* O *~O CM CM OO 00m CD oo o> in oo

CO - CM *? *- V

° co £!

0)•o•c

Chloromethane

Vinyl C

hloride

Methylene Chlo

Toluene

Acetone

1,4-Dioxane

ftR000206

sampling (1,4-dioxane, chloromethane, methylene chloride, and vinyl chloride) exceed theassociated RBC values.

2.11.2 Field QA/QC (Collocates and Field Blanks)

_As part of the ambient air monitoring QA/QC program, both collocated samples and field blankswere obtained. The collocated sample was an additional canister within 3 to 4 ft of thewesternmost downwind sampler. The purpose of this second canister was to evaluate theprecision of the sampling results. Field blanks were taken to assess whether the canistercertification procedures employed by the laboratory prior to canister shipment and actual fieldprocedures were a source of contamination. In addition to field QA/QC procedures, thelaboratory performed routine laboratory blank analyses. Lab blanks consisted of the analysis ofone randomly chosen empty canister that had been certified as "clean." This canister wascharged with humidified zero air and analyzed along with the received sample canisters.Additional laboratory QA/QC consisted of surrogate recovery, method spikes, and instrumentcalibrations. Samples were analyzed within 14 days of sample collection, which meets orexceeds TO-14 guidance regarding sample holding times.

The results of the collocated canister sampling compared favorably with each other during bothair sampling events. For the first sampling event, toluene and acetone were detected above thedetection limit in both samples with comparable consistency. Chloromethane was detected inone sample but not in the other; however, its detection is marginally above the detection limitand is based on an estimated (data qualifier "J") technique. See Table 2-9 for an explanation ofthe "J" data qualifier. For the second sampling event, chloromethane and ethanol were detectedin one sample but not in the other; however, their detection is slightly above the detection limitand is also based on the estimated (data qualifier "J") technique mentioned above.

The results of the field blanks for both sampling events showed the detection of compoundsabove analytical detection limits. For the first sampling event, methylene chloride was detected.This is most likely attributable to contamination in the field since methylene chloride wasdetected in another sample. For the second sampling event, carbon disulfide was detected wellabove the analytical detection limit. Given the magnitude of the detected amount and the factthat carbon disulfide was not detected in any other samples, it is likely that either the sourcecanister or receiving (sampling) canister was contaminated at the lab either before shipment tothe site or during analysis at the lab.

2'23 AR000207

All laboratory blank samples resulted in "not detected" for all of the Method TO-14 targetcompounds.

2.12 SITE ACCESS AND EASEMENT REQUIREMENTS

EA developed the remedial design to minimize the impact of the remedy on surroundingproperties. Adjacent properties that will be impacted by remedial construction and post- •'construction monitoring activities during the remediation are as follows:

Parcel ^ Owner

P670 Eleanora B. VesselsP642 State of Maryland, Department of Natural ResourcesP598 State of Maryland, Department of Natural Resources

Impacts to these three properties during construction are anticipated to be limited to grading,access for construction equipment, and installation of groundwater monitoring wells and landfillgas monitoring probes.

Access is required for landfill gas, groundwater, surface water and sediment monitoring, andregular inspection of the integrity of the cap.

?EA has identified the parcels for which access agreements and easements will be necessary. *Figure 2-8 shows the anticipated required easements. Permanent easements will be required forthose areas beyond the site property boundaries on which permanent construction features \(grading, fencing, etc.) will be placed. Temporary easements are necessary for constructionequipment to gain access around the site; no permanent construction features are anticipated for \these areas. Access agreements and easements for construction will be further pursued byHarford County as the design progresses. *

2'24 HR000208 M

RR000209

3. LANDFILL CAP DESIGN

3.1 SCOPE AND PURPOSE

The-BVL cover system has been designed to conform with the requirements of the ROD. Thelandfill will be capped using a geosynthetic capping system as shown on Figure 3-1. A beddinglayer of varying thickness will be placed on top of the existing waste before the geosynthetics areplaced. The geosynthetic layers will consist of a gas venting layer above the bedding layer, ageomembrane, and a drainage layer. The geosynthetic layers will be covered with a 2-ft depth ofsoil. The cover system meets the standards of Maryland Sanitary Landfill Closure Regulations,COMAR 26.04.07.21 A, B, D, and E, and is also in conformance with the single barrier coversystem specifications presented in the EPA Municipal Landfill Guidance (EPA/540/P-91/001)and the ROD, dated September 1995.

Further detail concerning each cover system component is presented later in this chapter. Thischapter also addresses:

• Site Grading• Stormwater Management and Site Drainage• Passive Gas Venting System-• Settlement and Slope Stability Considerations• Groundwater Monitoring Program• Ecological Monitoring Program• Future Use Restrictions

Calculations prepared in support of the closure cap design are presented in Appendix F.

3.2 SITE GRADING

In accordance with the substantive standards of Maryland Erosion and Sediment ControlRegulations, COMAR 26.17.01.01,26.17.01.05 A and B, 26.17.01.07 B, and 26.17.01.08 A andB, the site will be graded to promote surface water drainage off of the landfill cap surface.Surface water drainage control off of the cap reduces the potential for erosion and provides anadequate factor of safety for slope stability; The proposed final grade for the closure cap isshown in Figure 3-2 and on the drawings; The high point of the cap will be positione4>in thewest-central portion of the landfill. The cap will be graded provide a minimunr4.0 percent

3-1 flR0002IO

slope on the upper landfill cap surface, thus promoting positive drainage from the cap whileminimizing the potential for erosion of the cap final cover. The final grades are oriented to forma ridge-line in a general southwest/northeast direction.

The existing slope along the BVL site ranges from approximately 1.5H:1V to 6H:1V. Site slopeswill be graded to adjust for more consistent grades, with maximum slopes of 3H: 1V within thelandfill cap area and minimum slopes of 2H:1V beyond the limits of the landfill cap. Theproposed final grade of the closure cap is shown on the drawings.

3.3 STORMWATER MANAGEMENT AND SITE DRAINAGE

t3.3.1 Surface Drainage

The closure cap has been graded to allow for surface drainage to drain radially off of the cap,ultimately discharging under sheet flow. In areas where the surface drainage may otherwise tendto become concentrated flow, benched slopes will convey surface water drainage under channel ?flow to riprap-lined slope drains. The slope drains will convey the drainage to the base of the ^landfill slope. Slope Drain Nos. 1, 3,4, and 5 will convey the drainage into the temporarysediment traps (or in the Case of Slope Drain No. 5, into a channel leading to a sediment trap),while Slope Drain No. 2 will convey the drainage from the base of the landfill slope towards thewetland to the north. At the outlet of each slope drain, a level spreader will be used to dissipate Iithe energy of the stormwater discharge and convey the discharge away from the cap as sheetflow. Similarly, at the outlet of each temporary sediment trap, a riprap apron will be used to %convey the discharge away from each temporary sediment trap as sheet flow. The sheet-flow ifrom the cap and sediment traps will be released to the existing surrounding wetland areas to the »east, north, and southeast, and towards Bynum Run Creek to the north. Drainage will also be |released towards the existing drainage swales along Bush Road to the west and along thesouthern perimeter of the landfill. These drainage swales convey surface drainage to Bynum Run £Creek and wetland areas to the east, respectively.

The slope drains and benches will be sized to carry the peak discharge of a 24-hour, 25-yearfrequency storm at a non-erosive velocity. Calculations supporting the detailed design of the ?slope drains and benches are presented in Appendix G. Surface water drainage calculations ^(comparing existing site conditions to the proposed developed conditions) are also presented in „Appendix G. .Stormwater management devices are designed in accordance with the requirements ||of the Maryland Stormwater Management Regulations, CQMAR 26.17.02.02,26.17 2.85 A andB, 26.17.02.06 A(2), and 26.17.02.08. $j

'^'? C / 3-2 ftRQOOZM 11

IOO

SO

tro|o»IT

IR0002I2

HR0002I3

3.3.2 Subsurface Drainage

A subsurface geosynthetic (geonet) drainage layer (described in Section 3.4.1) will beconstructed on top of the low-permeability geomembrane of the closure cap. Infiltratingprecipitation will drain by gravity off the surface of the closure cap, discharging through theperimeter daylighted drainage system. The daylighted drainage system (shown on theMiscellaneous Details sheet) will be sloped to provide positive drainage away from the cap andwill release collected drainage as sheet-flow from the landfill. The drainage will flow from theperimeter of the landfill in the same manner as described in Section 3.3.1.

3.3.3 Sediment Control

Temporary sediment control during construction will consist of a stabilized construction entranceoff of Bush Road, silt fence and super silt fence positioned along the perimeter of the site, andtemporary sedimentation basins. The two existing stormwater ponds in the northeast andsoutheast corners of the landfill will be excavated and regraded for use as sediment traps toprovide for temporary control of sediment release during construction. A third sediment trap isproposed for the southwest corner of the site. Upon completion of the closure capping systemand proper stabilization of the entire drainage area, each of the sediment traps will no longer berequired and will be abandoned. Abandonment of the temporary sediment basins will be inaccordance with Maryland Erosion and Sediment Control practices. Calculations supporting thedesign of the sediment traps are presented in Appendix H.

Of the total 29-acre parcel, a total of 18 acres will be disturbed by this proposed construction anddevelopment; however, only approximately 14.8 acres are considered within the BVL drainagearea boundaries. The site area consists of five individual drainage areas; the Existing SiteConditions map and both the Existing and Proposed Conditions Drainage Area maps arepresented in Appendix G.

The Soil Conservation Service TR-55 hydrologic method was used to determine the compositerunoff curve number (CN) and time of concentration (tc) for the site drainage area under theoriginal existing conditions in 1986 and the proposed post-developed conditions. The TR-20hydrologic model was used to route the stormwater runoff of the 2-, 10-, and 100-year stormevents for the existing and post-developed conditions. The TR-55 and TR-20 worksheets andrelevant calculations are included in Appendix G. All curve numbers were developed assuminggood hydrologic conditions. Individual drainage areas and flow paths were determined for both

AR0002U

conditions. The site drainage area and condition for the existing conditions were based on aerialphotographs taken during the period 1980 to 1986. The site drainage area and condition for theproposed post-developed condition were based on the proposed design for closure of the landfill.The figures used for the hydrologic models for existing conditions and post-developed conditionsare included in Appendix G.

Based upon the 1986 aerial photograph, as shown in Appendix G, the original area of this sitewas significantly disturbed by the past landfilling operations. In 1986, the site consistedprimarily of exposed earth and sporadic vegetation (grass). The current vegetation on the site,consisting of wooded and grassed areas, will be removed prior to the proposed development.After closure, the area will be revegetated with a native grass species, which will promote thedevelopment of habitats. Grasses suitable for support of ecological habitats will be used tostabilize the final closure cap. The hydrologic analysis indicates that stormwater managementfacilities are required for the site to attenuate the post-development runoff to levels near theexisting conditions for the 2- and 10-year storm events.

Flow routing computations were performed for each individual drainage area considered underthe existing and post-developed conditions. The computed runoff for each individual drainagearea was totaled for each respective storm event. The results of the TR-20 hydrologic flowrouting analysis for both the existing and post-development conditions of the site are summarizedbelow in Table 3-1:

TABLE 3-1 HYDROLOGY SUMMARY

~ Storm Event

2-year1 0-year100-year

Total FlowExisting

Conditions*(cfs)33.967.9104.6

Total FlowPost-DevelopedConditions

(cfs)18.444.675.0

Percent Change(Total Existing to Total

Post-Developed Condition)- 45.6 %-34.3 %- 28.3 %

* Based upon

As shown by the above table, there is a net decrease in the stormwater runoff from the site due tothe proposed development. As a result of the estimated decrease in stormwater runoff betweenthe existing and post-developed conditions, a waiver of stormwater management requirements isbeing sought from Harford County for the closure of the Bush Valley Landfill.

3-4 flR0002IS

ll

3.4 CAPPING SYSTEM COMPONENTS

The final closure capping system is designed to minimize infiltration of precipitation into thelandfill and to reduce the potential for contact with the waste. The closure capping system willutilize geosynthetic materials and a soil cover to accomplish this purpose (Figure 3-1). Theclosure capping system is in conformance with the Maryland Sanitary Landfill ClosureRegulations, COMAR 26.04.07.21 A, B, D, and E. The capping system is described in thefollowing sections.

3.4.1 Geosynthetic Cover System

Bedding Layer

The bedding layer will consist of a compacted fill layer of varying thickness located directly onthe surface of the landfill, over the waste. At present, the landfill is covered with a soil layer ofvarying thickness, 0 to 6 ft. The bedding layer will provide a cover soil system over the waste tosupport the geosynthetic layers of the closure capping system. A minimum of 2 ft of soil isrequired above the waste prior to the installation of the geomembrane (COMAR 26.04.07.10F).The cover soil will be placed to ensure the minimum bedding layer thickness of 2 ft.

Gas Transmission Layer

The gas transmission layer will be comprised of geosynthetic materials, consisting of a geonetenveloped by a geotextile filter fabric. This layer will provide a safe means of passivelytransporting landfill gas, which may accumulate under the low permeability barrier layer of theclosure cap. The gas transmission layer will serve to equilibrate gas pressures below the landfillcap. Landfill gas will be transmitted through this layer toward the passive gas vents of theclosure cap. Passive gas vents will be constructed throughout the closure cap to vent gastransmitted by the geosynthetics. A discussion of the passive gas system is presented inSection 3.5.

Hydraulic Barrier Layer

The purpose of the hydraulic barrier layer is to minimize or prevent infiltration of precipitationinto the waste. The reduction of precipitation reaching the waste minimizes the decompositionof the waste material, hence reducing the generation of landfill gas and leachate. Geosynthetic

AR0002I6

and7or natural soil materials are both commonly used. Although many materials are availabletwo of the most appropriate types used for landfill closures are natural soil material (clay lim_and geomembranes [linear low density polyethylene (LLDPE) membranes].

COMAR 26.04.07.21 permits the use of either a clay liner or a geomembrane liner for use as thelow permeability layer or hydraulic barrier layer of the closure capping system. An economiccost comparison of each lining system was conducted to determine the most cost-effectivesystem. As per COMAR 26.04.07.21, a hydraulic barrier layer constructed of soil materials mustbe a minimum 1-ft-thick soil layer with a permeability of 1 x 10"5 cm/sec. The ROD, however,requires the use of a 2-ft-thick soil layer with a permeability of 1 x 10'7 cm/sec. In order to beconsistent with the intent of the ROD, a hydraulic barrier layer consisting of a 2-ft-thick layer ofsoil material with a permeability of 1 x 10"7 cm/sec was compared to a closure capping systemusing a 40-mil LLDPE geomembrane.

The clay capping system utilizing a 2-ft-thick clay layer would require more than 43,000 cy ofmaterial that has a permeability no greater than 1 x 10"7 cm/sec. The issues related to claycapping systems include the following:

• Higher permeabilities than synthetic liner; therefore, post-closure leachate genera*may be greater for a clay liner.

• A larger volume of truck traffic will be traveling over local roads to deliver clay to thesite.

• Susceptible to weather damage during construction and erosion following5 construction.

The geosynthetic capping system would utilize a flexible geomembrane as the hydraulic barrierlayer in the closure cap. Both polyvinyl chloride (PVC) and LLDPE liners were considered forthe flexible geomembrane. Both geomembranes satisfy the ROD and COMAR permeabilityrequirements and have similar relative cost; however, LLDPE has better friction characteristics,particularly on the side slopes of the landfill. Economic and slope stability comparisons betweenthe two geomembranes are presented in Appendix F. The benefits of implementing ageosynthetic closure capping system include the following:

3-6 AR0002I7

• Lower permeabilities than clay. The low permeabilities of the geosynthetics makeinfiltration more dependent on geomembrane defects and damage rather than onpermeability.

• Chemically inert material.

• Relative ease of quality control during installation.

• Less truck traffic required to mobilize materials to the site.

• Reduction in potential dust problems in hauling clay material for the hydraulic barrier.

A closure capping system utilizing a clay soil material for the hydraulic barrier layer is estimatedat $507,000. A closure capping system utilizing a 40-mil LLDPE geomembrane is estimated at$216,000. Based upon this comparative cost evaluation, a 40-mil LLDPE geomembrane wasselected for the hydraulic barrier layer of the closure cap. Both smooth and textured LLDPEgeomembrane materials will be implemented in the closure cap. Due to the steep side slopes onportions of the landfill, textured LLDPE liner will be specified to improve frictionalcharacteristics in areas having slopes of 5H:1V or steeper. The closure capping system costcomparison is presented in Appendix F.

Drainage Layer

A drainage layer will be placed over the geomembrane, consisting of a geosynthetic drainagemedia using geotextile filtering layers on each side of the geonet. Calculations supporting thesizing of the drainage layer are presented in Appendix F. These calculations take into accountfactors of safety for field loading and reduction factors for creep, biological clogging, andchemical clogging.

The drainage layer will carry precipitation infiltration off the cap. Precipitation infiltration willbe discharged to the daylighted drainage systems and will subsequently be released as sheet-flowfrom the landfill perimeter. Collected drainage will flow from the perimeter as described inSection 3.3.1.

3-7ftR0002l8

Anchor Trench

An anchor trench will be used for securing of the geosynthetic components at the top of theslope. The layers of each of the components of the geosynthetic cover system will be extendedover the edge of the anchor trench so as to line the side and bottom of the trench. The trench willbe backfilled with onsite soils and backfilled in lifts as specified in the Specifications. Aminimum 5-ft-wide flap of the geosynthetic components will extend from the upper slope, overthe anchor trench, and terminating downslope of the anchor trench location. This overlappingflap is used to prevent the introduction of infiltrated water carried by the drainage layer of theclosure cap into the anchor trench. The design procedure for an anchor trench typically includesa factor of safety (FS) of between 1.5 and 2.0, and is calculated based on a varying cover layerthickness and slope. The anchor trench configuration consists of a 3-ft-long runout section and a2-ft depth. This design considers both the horizontal and vertical forces that may be applied tothe closure cap system in order to resist liner pullout from the anchor trench. A detail of theanchor trench is provided on the Miscellaneous Details sheet in the drawings.

3.4.2 Soil Cover System

A 24-in. soil cover system (Figure 3-1) will be placed over the drainage layer. The soil coversystem will consist of 18 in. of common borrow soil and 6 in. of topsoil to prevent erosion of thecover system and reduce the potential for human or animal contact with the waste.

The topsoil layer will consist of a soil suitable for establishment of low-maintenance vegetation.The vegetation will be planted on the soil cap to stabilize the landfill cover system and reduceerosion. The proposed cover system incorporates a "habitat-friendly** vegetative layer by usingseed mixtures of appropriate plant types to create a diverse vegetative growth withoutjeopardizing the cap integrity. The vegetation will have a shallow root system so it does notthreaten the integrity of the geomerhbrane.

3.5 LANDFILL GAS MANAGEMENT

The BVL gas management system will be a passive venting system. However, the design alsoconsiders conversion of the system from passive to active in the event that site monitoringwarrants this change at a future date. Therefore, components of the system,'such as number ofvent wells, well design, and well placement, have been designed based on an active system. Thefollowing subsections summarize the components of the gas collection system.

3"8 AR0002I9

3.5.1 Passive Gas Venting System

Based upon the calculation of the maximum expected gas generation rate, and in accordance with40 CFR 60.752, an active landfill gas withdrawal system is not required. A passive gas ventingsystem has been designed for installation at BVL. However, the passive system has beendesigned so that modifications may be made in the future to facilitate active landfill gaswithdrawal. Figure 3-3 indicates the locations of the passive gas venting wells, gas monitoringprobes, and subsurface gas vents, along with the associated calculated radius of influence.

3.5.1.1 Well Field Design

The well field was designed in accordance with 40 CFR 60.755 to provide a system of verticalwells capable of controlling and extracting gas from the landfill sufficient to meet operationaland performance standards. The well field design at BVL was based upon estimates of the radiusof influence of each well based on the depth of waste, flow rate, unit weight of waste, and gasgeneration rate. The passive gas venting wells have been positioned along the ridgeline of thelandfill cap as shown on the Figure 3-3. A gas collection layer will be constructed directly belowthe geomembrane of the closure cap, and will serve to equilibriate the gas pressures below theclosure cap geomembrane. Gas collected within this layer will be transmitted to the passive gasvents positioned along the ridgeline of the cap and vented to the atmosphere, provided the gasvents meet emission limitations in accordance with the substantive standards of Marylandregulations governing air quality and toxic air pollutants.

The methodology employed in the design of the passive gas vents was taken from the SWAN A16th Annual Landfill Gas Symposium and is described as follows:

The gas generation rate is defined as:

where:GGR = Gas Generation Rate (cf/ton/year)Qt = Total Gas Emission Rate (from Landfill Gas Estimation Model) (cf7year)V = Volume of Waste (cy)X = Unit weight of waste (ton/cy)

RR000220

Once the GGR is determined the approximate radius of influence is determined using thefollowing:

D GGR Kwhere:

ROI = Radius of Influence (ft)Qw = Individual Extraction Well Flow Rate (cf/year)D = Depth of Waste (ft)GGR = Gas Generation Rate (cf/ton/year)X = Unit weight of waste (ton/cf)

The depth of waste was estimated from information presented in the RJ/FS, from historicalinformation, and from elevation contours detailed on the Drawings. The actual well depths areapproximately 75 percent of the depth of the waste in order to avoid installing wells into thewater table. The individual extraction well flow rate (12 cfrn) was initially estimated by dividingthe total gas emission rate (from the Landfill Gas Emission model) by the number of wells to beinstalled at the site (19 wells). The radius of influence (ROI) is then determined for each we!location based on the specific depth of waste at that location and a 12 cfin flow rate. Thecalculated ROI for each passive gas vent well is between 133 and 160 ft for depths of waste from46 feet to 30 feet. The calculated ROI for the subsurface gas vents is approximately 150 ft.Calculations detailing this well spacing procedure are included in Appendix I.

TJhe gas vent well design is based on the employment of an active landfill gas extraction systemand a relatively non-intrusive conversion to an active system. However, placement of the wellsnear the top of the landfill was selected in order to facilitate passive venting of landfill gas. Atotal of five passive gas vent wells will be used along the ridgeline of the closure cap to providefor release of landfill gas to the atmosphere. The use of the gas collection layer, whichequilibriates the gas pressure below the geomembrane and directs landfill gas towards theridgeline vents, eliminates the need for additional gas vent wells.

Table 3-2 presents a listing of each vent well, the ROI for that well, total depth of well, andassumed depth of waste.

3"10 AR00022I

QQ_ .-: tZ

t

O S— 2 *<7> O u! * .. £LJJ e "3 (>i ^Q uj ^ _, 3 d eco H ••<c ^ IO * <

to o yCO * =£

AR000222

TABLE 3-2 SUMMARY OF VENT WELL CONSTRUCTION

Well ID

GVW-1GVW-2GVW-3GVW-4GVW-5

ROI(ft)

139127117127155

Total WellDepth(ft)2530363020

AssumedDepth ofWaste*(ft)3540504030

* Depth of waste was approximated based on the difference between the surface elevation at thewell location and the elevation of the surrounding topography outside the limits of the landfill,plus additional historical information from the original landfill design drawings concerning theproposed depth of cells.

AR000223

3.5.1.2 Landfill Gas Monitoring Probes

A total of nine landfill gas monitoring probes will be installed along the southern and westernlandfill perimeter to monitor the migration of landfill gas. The gas monitoring probes willconsist of a 2-in.-diameter perforated pipe installed in a 12-in.-diameter borehole, within a gravel-pack. The probes will be installed down to the water table. A minimum 2-ft bentonite seal willbe installed above the gravel pack. A landfill gas field analyzer can be attached to a lab cock forsampling the gas. The proposed locations of the gas monitoring probes are shown on Figure 3-3.

3.5.1.3 Subsurface Gas Vents

The additional soil vapor analyses conducted in November 1998 revealed elevated concentrationsof methane in a sand layer beneath the southern and western perimeter of the landfill at a depth ofapproximately 17 ft below ground surface (bgs). A total of 14 subsurface gas vents will beinstalled along the southern and western edges of the landfill beneath the closure cap at the limitof waste. The subsurface gas vents will be 10 in.-diameter drilled boreholes, filled with porousgravel placed around a center perforated pipe. The pipe allows flexibility for inclusion into afuture active gas system if site conditions warrant. The subsurface gas vents will be installed to adepth of 20 ft bgs and will be spaced at 100-ft intervals. The vents will be tied in to the geonetgas transmission layer beneath the cap. Gas collected by the subsurface vents will be transmittedthrough the gas collection layer of the cap and will vent via the passive gas vents to theatmosphere, provided Maryland regulations regarding air quality and toxic air pollutants are met.

The 100-ft vent spacing interval (ROI of 50 ft) was selected for the subsurface gas vents. Sincethe landfill gas generation rate was calculated as 12 cfm, the graph in Appendix I indicates anROI of approximately 150 ft (for a depth of 20 ft). However, a more conservative estimate ofROI of 50 ft was used in order to ensure better capture of the landfill gas along southern andwestern boundaries.

3.5.2 Active Gas Withdrawal System

As identified in the ROD, if an active gas collection system is necessary at a future date, theproposed passive system shall be convertible into an active system. Among these modificationsand additions to the gas management system are the following:

• Installation of additional passive gas vents

AR00022U

• Installation of the main header and collection laterals• Installation of a gas control/destruction system• Modification of the vent wells to change from passive venting to active extraction

Detailed design of an active gas system will be conducted in the future, should existing landfillgas monitoring warrant a change from passive venting to active extraction. The discussionpresented herein is intended to portray only the concept of the potential future gas extractionsystem.

3.5.2.1 Vent Well Modification

In the event that the passive venting system is required to become an active extraction system,several modifications to the vent wells will be required. These modifications include:

• Installation of a valve above grade to eliminate gas flow through the top of the well• Installation of a sampling port• Connection of the lateral to the well via the T-fitting

Figure 3-4 indicates the new configuration of a typical vent well retrofitted for active gasextraction.

3.5.2.2 Conceptual Future Gas Collection Header Network

As part of a future upgrade and design, the gas collection headers and laterals should be sized toprovide negative pressure at the wellheads in accordance with 40 CFR 60.755 (a) (3). Headersizes will be iteratively assumed, utilizing the Hardy Cross Method to balance the flows in thegas collection header network and Bernoulli's equation to determine the pressures at each nodein the header pipe at each wellhead. The pressures at each node will be calculated consideringhead losses in the header and laterals and the performance of the selected blowers.

3.5.2.3 Gas Control System

Based on the results of the landfill gas migration evaluation and the calculations performed aspart of the landfill gas production evaluation (Appendix C), the gas extracted from the landfillwill not support the operation of a flare station. The concentrations of NMOC are below thethreshold limits of 50 Mg/yr, as presented in the New Source Performance Standards(40 CFR

AR000225

GOOSENECK

MNUM C* HBHx r SOLMOUW

ACTIVE GAS EXTRACT WELL DETAIMOTTO 8CH£

EA ENGINEERING.SCIENCE. ANDTECHNOLOGY

REMEDIAL DESIGN FORBUSH VALLEY LANDFUHMPOTO COUNTY.

FUTURE ACTIVEGAS EXTRACTIONWELL DETAIL

PTOJECTMGftPAP

DE9GHEDOT

BMORAtN BY

JBSCHECKED BIT

PAPSCALE

NTSDATt

6-4-99PROJECT W

61131.01FIGURE

3-4

flR000226

Part 60.752), and are appropriate for direct release to the atmosphere using a passive ventingsystem. However, in the unlikely event that these concentrations increase significantly (to >25tons/yr VOCs), the installation and operation of a flare station or other type of gascontrol/destruction system should be re-evaluated.

3.5.2.4 Condensate Management

Under an active gas extraction system, condensate will be managed by proper sloping of thecollection pipes back towards the wells. The main header and the laterals should have aminimum 1.0 percent slope toward the wells to prevent condensate accumulation in the pipes.Condensate will flow back towards the wells, into the perforated pipe, and back into the landfill.

3.5.3 Gas Monitoring Program

It is anticipated that routine sampling and recording of landfill gas generation will commencefollowing installation of the closure cap system, including twice-yearly sampling at gas dischargepoints and at the site boundary, and should include VOC analysis. A detailed monitoringprogram for the BVL site will be included as part of the Operation and Maintenance Plan to beincluded with the Pre-Final Design.

3.6 SLOPE STABILITY CONSIDERATIONS

As a result of the age of the landfill (site began operation as a landfill in 1974, and ceasedaccepting waste in 1982), most settlement due to waste decomposition is expected to havealready occurred. Landfill settlement due to the installation of the closure cap is not anticipatedto be significant. Design calculations analyzing the slope stability at the geomembrane liner andgeocomposite interface, as well as the overlying/underlying soil and geocomposite interfaces, arepresented in Appendix F.

Slope stability analyses were performed to specify suitable capping materials for the landfill.The analyses followed guidelines set forth in EPA's "Stability of Lined Slopes at Landfills andSurface Impoundments, August 1990." The following interfaces were analyzed to determine thefactor of safety based on their interface friction angles:

• Smooth LLDPE - against - Geocomposite (non-woven, needle punched geotextile)

• Textured LLDPE - against - Geocomposite (non-woven, needle punched geotextile)

AR000227

• Soil Cover- against - Geocomposite (non-woven, needle punched geotextile)

The residual friction angles and calculated factors of safety are summarized below:

InterfaceSmooth LLDPE/GeocompositeTextured LLDPE/GeocompositeSoil Cover/Geocomposite

Maximum Slope5H:1V3H:1V3H:1V

Friction Angle17°26°26°

Factor of Safety1.51.51.5

The interface friction angles used as part of the slope stability analyses are based on industrydata. A range of interface friction angles were provided based on historical data that uses thespecified materials in similar project applications. Each of the interfaces will be tested in thefield to verify their actual interface friction angles. The calculations and conclusions are shownin Appendix F.

3.7 GROUNDWATER MONITORING PROGRAM

The groundwater monitoring program will be initiated following the completion of the landfillcapping system. The groundwater monitoring program will include plans for sampling frequencysample locations, types of samples, and analytical parameters and will be prepared following acomprehensive review of data collected during the pre-design and previous RI activities. Reviewdata will include groundwater samples collected from four additional wells which were installedand sampled during April and May 1999. A description of the groundwater monitoring programfor the BVL site is presented in the Post-Construction Sampling and Analysis Plan, a separatedocument that is part of the Pre-Final Design Submission.

3.8 ECOLOGICAL MONITORING PROGRAM

The ecological monitoring program will be initiated following completion of the landfill cappingsystem. The details of the program will be determined following a comprehensive review of datacollected during the pre-design activities. A description of the ecological monitoring program forthe BVL site is included in the Post-Construction Sampling and Analysis Plan.

3'14 flR000228

3.9 FUTURE USE RESTRICTIONS

3.9.1 Deed Restrictions

Proposed deed restrictions and other institutional controls are described in the Bush ValleyLandfill Land Use, Access and Deed Restrictions Plan, submitted to EPA on 3 November 1997.EPA provided comments to this plan in a letter dated 11 November 1998. Harford Countyresponded in a letter dated 26 January 1999 regarding the recordation of the Consent Decree inthe County Land Records, and further responded in a letter dated 1 February 1999. The Countywill continue with the plan as submitted, pending further comment by the EPA.

3.10 SITE ACCESS CONTROL

Control and restrictions of access to the closed site will include warning signage and boundaryfencing. A perimeter fence will be constructed around the boundary of the site to restrict thepotential for direct contact exposure to landfill waste or landfill gas between possible trespassersand/or vehicular traffic. Specific information regarding the fencing can be found in theSpecifications and a detail is shown in the drawings. Warning signage, including "NoTrespassing" signs, will be located along the perimeter fence. The integrity of these site accesscontrols will be inspected as part of the Operation and Maintenance Plan.

AR000229

4. ENVIRONMENTAL PERMIT REQUIREMENTS INVESTIGATION

Pursuant to 40 CFR 300.400(e), "No federal, state, or local permits are required for onsiteresponse actions conducted pursuant to CERCLA Sections 104, 106, 120, 121, or 122." Onsiteactivities for which permits are not required include the landfill cap construction, landfill closure,stormwater runoff, construction near wetlands (tidal and nontidal), landfill gas vent emissions,temporary construction easements, erosion and sediment control, and well construction andabandonment. However, the Bush Valley Landfill will meet the substantive requirements ofpermit equivalencies for these activities.

A summary of the required and substantive permits for the Bush Valley Landfill Closure Cap ispresented as follows:

GovernmentApproval/Permit

Closure Cap System

Stormwater Management

Erosion and Sediment Control

Approving Agency

Maryland Department of theEnvironment

Harford County Departmentof Public Works

Harford County SoilConservation District

Comments

Agency review and approvalin conformance with COMARand RCRA landfill closurerequirements. No formalpermit document required.MDE will issue an approvalletter of the closure design andcontingent upon localjurisdiction approval (HarfordCounty SCD) of the erosionand sediment control plan.

A waiver from stormwatermanagement requirements hasbeen requested based upon anet reduction in the estimatedstormwater runoff fromexisting conditions at the timeof landfilling to proposedconditions after site closure.

Local approval of erosion andsediment controls requiredprior to interaction ofconstruction activities.

RR000230

5. PROJECT SCHEDULE

The remedial design is scheduled to receive final approval from EPA in December 1999.The remedial construction is planned to occur during the year 2000 construction season. Aproposed preliminary construction schedule for accomplishing the work is shown inFigure 5-1.

5-1AR00023I

•tfl

£

UJ

DDUJx :oV> zZot— _J /-I

MINARY CONSTRl

3H VALLEY LANDF

RFORD COUNTY,

Month]

UJ CO Xoc0.

« ;UJ *o:

;

-

1

1

«f~3

i

$n5

i

;

t

i

!

1 0

i

i

MoMzatoSrte

y

Eraton and Sedwiwrt Control

Cto«r«ndGnib

Io

Prow* Bo

rrow

Prt

Ta

il

1I

i

i

n

UiJ

1

n

iji

m

i

i

(

j

5 i! i

:: y

c

J;

-IrvniTopMi

1

u.

I

R

kvM GH

Monitoring Pr

obe*

1-Q

>

^

iAR00023;!

Appendix A

Boring Logs, Well Constructionand Groundwater Monitoring Records

AR000233

Appendix A1

Geotechnical Boring Logs

AR00023<4

B!j ^ ^ ^ fc " "

Coordinates:Surface Elevation:Casing Above Surf)Reference EtevatkxReference Descript

SampleType

Sf

RecvrdIn.

(8

ZY

zy

L ® EA Engineering,k Science, andA Technology, Inc.B Bdi

LOG OF SOIL BORING

ice:i:ton:

SampleDepth

V6bft

5f!3to

H776

34

f5

CGI%LEL

O

O

O

o

PID(Ppm)

/$

l.o

O-o

0-0

DepthIn

Feet

0

1

2

3

4

S

e

7

8

9

10

USCSLog

ML

/iU

//L-

Job. No. Client Harford County Location:•1131.012003 Department of Public Works Bush Valley LF.Drilling Method: C (*g ~1 *5 Bortno No.

&SB - /Sampling Method: 2 In ID spH spoon sampler

-*V;rr> ShHbvtube Sheet 1 of 2OfiVx; Drillino

Water Lev. Start Finishr™ . „ /9«b //V5 IDate TSepiM 1 £»pfQaReferenceSurface Conditions:

II

&•*****» .<*«,. fltT -face. c/c<, \<W P- t, *<?<(#. 4r&t< fi«+W«*' -^

A/.^x-i^ .//rv . S/LT J***t ck*•frees ' {„ S*~J . /wu»/$$tc

TO Vfc/ e/'X - "U/,1 « J v *MP/ £6//

J"/CT J\,*9t C/tfM / >Vtfr^ f.&~*<#/

/^

r/i/y/?L/ AiA/sonbli.

^ t Pof.'fareJi fiWyJVj

rc t A r *y-<£?

Logged by. Steve WeteantDrilling Contractor: E2SI________________^ Drifter

ftR000235

EA Engineering,Science, andTechnology, Inc.

Harford CountyDepartment of Public Works

Location:Bush Va

LOG OF SOIL BORING Sampling Method:____2 In ID sptt «poon samplerCoordinate*:Surface Elevation:

Surface Condition

4- w-ft -

Logged by. Steve Weteint Date: 1 September 1Drifler.Drilling Contractor E2SI

AR000236

••MlECCoordinates:Surface Elevation:Casing Above SurfiReference EtevatinReference Descripl

SampleType

55

IWTfrvr IJL-

ry

RecvrdIn.

W"

ZV''

z

k <$ EA Engineering,^ Science, andA Technology. Inc.l9 b«

LOG OF SOIL BORING

BCC:Tton:

SampleDepth

H113t|H^^7510

CGI%LEL

<0

c?

PID(Ppm)

3-1

DepthIn

Feet

0

1

2

3

4

5

6

7

e

9

10

USCSLog

FILL

CL

st

Job. No. Client Harford County Location:en*!* aooa Department of Public Works Bush Valley L.F.DrMng Method: Boring No.

£/5LSff • //?Svnottno Method: 2 in ID aplit spoon sampler

ShHbytube Sheet 1 of 2Drilling i

Water Lev. Start FinishTine // ?o /? BT*Date X eotSS 1 ScptflaReferenceSwface Conditions:

C?-Z- £u<)es -ho H ; Q(a*tl fi/// J

,,M "" [f "" C*?t tPS&toS+i ftf ' J V > tf*Q ff** C* , *f *Jf

/ "f "X . ^- / & v /* "«J ' f f\s C. t-™ f r r- ff **3'

^ rti&t&be.St+flL.faktuMlUl M?)1

,r

e-'0 /X > , y»v *v/ Vf ,J- ^ «/»- c.xv :// X/ < -<?y" 2r«i X". JSfc,

^-» / ^x

Logged by. Steve Webant_____________ Data: September 1998Drilling Contractor E2SI ———————————————— Drfltor.

AR000237

EA Engineering, jot. NO.Science, andTechnology, Inc.

Ctent Harford CountyDepartment ol Public Works

Coordinates: .Surface Elevation: _Casing Above Surface:Reference Elevation:Reference Description:

_____ I BoaLOG OF SOIL BORING

SampleType

RecvrdIn. I Surface Conditions

Feet

j) I *- I I " I \_/ IV. VI .*

CL-\Q-t2- " (Jt tfeuttf ?,*, , »«>&<*£. $'//<r(

/w/>/, Jreci /: fe f.,- -s

I2.-K/ - £&<** QS /0-SZ.

0.0. „

nJ——I n - R,«J*S •*>> (j.*ff ?',//<, JXvQ^ A**J/r,» fe.j

5/f j/VV^ - .TQ ^ (* J&^tctiKf S*~

15 Jfe-t8 - Ct q/ey. S7o<S/i **f/t StfWtf-l—J—M /I /•feV/y fl. ^ . ox I.

/2- i i i , •,».->-_ r-y, . -^ /t>-rtf

/£.

19

f/

fc__.I .^ I IO^oaSeptembaf 199B

Drilling Contractor E2S1 ____ ____ ________ DrfBtr

AR000238

ECoordinateSurface ECasing AbReferenceReference

SampleType

SC

k^m<g> EA Engineering,^ k Science, andfl A Technology, Inc.

LOG OF SOL BORING»:evition:ove Surface:FlevBtion-D«criDtJon:

Recvrdm.

i"{

7f''Is* ——

•JU*t-1

11"

(X

Samp*Depth

5"11<i9nn/(>57?7

M(581

CGI%LEL

O

PID(ppm)

IP

0.5

O.o

0.0

DepthInFeet

0

1

2

3

4

S

6

7

8

9

10

USCSLog

hL

//

///

CL

Job. No. Client Harford County Location:nisi.* am Department of Public Works Bush Valley L.F.drifting Method: Boring No.ghSB-2.Sampfina Method: 2 In ID splK spoon sampler

Shelbytube Sheet 1 of 2Drilling

Water Lev. Start FinishTme /^vr /*fZ.Oate 1 septsa i s.|rtQflRtffHWf uv

0-2. / CC . H/i y^V. JV?^</v J> 7

T if * c/w yC K

2-V J 'n<_fir Q-l. '

i

V-C/ JVs-n*? ?J" 2-V , £xf-

/ *>

Skelbf l?c-50M <-

>/0-'<9 fceft ±o If-fcy.w/jt. C/a/ T///V C V———— <— ——— y ———— - ———— —— / 7 ——— ^ ——— T —

M f//td? ,A*o»sf-

n««: 1 September 199BLogged by. Steve WeteantDrilling Contractor E2SI——————————————.——

AR000239

Engineering, Harford County*Science, andTechnology, Inc.

Department of Public Works

LOG OF SOIL BORING .2 In ID soft spoon samplerampling Method

Coordinates:Surface Elevation:Casing Above Surface:Reference Elevation:Reference Description:

Sample | CGI | PID | Depth | USCS

AR0002UO

eeCoordinates:Surface Elevation:Casing Above SurfiReference Etevatk*Reference Descript

SampleType

S5)

rs

sc

v

i ^ ^ ™LoggtdbjDrilling Cc

RecvrdIn.

V.

t<0

ZS

7.M

-ZO'

• • — •—cmtractor

L <$ EA Engineering,k Science, andA Technology, Inc.

LOG OF SOIL BORING

ice:i:ion:

SampleDepth

/-7

— T

M-10

1IIH/3O~7/*

/«/^

V

t-81<t

LH ^ BSteve Wi _ . .,

CGI%IEL

a

o

o

bant

PID(Ppm)

\lc

ft!

n1)

3V

•31

DepthInFwt

0

1

2

3

4

5

6

7

e-

9

10

USCSLog

CL

CL

r 1

&

Job. No. Client Harford County Location:01191.01 2033 Department of Public Works Bush Valley L.F.Drilling Method: Boring No.

ET 55-3Sampling Method: 2 In ID split spoon sampler

Shetbvtube Sheet 1 of 2Drilling

Water Lev. Start FinishTime _ ... * ooDate L£eot98 2£eptS8Reference

i - i " J

0-L' M*Jt6r*M ,4r« . f'//* CL4V f,s*

~Jr&u /! TG**£ . s**'HI«PAVo^t : PlP rt«/M4' C(f IPL tAf'(«<*c*je

few faL\ fa/H.ct'Jt,» . '

l-H - J~c. \(. : ir*cr<*r/Z<t & M .. 4^___ — _— — —— ——— r ' -^— ———— — -"^ r r — r —

• i

4-k - 9<?*vt cr t-V ./H J/

*s»;/ $e~&<. < *U. kf fa*J&» -fvt>f -&-0- tt/M* Cf V-^ ' J//W /icsfccr*.

c/ y , /H*/r/

2' . ——————— - —————————————————0-ro - ^tfA1, cT 6-6 . Ji/Ht *C-!£

Pc a/ /i f y .'"j•

Date* rLSeptember 1996E2SI . Drillar ——————————————————

AR0002UI

ZS- Dk &**+'&£&, CLAf,, flR0002it2

C// 7

»EA Engineering,Science, andTechnology, Inc.

LOGOFSOLBOMNGCoordinates: ^ _Surface Elevation:Casino Above Surface:Reference E)evatton:__Reference Description:

Job. No.nisi* am

Clant Harford CountyDepartment of Public Works

DrMng Method:

Samphna Method: 2 In 10 spa spoon samplerSheJbvtube

WaterLev.time

Reference

Location:Bush Valley LF.Boring No.

Sheet 1 of 2DrMta

start

1S.P08

SampleTypa tv Dtpth %LEL

PID(Ppm)

OepttiInFeet

USCSLog

ss ML•P.

17.a

z-v -

or 2-27

O-O

I

2*

y 10Logged by: Steve Welzant_____________ Data: XSeotember 1998Drilling Contractor E2SI_________________ OrtBar. _________

flR0002U3

Coordinates:Surface Elevation:

k<8

^ E v

EA Engineering,Science, andTechnology, Inc.

LOG OF SOIL BORING

Casing Above Surface:„ Reference Elevation:Reference Description:

Type

SH

5$

jT

yr

*•• -is

Logged by-Drilling CM

In.

0"

W*

U,"

———— =3

1J."

If*

Depth

/

>

V

/1z3YzlZ3780

Js--Y,c.5S

CGI%LEL

O

0

&

O

PID(Ppm)

a<?

,O.ip<7.O

^

1 DepthinFeet

11

12

13

hI 14

15

16

17

16

19

20

21

USCSLog

Lt\nu

E*. No. Client H afford County Location:131.01 2003 Department of Public Works Bush Vallt

Driting Method: Bonn/•_ -(

Sampling Method: 2 In ID split spoon samplerShelbvtube Sh~* •> „

— —— — -i ————— — . DrillingWater Lev. stlft TFtne ff:— - ———— —————— —————— —————— —————— / Jfi»w§SH —— ———— ———— ———— ____ a-septse

I&ttJbtf Ajbz. Soil JOH*//C-

-f-vb*. UfJ~ g& L*>J*t~ S4*** <>

^ j\2-r-V - AP./- ^ . y Vw*//>.Wi C tf

T/Cr rfle*? r y J-,

tfrWfr- JO^^ T /?-/</ , J~

9

£s>h r / fig) /f/ '/g - -MZ-A^ 7 TQ&fvkJ d?Sftf^ -/ 0 ' /

JV'Hc. /n«3<sc iran>*jP , /0&So~* * '* — lt— f— - ————————— . ————— « ——— - — ; —— . —— 4

f 3-2.0 J /K-L f / -/* I

TBOH&ZO' I"t

Steve Webant Data: 2. September 1998 »•itractor E2S1 Driller

BQCoordinates:Surface Elevation:

® EA Engineering,L Science, andm Technology, Inc.

LOG OF SOIL BORING

Casing Above Surface:Reference Elevation:Reference Description:

SampleType

4WPETGLiner

4ttPETGUner

4«PETGliner

4«PETGliner

4ftPETGKner

RecvrdIn.

46/46

46/46

46/46

46/46

48/46

Logged by:Drilling Contractor

SampleDepth

0-4

4-8

6-12

12/16

16-20

PID(ppm)

0.6

1

1

1.2

1

1.5

1

2

1

1.6

DepthinFeet

0

2

4

6

6

10

12

14

16

18

20

USCSLog

ML

CL

CL

ML

SMSP

Steve WelzantTarget Environmental

Job. No.61131.01

Client

Drilling Method:

Harlord County Location:Department of Public Works Bush Valley L FPick-up truck mounted Geoprobe Borina No.direct push technology EASB-7

Sampling Method: 4 ft PETG liner. 2 in IDsoil oas • collected usina 1/4 In polyethylene tubina through Sheet 1 of 2rods and attached to vacuum pump. Extracted with 60cc syringe DrillingWater Lev.TimeDateReferenceSurface Conditions:

Start Finish830 1015

11/05/96 11/05/98

arass; 1 36 ft east of comer of fence (down access road)on south side of access road

0-4- Moderate to light brown, dry, mottled clayey SILT, trace fine sand, firm.

4-8- Moderate brown, dry-moist, mottled silty CLAY, trace fine sand, firm.

-

6-12* Same as 4-6; becoming moist

12-14- Same as 6-12

14-15- Gracing to SILT

15-16- Grading to medium SAND- 15.6- Color chanoe to medium arav

16-20- Moderate to light brown medium/coarse, moist SAND, me *M and gravel,loose

Date:Driller.

Nov. 5. 1998Jeff Green

Was a temporary groundwater sampling point Installed? No_____ If yes. give construction details

RR0002U5

EA Engineering, Science,and Technology, Inc.

LOG OF SOIL BORINGCoordinates:Surface Elevation:Casing Above SunReference Elevation:Reference Desc:

SampleType

PETGliner

PETGliner

PETGliner

PETGliner

InchesDrvn/ln.Recvrd48/24

48/24

48/48

48/48

'-

Dpth.Csg.

22

26

28

32

SampleNo.

6

7

e

9

PIDppm

1.1

2

12

35

2.6

2.8

2.7

3

Blowsper6 in.

Depthin

Feet22

2:

24

25

2(

27

28

2$

3(

31

3:

3S

34

3€

37

3fi

39

4C

41

42

USCSLog

SP

SM/Ml

SM

SM/ML

Job. No.61131.01/2002

Client: Harlord CountyDepartment of Public Works

Drilling Method: Geoprobe48"x 2" steel rod

Sampling Method: PETG liner

Water LevelTimeDateReference

11/05/98

Location:Bush Valley LandfillBoring No.

EASB-7

Sheet 2 of 2Drilling

Start Finish830 1000

11/05/98 11/05/98

Surface Conditions: grass, brush

20-23- same as 16-20

23-24 Light gray, moist to wet, sitty SAND some gravel

24-28 Moderate brown, moist to wet, sandy SILT, some clay

28-32 Light _gray_grading to brown, moist to wet, fine SAND,little silt

32-35 Medium gray to brown, wet, fine SAND and SILT. saturated O 34 ft

BOH O 35 ft

f

Logged by: Steve Welzanl_____________ Date: 11/05/98_____

Drilling Contractor; Target Environmental__________ Driller Jeff Green_____ 4j

f)yflR0002l»6 f!

EA Engineering, Science,and Technology, Inc.

LOG OF SOIL BORINGCoordinates:Surface Elevation:Casing Above SurReferenc§ Elevation:Reference Desc:

SampleType

PETGliner

PETGliner

PETGliner

PETGliner

PETGliner

InchesDrvn/lnRecvrd48/48

48/46

48/48

48/48

48/48

Dpth.Csg.

0-2

4

8

12

16

SampNo.

1

2

3

4

5

PlDppm

3

1.5

3.5

2.3

3

3

2

3.1

Blowsper6 in.

Deptin

Feet

3

j

i

e7

I

j

K

11

1;1;14

1!1*17

18

19

20

USCSLog

CL/Ml

CL/Ml

CL\ML

Job. No.61131.01/2002

Client: Harford CountyDepartment ol Public Works

Drilling Method: Pick-up truck mountedGeoprobeSampling Method: 4 ft PETG liner, 2 in IDsoil gas: collected usingtubing to pumWater LevelfimeDateReference

1/4 in polyethylenep; extracted with 60 cc syringe

11/05/98

Surface Conditions: grass

Location:Bush Valley LandfillBoring No.

EASB-8

Sheet 1 of 2Drilling

Start Finish1030 1130

11/05/98 11/05/98

0-4 Moderate brown, mottled, dry, clayey SILT, trace fine sand,firm, collected sample © 4 feet

4-8 same as 0-4collected sample G 8 feet

6-11 same as 4-8

CL\M1

CL

SP

SP

11-12 Light brownish-gray, moist, silty CLAY, softcollected sample O 12 feet

12-13 CLAY

13-16 Moderate brown,moist, m/c SAND, little gravel, trace siltcollected sample O 16 feet

16-20 same as 13-16collected sample O 20 feet

Logged by; Steve Welzant____________ Date: 11/05/98

Drilling Contractor Target Environmental_________ Driller Jeff Green

ftR0002l»7

BnlCooroTnates:Surface Elevation;

[ IcieEncenaened' 'ai

1 Technology, Inc.LOG OF SOIL BORING

Casing Above Surface:Reference Elevation:Reference Description:

SampleType

4 n PETGliner

>

4 ft PETGliner

4 ft PETGNner

•Oft

RecvrdIn.

48/24

48/36

46/36

SampleDepth

20-24

24-28

28-32

PID(ppm)

0.2

0.5

0.2

02

0.1

DepthInFeet20

22

24

26

28

30

32

34

36

38

40

USCSLog

SP

SM

a

ML

SM

Job. No. Client: Harlord County61131.01 Department of Public WorksDrilling Method: Pickup truck mounted Geoprobe

Sampling Method: 4 n PETG liner. 2 In IDsofl oas - collected ustna 1/4 In porvethvtene tubing throuahrods and attached to vacuum Dump. Extracted with 60cc svrinoeWater Lev.TimeDateReferenceSurface Conditions: see sheet 1 of 1

Location:Bush ayBoring No.EASB-8

Sheet 2 of:Drilllna

Start Rt,1030

11/05/98 <

*

f.20-22- Same as 16-20

*22-23- Moderate brown, wet. fine SAND, some silt t

23-24- Dark brown, moist CLAY, firm

24-26- Moderate brown, wet, sandy SILT, trace gravel ^Increase In medium to tine SAND near bottom

J.

-

-26-32- Light brown, wet. fine SAND ;»

y

*f

BOHO32H ft.

— Ir————————————————————————— i

L'

Logged by: Steve Welant . ______ Date: Nov. S. 1996

Drilling Contractor Taroet Environmental_______ Drtlen Jeff Green

Was a temporary groundwater sampling point instated? No If yes, give construction details

BR000248

EA Engineering, I Job. NOScience, and

Coordinates: _Surface EtevaSon: __Casing Above Surface:.Reference Elevation: _.Reference Description

61131.01Client Harford County Location:

Bush Valley L.F.____________BortngNo.

| direct push technology |LOG OF SOIL BORING

Technology, Inc. ,————————————— _

SampleType

|4 ft PETGLiner

In.

48/46

Sample II PIDDepth tppm)

Sheet 1 of 2

1145 1330

|4 ft PETG

Depth jm

0-4

Log

48/46 |4-8

4 n PETG 48/48liner____——r i i i

10

4 n PETG

6-12

5.3

ML0-2.5- Moderate brown, dry, SILT, little gravel, loose.

2.5-4- Dark brown, dry CLAY, some silt firm

14-6- Same as 2.5-4

CL

48/40

4 ft PETG 48/24

12*16

CL 18-12- UgM brown, motet mottled sBty CLAY, flrm

0.61 12

1.1

1.2

16-20

14

CL 112-16- Same as 6-12, SAND O bottom

11.1 18

1640- Moderate brown, dry noW. Una to coarse SAND, some gravel,

SP

_. Date- Mo*/. S. 1996Steve Weteant ______ ———— uaw- ' T——— "~~ Drt||er: .toff Green• TDrilling Contractor. .Target Environmental ——————— _ _

WasatemPWarygnWrK^ter«mpHrH,pc.ntinsta^ Jfi ————— ,, yes. grve constructton details

AR0002U9

EAErand

L<Coordinates:Surface Elevation:Casing Above SurReference Elevation:Reference Desc:

SampleType

PETGliner

PETGliner

PETGliner

PETGliner

PETGliner

InchesDrvn/ln.Recvrd48/24

48/46

48/48

36/30

36/36

-?

.**»

Opth.Csg.

20

24

28

32

35

igineering, Science,Technology, Inc.

3G OF SOIL BORING

SampleNo.

5

6

7

8

9

PIOppm

0.2

0.1

0.1

0

0.2

0.1

0

0

Blowsper6 in.

DepthinFeet22

2;

24

2!

2(

27

2(

2<

3(

31

3

3!

34

3i3C

37

3E

3S

4C

41

42

USCSLog

Job. No. Client: Hartord County Location:61131.01/2002 Department of Public Works Bush Valley LandfillDrilling Method: Pick-up truck mounted Borina No.Geoprobe EASB-JSampling Method: 4 ft PETG liner, 2 in ID -*soil gas: collected using 1/4 in polyethylene Sheet 2 of 2tubing to pump; extracted with 60 cc syrinqe DrillingWater Level Start FinishTime 1145 1330Date 11/05/98 11/05/98 11/05/98ReferenceSurface Conditions: grass

20-22- crushed grave); rocks

22-24 Light brown, moist, nVc SAND, little silt and gravel,some white-gray sand

24-28 same as 22-24

28-32 same as 24-28; increase in light grayish brown fine SAND

32-35 same as 28-32

35-38 same as 32-35; becoming saturated O 35'

BOH O 36 ft

Logged by: - ~- Steve Welzant -••'-.--_____'____ Date: 11/05/96

Drilling Contractor Target Environmental__________ Driller Jeff Green

AR000250 fj

EA Engineering, Science,and Technology, Inc.

LOG OF SOIL BORINGCoordinates:Surface Elevation:Casing Above SunReference Elevation;Reference Desc:

SampleType

PETGliner

PETGliner

PETGliner

PETGliner

PETGliner

InchesDrvn/lnRecvrd48/48

48/48

48/48

48/46

48/28

Dpth.Csg.

0-4

4

8

12

16

SamplNo.

1

2

3

-

4

5

PIDppm

0.2

21

10.3

0.7

0.8

0.2

0.5

0.2

13.1

0.5

0.7

0.2

3.3

2.3

Blowsper6 in.

Depthin

Feet0

1

;ii

(

i

(

9

K

11

1;1;V

15

ie17

18

19

2C

USCSLog

OL

ML

SPSMSM

CL

CL

CL

SP

SP

Job. No. Client: Harford County61131.01/2002 Department of Public WorksDrilling Method: Pick-up truck mountedGeoprobeSampling Method: 4 ft PETG liner, 2 in IDsoil gas: collected using 1/4 in polyethylene

Location:Bush Valley LandfillBoring No.

EASB-1 0

Sheet 1 of 2tubing to pump; extracted with 60 cc syringe DrillingWater LevelTimeDate 11/05/98ReferenceSurface Conditions: grass

Start Finish1345 1530

11/05/98 11/05/98

0-1 organics; top soil

2-3 Moderate brown, moist, SILT, some gravel and fine sand

3-3.5 coarse SAND layer3.5-4 Moderate brown, moist, fine SAND, little silt, firm4-7 same as 3.5-4

7-8 Moderate brown, mottled, firm CLAY, little sitt

8-12 same as 7-8

12-14.5 same as 8-1 2

14.5-16 M/c SAND, moist, little gravel

16-20 same as 14.5*16

Logged by: Steve Welzant____________ Date: 11/05/98

Drilling Contractor: Target Environmental_________ Driller. Jeff Green

AR00025I

B3Coordinates:Surface Elevation:

& EA Engineering,. Science, and| Technology, Inc.

LOG OF SOIL BORING

Casing Above Surface:Reference Elevation:Reference Description:

SampleType

4 ft PETGliner

PETGliner

4 ft PETGliner

4 ft PETGHner

-- •

..,.„,..-

RecvnJin.

46/36

24/20

48/48

48/48

SampleDepth

20-24

24-26

26-30

32-36

PID(ppm)

0.4

2.1

0.4

DepthinFeet20

22

24

26

26

30

32

34

36

38

40

USCSLog

SM

SM

CL

SM

Job. No. Client: Harford County Location:61131.01 Department of Public Works Bush VallevDrilling Method: Pickup truck mounted Geoprobe Boring r-'

EASB-1,.Sampling Method: 4 ft PETG Hner. 2 in IDsoHoas- coHeded usino 1/4 in porvethvlene tubino through Sheet 2 ofrods and attached to vacuum pump. Extracted with 60cc svrinae DrilllnqWater Lev. Start Fir/Time 1345Date 11/Q5/9B -.ReferenceSurface Conditions: see sheet 1 of 1 c

20-24- Moderate brown, moist meoSum to fine SAND, little gravelaettinc wet O bottom ?

-

f*

24-26- Same as 20-24; becoming wet/saturated

-26-28- Gray, moist-wet sandy CLAY, firm

'

26-30- Same as 26-28; color changing to moderate brawn „

*

No sample »

*

32-36- Light brownish-gray, wet fine SAND, Nttte sRt loose f

1.

FBOH O 36 ft . f

H ,

ll

Logged by: Steve Wetzant Date: Nov. S. 1998

DrfBing Contrador Tarott Envtronmental _______ Driller. Jeff Green

Wasatempwan/grouTKhrttersamollnQporrrtinstaled? No lives, give construction details

AR000252

EA Engineering, Science,and Technology, Inc.

LOG OF SOIL BORINGCoordinates:Surface Elevation:Casing Above SunReference Elevation:Reference Desc:

SampleType

PETGliner

PETGliner

PETGliner

PETGliner

PETGliner

InchesDrvn/lnRecvrd48/48

48/46

48/48

48/46

48/30

Dpth.Csg.

0-4

4

6

12

16

SamplNo.

1

2

3

4

5

PIDppm

0.2

2

1.2

0.3

0.1

0

O.B

9.6

0.1

9.5

3.4

5.4

2.6

B.3

22.3

Blowsper6 in.

Depthin

Feet0

1

t

*

i

5

e7

f

c

K

11

1!

1;14

1C

17

18

19

2C

USCSLog

Job. No. Ghent: Hartord County51131.01/2002 Department of Public WorksDrilling Method: Pick-up truck mountedGeoprobeSampling Method: 4 n PETG liner, 2 in IDsoil gas: collected using 1/4 in polyethylenetubing to pump; extracted with 60 cc syringeWater LevelTimeDate 1 1/06/98ReferenceSurface Conditions: grass

Location:Bush Valley LandfillBoring No.

EASB-1 1

Sheet 1 of 2Drilling

Start Finish800 1000

11/06/98 11/06/98

0-1 Moderate brown, dry, SILT, little gravel

1-1.5 crushed rock fragments1 .5-4 Moderate brown, dry, sandy SILT, little gravel, trace clay

4-8 Moderate to light brown, moist, silty CLAY, little sand lensesfirm

8-9 same as 4-8

9-11 Light brownish red, moist, m/f SAND, trace silt

11-12 Reddish and dark brown, dry, silty CLAY, firm

12-13 same as 11-12

13-16 Moderate reddish-brown, moist, SILT and fine SAND, traceQ ravel

16-19 same as 13-16

19-20 Light brown, moist to wet, c/f SAND, some gravel, trace silt

Logged by. Steve Welzanl____________ Date: 11/06/98

Drilling Contractor Target Environmental_________ Driller. Jeff Green

RR000253

IBaHL..k'1BnCoordinates:Surface Elevation:Casing Above SurtaaReference Elevation:Reference Descriptioi

SampleType

4 ft PETGliner

4WPETGliner

4 ft PETGliner

4 ft PETGliner -•-

RecvrdIn.

48A)

48/48

48/24

48/48

l> EA Engineering,^ Science, and| Technology, Inc.

LOG OF SOIL BORING

a:

i:

SampleDepth

20-24 .

24-28

26-32

32-36

PID(ppm)

1.5

0.8

0.2

1.8

1.2

DepthIn

Feet20

22

24

26

26

30

32

34

36

38

40

USCSLog

CL

CL

ML

SM

Job. No. Client: Harford County61 131.01 Department of Public WorksDrilling Method: Pickup truck mounted Geoprobe

Sampling Method: 4 ft PETG liner, 2 in IDsoH oas • collected usina 1/4 In polyethylene tubtna throughrods and attached to vacuum pump. Extracted with 60cc svrinoeWater Lev.TimeDateReferenceSurface Conditions: see sheet 1 of 1

Location:Bush V / LBoring No. -EASB-1 1

Sheet 2 ofDrillinp '

Start Fine600

11/06/98 11/r

20-24- No recovery; pushed stone

'n

24-26.5- Brownish-red, moist CLAY, trace silt, firm

rt

26.5-26- Gravtsh-brown. motet. CLAY, trace slrt. firm »

t.28-29- Same as 26.5-28

29-30- Light brown, moist, fine sandy SILT, trace dayHner broke O 30. In 2 pieces

*

t30-32- Same as 29-30; increase in fine sand *S

132-36- Light brownish-gray, wet, fine to medium SAND j

.

*

rBOH e 36ft i

*"

—— LLogged by: Steve Weteant ______ Date: Nov. 6.1998

Drwmg Contractor Target Environment*_______ Driller Jeff Green

Was a temporary groundwater sampHng point Installed? No____ H yes, give construction details

^ • •••' flR00025l»

Earth Borin9Page 1 of 2

PROJECT: Bush Valley Landfill BORING No: EASB-1Harford County, Maryland

PROJECT No. : 98-162

ELEV DATE START: 9/1/98 FINISH: 9/1/98HAMMER: 140 Lbs HAMMER DROP; 30 In. SPOON O.D. : 2 In. FOREMAN : D. FinchamBORING METHOD : HSA ROCK CORE DIA :———— , — _ ——————————————————— I ——————————————————————————————————————————ELEV DESCRIPTION DEPTH

Brown-Gray moist Silty CLAY,trace fine Sand

iiii

• ' 10.0

SCALE

0"™

~

5^

_

10 "

; Brown moist Silty fine-mediumSAND, some gray silty clay

12.01

Brown dry Silty fine-coarseSAND, some Rock Fragments

I1

I |

1

; 20.01 ;

15_I

.

—20

No. Blows / 6 in

S-1 4 - 6 - 6 - 8

S-2 5 - 8 - 8-10

S-3

S-4

S-5

S-6

4 - 7 - 7 - 8

PUSHED TUBE

3 - 4 - 4 - 5

3 - 2 - 3 - 7

S-7 7 - 7-10-13

S-8

S-9

S-1C

23 - 20 - 24 - 36

24 - 30 - 39 - 25

19-30 -50/5"

TYPE REC NOTES

,4- Stonei

DS 16"

OS

DS

PT

DS

24' '

24" •

24"

i No Groundwater24" t Encounteredi

DS 24"

DS

DS

DS

DS

15" !

i —— i i12- !

10"

0

LEGEND GROUNDWATERns DRIVEN SPOON WATER ON RODS ; NONE .,,..."ST SHWTUK AT COMPLETION : Dry CAVED^ISJ fe«t

IPS PISTON SAMPLE AT Hours „..-.-'RC ROCK CORE WATER : CAVED:HSA HOLLOW STEM AUGER

IDC DRIVEN CASINGMO MUDDRILUN3-C-, ARQ00255

/ _ /iIsE_j f"£Z7 EJ Earthpci* bigg's Engineera aVJaVB B 6 ScienceSn, Boring Log

Page 2 of 2

i PROJECT: Bush Valley Landfill BORING No • EASB-1: Harford County, Maryland

— i! ELEV :

PROJECT No. : 98-162

DATE START: 9/1/98 FINISH: 9/1/98HAMMER: 140 Lbs HAMMER DROP : 30 In. SPOON O~D.':~2 In FOREMAN- n Pinrh-! BORING METHOD: HSA ROCK CORE DIA: ruHbMAN . D. Finch;

; ELEV. i! I

I

'

I

I

I

j

I

• i: ;

j

I-ii

ii-

iii

ii it i

DESCRIPTION

Brown moist Clayeyfine-coarse SAND, somerock fragments

Red-Gray moist Sitty CLAY

bottom 01 boring ai 24.u leet

DEPTr• SCALE NO. Blows / 6 ini-- rzg —— ——————

TYPE

J iJS-1

1 ——REC

10 - 8- 11 - 131 DS 16"22.0 1 • ' i "1 J ———

24.0TS-1S

25 —

i —i ——1 ———

i ——] __

5 - 7 - 9-16

li

Ii

! 30-3 i

DS 20'

; ~] ! :

NOTES

——————— —— #

iii

Us«d 1 Drum forcuttings and 6 -baps of bentonchps for backfL

,i 1 i i

!

1i

1

H] • i— 1 - i i j,

ii

i

— — —

35 —

40 — i ii ii

!i

1

ii

i-

*•'

LEGEND GROUND WATER flDS DRIVEN SPOON . .WATER ON RODS : NONE U.ST *HBJfllJK .;,.' ': AT COMPLETION : Dry CAVED: 15.7 totPS WSTbriSAftptE * AT Hours *RC noCKCORE_ WATER: CAVED:HSA HOLLOW STBd AUGERDC DRIVEN CASINGMD . MUD DRILLING

~;- :Ta AR000256

f Engineering BONnO LOQ& Sciences. Inc. » ^

Page 1 of 2

PROJECT: Bush Valley Landfill BORING No.: EASB-1A -Harford County, Maryland

PROJECT No. ; 98-162

ELEV DATE START: 9/2/98 FINISH: 9/2/98HAMMER: 140 Lbs HAMMER DROP: 30 In. SPOON O.D.: 2 In. FOREMAN : D. FinchamBORING METHOD : HSA ROCK CORE DIA :

ELEV DESCRIPTION

Brown moist fine- mediumSAND and Clayey SILT

Brown moist Silty CLAY,trace Sand

Brown moist Silty CLAYi

i;1i

—————————————————Brown-Gray moist ClayeySILT, little sand and TOOKfragments

ji

i

|1

ji

Gray-Brown dry fine-coarseSAND and rock fragments

:

DEPTH SCALE

i ° ——\

3.0

8.0

—-=-

: 10 "_

12.0 |

16.0

15 ."

1_

20

No.

„-S-2

S-3

Blows / 6 in

i

4- 7- 7- 9

PUSHED TUBE

5 - 7 - 8-10

TYPE

i

DS

PT

DS

REC

ii

24"

24"

24"

NOTES

8' StoneIiii

i: < l

S-4 1 3 - 5 - 5 - 5 1 DS ; 24' i1 ; ; l——— i —————————————— , ——— | ——— i ;

S-5

S-6

S-7

S-8

2 - 4 - 6 - 6

3 - 5 - 6-16

14 - 23 - 18 - 12

10 - 17 - 19 - 19

DS

DS

DS

DS

24-

22"

18'

16"

LEGEND GROUND WATEROS DRIVEN SPOON WATER ON RODS: NONEST SHELBYTUBE AT COMPLETION: Dry CAVED: 17.6 feet

[- PS PISTON SAMPLE AT HoursRC ROCK CORE WATER : CAVED;HSA HOLLOW STEM AUGER

I DC DRIVEN CASINO

MD "—*.' HR000257

C3 Earth1 Engineering6 Sciences. Inc.

Page 2 of 2

PROJECT: Bush Valley Landfill BORING No - EASB-1 AHarford County, Maryland

PROJECT No. : 98-162

,ELEV: DATE START: 9/2/96 FINISH: 9/2/98i HAMMER: 140 Lbs HAMMER DROP: 30 In. SPOON O.D.: 2 In FOREMAN- n Fi! BORING METHOD: HSA ROCK CORE DIA: ruHbMAN. D. Fi

ELEV.I

DESCRIPTION

Gray-Brown dry fine-coarse! SAND and rock fragments

Gray moist fine-coarseSAND

bonom OT boring ai 24.u ieet

-

DEPTH

j ————

22.0

24.0

I SCALEt NO. i Blows/ 6 in1 i20 i

Js-9 10 - 20 - 21 - 19

Js-io1

25 — I

30 —

9 - 10 - 10 - 6

ii !

1 ———TYPE REC

OR

DS

1fi"

18"

i[

!! NOTES t

'- ——— ———————————— $

Encountered „Groundwater®24*

Used 1 drum f<auger cu** gT7 bags 1 3 »chips for Ddclc

B

I

9

i

35

40

LEGEND i .;\ . GROUNDWATERDS OWV6N8POON •'/ : WATER ON RODS: NONEST SHELBYTUBE AT COMPLETION: Dry CAVED' 176 feetPS P1STONSAMPLE AT Hours ^«vcu. W.O TOOlRC HOCK CORE WATER :HSA HOLLOW STEM AUGERDC DROfEpCASING „MD MOD DRILLING ' >,

£2 EarthEngineerim;& Sciences. Inc.

Page 1 of 2

PROJECT : Bush Valley Landfill BORING No.: EASB-2Harford County, Maryland

PROJECT No. : 98-162 j

ELEV DATE START: 9/1/98 FINISH: 9/1/98HAMMER: 140 Lbs HAMMER DROP : 30 In. SPOON O.D. : 2 In. FOREMAN : D. FinchamBORING METHOD : HSA ROCK CORE DIA :

ELEvl DESCRIPTION i DEPTH

Brown moist Clayey SILT ;

2.0

; Brown moist Silty CLAY,i ! trace Sand

! 4.0; j I

Brown moist clayey SILT, j! trace Sand i 6.0

iGray moist Silty CLAY

ii

i

I

SCALE

0_—

5_I

_10

No.

S-1

S-2

S-3

S-4

S-5

Blows / 6 in !•

5 - 9 - 9 - 9

8 - 1 1 - 1 3 - 1 6

5 - 7 - 7 - 7

PUSHED TUBE

4 - 6 - 8 - 9

TYPE

DS

DS

DS

PT

DS

i

REC !

18"

24"

24"

25"

24"

|

NOTES

ii

_S-6 ! 3 - 5 - 6- 81 DS 124"12.0

Gray moist silty fine-medium |SAND, trace Clay ! 14.0Gray wet silty fine-mediumSAND

! Brown wet fine-coarse SAND t18.0

! Brown-Gray wet fine-coarse Ii SAND, some rock fragments ': and black peat

15

S-7

S-8

20

3 - 5 - 6 - 6

4 _ 6 - 4 - 5

DS

DS

S-g 4- 4- 6- 6 DS|24

S-ld 2- 4-13-17 DS 24'

1 Encountered24" 1 Groundwater

13'

24"

LEGEND GROUND WATERDS DRIVEN SPOON WATER ON RODS : NONE

1 S SS5KS5* ATCT*Tlo ours17'6teet CAVED: 18-°RC ROCK CORE WATER : CAVED:HSA HOLLOW STEM AUGER

I DC DRIVEN CASINGI MO MUD DRILLING - ft ROD 0259

_ Earth1 Engineering BONnO LOO• B Sciences. Inc

Page 2 of 2

PROJECT : Bush Valley Landfill BORING No.: EASB-2' . Harford County, Maryland

PROJECT No. : 98-162

JELEV: DATE START: 9/1/98 FINISH: 9/1/98! HAMMER: 140 Lbs HAMMER DROP: 30 In. SPOON O.D.: 2 In. FOREMAN- D Fincrul BORING METHOD : HSA ROCK CORE DIA :

ELEV.

;

iiIii

DESCRIPTION

Tan-Gray dry fine-coarseSAND and rock fragments

-

bottom OT boring at Z4.u leei

iiii

PflPNO

DEPTHi

24.0

,i

ji

i

SCALE

20

__^_

25 ~

——

30 ~"—

35 —

40 ~~

NO.

S-11

S-12

4

————————————————————————

Blows / 6 in

6-15-16-22

5 - 8 - 1 1 - 1 1

GROUND WATFR

TYPE

DS

DS

REC

20"

15"

NOTESn

*

Used 1 drum f*auger cuttings8 bags bentorii.chips for backfi;

K

V

*

»

L

FLf

i-i

——— nu••SRC ROCK CORE WATER : CAVEDHSA HOLLOW STEM AUGER v,«vcwDC DRIVEN CA81N3 - ,MD ^OooRiLUNa;/'. flROO.0260

EarthEngineering& Sciences. Inc.

Page 1 of 2

! PROJECT : Bush Valley Landfill BORING No.: EASB-3' . Harford County, Maryland

PROJECT No. : 98-162

'ELEV DATE START: 9/2 8 FINISH: 9/2/93: HAMMER: 140 Lbs HAMMER DROP : 30 In. SPOON O.D. : 2 In. FOREMAN : D Fincham: BORING METHOD: HSA ROCK CORE DIA:ii ——— —————————————————JELEV DESCRIPTIONi

iBrown moist sitty CLAY

i

i!Gray moist Clayey SILT,trace fine Sandi!. Gray moist fine Sandy SILT

• Gray wet Clayey fine SANDi

i Gray moist silty fine-mediumSAND

i Gray dry fine-coarse SAND!t

|ii

DEPTH

8.0

10.0

12.0

14.0

16.0

20.0

SCALE No.

~o —

!:•

±5____I

________

10 ~

S-2

S-3

S-4

S-5

S-6

8-7Jr|S-8-I S~9

" S-1G20 ~ ~— — — __ _ _

Blows / 6 in

,1 - 7-11-10

7 - 1 1 - 1 2 - 1 3

6 - 7-10-10

PUSHED TUBE

4 - 8 - 9 - 9

4 - 6-10-12

5 - 5 - 5 - 6

2 - 3 - 3 - 5

4 - 9-12-13

6 - 7-11-19

TYPE

DS

DS

DS

PT

DS

DS

DS

DS

DS

DS

REC

16"

20"

24'

24"

20"

24"

24"

24"

18"

15"

NOTES

LEGEND GROUND WATERns DRIVEN SPOON WATER ON RODS: NONE „„_ ^ 0 ,S? SHELBYTUBE AT COMPLETION: Dry CAVED: 20.8 feetPS PISTON SAMPLE AT Hours CAVED'RC ROCK CORE WATER : WWtU.HSA HOLLOW STEM AUGERDC DRIVEN CASINGMD MUOOnilJNG - AR00026I

1LJ EarthnginSciences. Inc.

Page 2 of 2

Boring Loo

PROJECT : Bush Valley Landfill BORING No.: EASB-3Harford County, Maryland

PROJECT No. : 98-162

ELEV: DATE START: 9/2/98 FINISH: 9/2/98 fHAMMER: 140 Lbs HAMMER DROP: 30 In. SPOON O.D.: 2 In. FOREMAN: D Find,BORING METHOD : HSA ROCK CORE DIA:

!ELEV.

!

IiiIi

i

!

,_

i|

DESCRIPTION

Tan dry fine-coarse SAND,some Rock Fragments

Brown wet fine-coarseSAND and black clayey Sift(peat)

bottom or boring ai zo.u leet

DEPTH

22.0

26.0

SCALE

20

-—

25 ~

30 ~~

35 ""

40 ~"

NO.

S-11

S-12

S-13

Blows / 6 in

14 - 25 - 27 - 33

25 - 26 - 21 - 13

5 - 9 - 5 - 5

TYPE

DS

DS

DS

r ——REC

15"

14"

24"

NOTESe•a.

Encountered -Groundwater@23'

-Used 1 drum ftauger cu**!-gi6 bags t achips for Dackt

^*9

'i.

r

i

rfLEGEND GROUNDWATER *~

DS ORtVENBPOON ; WATER ON RODS: NONEST SHELBYTUBE AT COMPLETION: Dry CAVED: 20.6 feat nPS PISTON SAMPLE AT HoursRC ROCK CORE WATER : CAVED:HSA HOLLOW STEM AUGERDC • DRIVEN CASINOMO

LgL_l\ ' [ V -•/ Q tarcn(5B.g hS&Qfl Engineerir••TAW • 6 Sciences

•s Boring Log.Inc. » »

Page 1 of 1

PROJECT: Bush Valley Landfill BORING No.: EASB^G - jHarford County, Maryland

PROJECT No. : 98-162

ELEV DATE START: 9/2/98 FINISH: 9/2/98HAMMER: 140 Lbs HAMMER DROP : 30 In. SPOON O.D. : 2 In. FOREMAN : D. FinchamBORING METHOD : HSA ROCK CORE DIA :

ELEV'!

i

iIIii

;

jiii

iiiii

DESCRIPTION

Tan dry Silty fine- mediumSAND and rock fragments

Brown wet fine-coarse SAND

Brown wet Silty CLAY

i Brown wet fine-coarse SAND,; trace graveli

i

i •—•«••-—•••

DEPTH

8.0

12.0

14.0

20.0

SCALE No.

0

I S-1

I S-2

5^

1

10 ~

15 _I

S-3

S-4

S-5

S-6

S-7

S-8

-I S-9

" S-1C20 ~

• tsonom OT boring at zu.o leet i

Blows / 6 in

7-16-31-47

12 - 39 -34-50/4"

9 - 29 -48 - 50/8"

20-13-16-10

6 - 4 - 7 - 9

PUSHED TUBE

3 - 2 - 3 - 4

2 - 1 - 2 - 3i

7 _ e - 8 - 6

4 - 6 - 5 - 5

TYPE

DS

DS

DS

DS

DS

PT

DS

DS

DS

DSi

REC

18" i

12"

14"

14"

20"

0.0

24"

116"

22"

14"

NOTES

Ii

EncounteredGroundwater@10'

iii|

Used 1 drum forauger cuttings anc4 bags bentonitechips for backfill

.FGEND GROUNDWATER

S SraSMSS! Wt-. CAVED: n.ST SntLdT IUDC ... HoursPS PISTON SAMPLE *" . nour CAVED:nc ROCKCORE WAien .HSA HOLLOW STEM AUGERDC DRIVENCASINGMD MUD DRILLING

RO - B?>vT:-.T

M . [MI— /ca^m»:•:; ir;:l

Engineering* Sciences. Inc.

3401 CARLINS PARK DRIVEBALTIMORE, MARYLAND 21215(410)466-1400

/TO- EA Engineering "NAnrmFss- 15 Loveton CircleCITY- Sparks, Maryland 21152ATTENTION: Mr. Pete^

Pellisier

LETTER OF TRANSMITTALTDATE: 9-22-98 .jnRNo 98-162 ^\

RF- Bush Vallev Landfill

V JPLEASE BE ADVISED:

fWF ARE SENDING YOU fc ATTACHED D UNDER SEPARATE COVER VIA Ma 1 1 IMF Fm i nwiwp.- \

D PRINTS D PLANS D SHOP DRAWINGS

£ DAILY REPORTS fc TEST RESULTS D PHOTOGRAPHS

V/""

1

2

3

4

5\

NO

5

13

44

DATE COPIES

11

11

D SAMPLES D SPECIFICATIONS

Q COPY OF LETTER DCHANGE ORDER

___________________________________ X

DESCRIPTION ^

Borinq Loqs - (EASB-1. 1A. 2. 3. 6)

Grain Size Distributioin Test Report / Sieve & Hydro

Permeability Tests with Natural Moisture & DensityGrain Size Distribution Test Report / Sieve with Limits

J

THESE ARE BEING TRANSMITTED AS INDICATED BELOW:

D ASREQUE

D FOR APPRC

O FOR YOUR

D FOR YOUR

D FOR BID(S

COMMENTS:

v.

5TED

VAL

USE

COMMENTS

D1IF

C

c

c

c

} APPROVED AS IS

] APPROVED WITH CORRECTIONS

] RETURNED WITH CORRECTIONS

RESUBMIT COPIES FOR APPROVAL

^

Q SUBMIT COPIES FOR DISTRIBUTION

D RETURN CORRECTED

D RETURNED AFTER LOAN TO US

..*_•J

SFP 54 1998

——— EA L toina. fcbrc "n(i "Mwtoffl

_ ^\\ 1 •wbsT&7*—lh AJiA/frL

Paul A. D'Amato "P)E. - Vice Presided

Project # 98-162*Ks*t**tme LaW 96162-1

MEASUREMENT OF HYDRAULIC CONDUCTIVITY OFSATURATED POROUS MATERIALS USING A FLEXIBLE WALL

PERMEAMETER (ASTM D so&4)Project: Bush Valley Landfill

ample Type:Sample ID:

Test SampleTest Sam

Cross Sect!Area of St

CellPLower Cap PrUpper CapP

Date09-Sep-9810-Sep-9810-Sep-96H-Sep-9811-Sep-9814-Seo-9814-Sep-9815-Sep-98

Brpwn Siltv CLAY .trace f-m Sand.GravelEASB-1. Samole-4. Deoth : 6.0'-8.0*

Length = L «pie Dia. = D «=on Area • A *andpipe * a *ressure « P =essure « Pi •ressure » P.*

Time106565010595419875151047517

5.969 cm7.112 cm39.73cm20.98 cm25.0 psi3.0 psi2.0 psi

Seconds h0 5

61500 1486040 14141360 1£168120 U399000 2C430920 2C465520 21

Tested By:Test Liquid:Test Date:

Wet Weight Before Test:Wet Weight After Test:Dry Weight After Test:

Dry Density:Compaction:% Moisture :

Gradient:

j h..b2 44.2 Ratio.7 39.0 1.83%.9 38.5 0.40%.9 37.5 1.00%.2 37.0 0.60%1.2 32.9 0.98%.7 32.4 1.00%.5 31.6 1.00%

k vs T1 01EXK -

B10E-06I 8 10E-06| | 710E-061 610E-06f 5 10E-06g 4 10E-06t 3 10E-06

2 10E-06

1 10E-06

o> g

LS 2 XTnw (LOG «f Secondt)

C 2M •/>

Ranjan PatelDistilled De-Aired Water

9-Sep-98591 .5 gms596.3 gms492 gms129.3 pcfNA %20.2 %0.17 psi/Cm

k(cm/sec)3.45E-074.44E-085.71E-084.80E-085.92E-085.57E-085.30E-08

*« (a xL)t\A K TlxLn

Avg(Last4)1.236E-075.219E-OB5.502E-085.3d7E-08

*,.,.-*.;*ift» . pi • tfc - pj

where:A - hydraulic conductivity, cm/*,« « c/t area of reaervoir of permeate, cm'L * length of apecimum, cmA - craaa-aectional area of apecimum, cm7T - elapted time between det. ol h, & h,, secA! a upper head burette reading at tima T,, cc/)j » upper head burette reading at time Ty, ccht - lower head burette reading at time T,. cc/ik - lower head burette reading at time T,, ccp, « p, x 70.55, cmp, - P. x 70.55. cm

AR00026S

-

e

e"

100

90

80

70o:UJ

H 60u.z 50uuUJ 40a

30

20

10

02C

Test1

GRAIN SIZE DISTRIBUTION TEST REPORTc

c c e• CM • — — —

C C C -v C O O— — r- — » (M « O O O O •* O

«•»•», • ••*••^""*"*"•

)0 100 10.0 1.0 0.1 0.01GRAIN SIZE - mm

% +3"0 0

LL. 31•*.

% GRAVEL0.2

% SAND6.3

% SILT

t

.

fy

r

^

0

% CLASi93.5

, . , _ , —— . ———— t

PI13

DBS °60 °50 °30, , , , , . *

MATERIAL DESCRIPTION•Brown S Ity CLAY.troce f -m Sond. Grave

Project No. : 98-162Project: Bush Vo 1 ey Londfil• Loco t ion: EAS8-1 . Somp I e-4 . Depth: 6. '-8.0'

Dote: 09-21-98GRAIN SIZE DISTRIBUTION TEST REPORT

; EARTH ENGINEERING * SCIENCES. INC.

DIO

uscsCL

Remark

Moi stu

Labora

F gure

cc 1

IiAASHTO

A- 6 t

T5 :

re Content :

lory Number :

No.

20 2X

n

Project* 98-162Lab* EA162-1A

MEASUREMENT OF HYDRAULIC CONDUCTIVITY OFSATURATED POROUS MATERIALS USING A FLEXIBLE WALL

PERMEAMETER <ASTM D 5084)Project: Bush Valley Landfill

ample Type: Brown Silty CLAY.Iittle fine Sand Tested By: Ranjan PatelSample ID: EASB-1A. Sample-2. Depth : S.O'-B.O' Test Liquid: Distilled De-Aired Water

Test Date: B-Sep-98Test Sample Length « L «= 7.112cm Wet Weight Before Test: 473.1 gms

Test Sample Dia. = D •= 7.112 cm Wet Weight After Test: 478.0 gmsCross Section Area = A • 39.73 cm2 Dry Weight After Test: 388.15 gmsArea of Stindptpe • a • 0.98 cm? Dry Density: 85.7 per*

Cell Pressure«P« 5.0 psi Compaction: NA %Lower Cap Pressure - Pi = 3.0 psi % Moisture: 21.9 %Upper CvpPressure - P.* 2.0 ps/ Gradient: 0.14 psi/cm

Date08-Sep-9809-Sep-9810-Sep-9810-Sep-9811-Sep-9B14-Sep-9814-Sep-98l5-Sep-98

Time104565110575429855151040515

Seconds0

627601 73520142620255600486600518100573000

hu21.122.022.423.423.627.528.028.7

n.*19.921.020.520.019.416.215.715.0

Ratio-0.82%0.80%2.00%0.33%1.22%1.00%1.00%

k(cm/sec)8.05E-092.06E-081.25E-071.86E-OB8.59E-089.48E-087.77E-08

Avg (Last 4)4.317E-OB6.265E-088.119E-08 .6.927E-08

* VS T *• - I* x L ViA K T} x Ln1 DIE-OSBMMil——————————— __..... ————————————————————, ^^

B. IDE-OS * - hydraulic conductivity, cm/a,710E-06

__ * « c/a area of reaervoir of permeate, cm*610E-06 —————————————————- - - - ——

a 310E-06210E-061 10E-06100E-07

f 510E-06S ..__-. _____________________________________ A - cro«K-s«ctional ir«a of «p«cimum, cm7c « "OE-Oo ————"—"—^—•——"— —————^^————————————————.—

Tintt (LOO H S«condt) . __ __p. - P. x 70.55, cm

L » length of apecimum. cm

T * elapsed time between del. of h, & h,, sec/), - upper head burette reading at time T,, ccAj - upper head burette reading at time T?, cch, - lower head burette reading at time T,, cc/)fc - lower head burette reading at time T,. ccp, - P, x 70.55, cm

AR000267

«;

100

90

80

70o:UJ

H 60U.

550UJUS 40CL

30

20

10

02C

Test19

GRAIN SIZEc~ -- c .5

e c e ' x. c 7 "" '~— «- - * <N »e n N <!••*) *- n

O

;

DISTRIBUTION TEST REPORTo oO O O O f O

+ — (N •» U> — fN^ f » . « • . * . «• «*.*S

1

10O 10. 0 1.0 0.1 0.01GRAIN SIZE - mm

5! +3"0 0

LL

31

% GRAVEL0.0

% SAND1 1 .0

% SILT

^

f

*

k

r

i

il

K

05?(«

% CL/*89.0

is—— — — ————————————— - ———————————— . ———————— - ——— ^

PI13

DBS t>60 °SO °30•

1 D15

MATERIAL DESCRIPTIONBrown S Ity CLAY. l i t t l e f i n e Sand

Project No. : 98-162Project: Bush Volley L a n d f i l l• Location: EASB-1A Sample-2. Depth; 6.0'-8.0'

Dote: 09-21-96GRAIN SIZE DISTRIBUTION TEST REPORT

EARTH ENGINEERING ft SCIENCES . INC .

DID

USCS

CL

Cc ir— t

AASHTC

A-6 t_

s

Remarks: ^--

Moisture Content: 21. Wvi :

Laboratory Number : kJ

flFfgyre NO . . ?|

Project* 98-162Lab* 98162-3

MEASUREMENT OF HYDRAULIC CONDUCTIVITY OFSATURATED POROUS MATERIALS USING A FLEXIBLE WALL

PERMEAMETER (ASTM D sos4)Project: Bush Valley Landfill

ample TypeSample ID

: Brown Siltv CLAY.trace f-m Sand: EASB-2, Sample-4, Depth: 6.0'-8.0'

Test Sample Length * L *Test Sample Dla. * D «

Cross Section Area e A =Area of Standplpe = a =

Cell Pressure * P «Lower Cap Pressure « Pi =Upper CapPressure = P,=

Date09-Sep-9810-Sep-9810-Scp-9B11-Sep-98H-Sep-9814-Sep-9814-Sep-98l5-Sep-98

i

1 01E-05 |-8 10E-06 -

8 10E-06 -

| 710E-06 -& C IDE -06 -

f 5 10E-06 -

1 410E-06 -t& 3 10E-06 • -

1 10E-06 - -

ffW

Time106565010585439865161046516

Tested By:Test Liquid:Test Date:

6.1214 cm Wet Weight Before Test:7,112 cm Wet Weight After Test:39.73 cm* Dry Weight After Test:0.98 cm* Dry Density:5.0 psi Compaction:3.0 psi % Moisture :2.0 psi Gradient:

Seconds fiu h...0 19.5 41.8 Ratio

61500 27.2 44.8 -2.57%85980 27.4 44.6 1.00%141480 28.2 44.1 1.60%168060 28.5 43.7 0.75%399060 30.8 41.3 0.96%430860 31.2 40.9 1.00%485460 31.6 40.3 1.00%

/cvs 7

"

S £ R 8 8 8« M *f m MI m

Tirrw (LOG * Seconds)

Ranjan PatelDistilled De-Aired Water

9-Sep-98511.0 gms515.8 gms430.65 9ms110.5 pcfNA %

18.6 %0.16 pswtm

k(em/sec)1.2BE-072.81E-064.06E-084.62E-083.68E-084.71 E-084.17E-08

* - la x L )/\A x n x Ln

Avg (Last 4)6.059E-083.792E-064.268E-084.295E-08

Wi.Pi-A.-pJto* .PI-I.-P.I

where:ft •• hydraulic conductivity, cm/a,j - c/a araa of reaarvotr of permeate, cm2L « length of specimum, cmA m crosa-cectional araa of cpacimum. cm7T - elapaed time between det. of h, & h,, sec/>i - upper head burette reading at time T,, cc/>j - upper head burette reading at time T,, ccht - lower head burette reading at time T,. cc/>b - lower head burette reading at time T7. ccPi • P, x 70.55, cmp. - P, x 70.55, cm

frRGG0269

e

e-

100

90

80

70uH 60L.

z 50LJ(J

5 4Oa.

30

20

10

02C

Test18

GRAIN SIZE DISTRIBUTION TEST REPORTc

c c cc c c x ' c ~ oo

• - . - - » PW « O O OO •» O

)0

k ! N«i•*— ,,i

• »- •• i -

:

?

'-i.

9

1OO 10. 0 1.O 0.1 0.01 UGRAIN SIZE - mm 8

f% +3"0.0

LL

31

% GRAVEL0.0

% SAND4.5

PI1 1

D85 Deo DSO °30

% SILT % cJ95.5

- — ' 1i

MATERIAL DESCRIPTIONBrown S t ty CLAY. trace fine to medium Sand

Project No. : 98-162Project: Bush Va ey Landfi• Loca t i on : EASB-2 . Samp 1 e-4 . Dep t h : 6 . 0 ' -8 . 0 '

Dote: 09-21-98GRAIN SIZE DISTRIBUTION TEST REPORT

EARTH ENGINEERING Jc SCIENCES. INC.

D10

USCS

CL

cc Ir&

AASHTO

A-6

Remarks :

Moisture Content:

Laboratory Number :

F i gure No .

k.

18 6:rL

r;

Project # 98-162Lab# 98162-3

MEASUREMENT OF HYDRAULIC CONDUCTIVITY OFSATURATED POROUS MATERIALS USING A FLEXIBLE WALL

PERMEAMETER (ASTM D 5084)Project: Bush Valley Landfill

Sample Type: Brown Silty CLAY,trace f-m Sand Tested By: Ranjan PatelSample ID: EASB-3. Sample-4. Depth : 6.0'-8.0' Test Liquid: Distilled De-Aired Water

Test Date: 15-Sep-98

Test Sample Length = L = 5.969 cm Wet Weight Before Test: 490.1 gmsTest Sample Dia. * D = 7.112 cm Wet Weight After Test: 494.1 gms

Cross Section Area « A = 39.73 cm3 Dry Weight After Test: 405.6 gmsArea of Standpipe = a = 0.98 cm? Dry Density: 106.6 pcf

Cell Pressure«P = 5.0 psi Compaction: NA %ower Cap Pressure = P< = 3.0 ps; % Moisture: 20.8 %Upper CapPressure * P.* 2.0 psi Gradient: 0.17 psitm

Date15-Sep-9816-Sep-9816-Sep-9816-Sep-gel7-Sep-9817-Sep-9817-Sep-9818-Sep-98

Time107051771111009867601005518

Seconds0

532206486088200167760154200168900226080

h,,3.89.210.312.216.016.918.019.5

ha.b43.338.737.836.032.531.630.529.0

Ratio1.17%1.22%1.06%1.09%1.00%1.00%1.00%

k(cm/see)2.64E-072.55E-072.43E-071.49E-072.27E-072.62E-079.47E-08

Avg (Last 4)2.276E-072.1856*072.201 E-071.B31E-07

k vsT1.01E-091ioe-06 ————————————————=———-——- where:

k » hydraulic conductivity, emit.

i

7 10E-06610E-06 ______..^______- -_-. * - c/s area of reservoir of permeate, cm5 IDE-08410E-06

t 3 ioE-06 1 i -J- _ e|apied time between der. of h, & h^, tec^TOE-oe L ._ _,._ _,. ._________ _______ /t} « upper heed burette reading at time T,, cc1 IOe-06 —————————————————————————————————————————100E-07

Time (LOG M Stconfli)

I* x L }/(A x H x Ln

L - length of epecimum, cmA - crose-eectional araa of ipecimum. cm'

ft, m upper head burette reading at time T2, ccht - lower heed burette reading et time T,, cc/ib • lower head burette reeding at time T2, ccp, - P, x 70.55, cmp. - P, x 7O.55. cm

AR00027I

-

100

90

80

70oruH 60U

550uu£ 40a

30

20

10

02C

Test17

GRAIN SIZEc

c c cc c c Cl e J - '-- — _ . - * « « >,0 m n J . ^ S ' i ' r t

)O 100

% +3"0 0

LL32

C).

*

r•

S"

mm

FRIo•t•MMM 1

B

3N*1 «

L

5

rc•^

TION TEST

s I I«. *i « ^*•* * ^ L :

REI

• -

<3Fnr

*

'

t

r

*

^

*

a

10. 0 1.0 0.1 0.01 0GRAIN SIZE - mm f

% GRAVEL0.0

PI10

% SAND6.9

% SILT % CLA-i93. 1 v

i

D85 D60 °50 D301

Dl5

MATERIAL DESCRIPTION•Brown S Ity CLAY. trace fine to medium Sand

Project No. : 98-162Project: Bush Vo 1 ey Londfi• Location: EASB-3, Somple-4. Depth : 6.0'-8.0'

Dote: 09-21-98GRAIN SIZE DISTRIBUTION TEST REPORT

; rCARTM cENGINCERXNC * SCIENCES. INC.

DIO

USCSCL

cc i

AASHTOA-4 fc

Remorks :

Moisture Content: 20 . 8|1

Loborotory Number ; *•

HF.QIJT^ NO. jv

Appendix A2

Monitoring Well Boring Logs(EA10-13)

AR000273

EftCoordinates:Surface ElevatCasing AboveReference ElevReference Des

SampleType

SS

SS

SS

SS

SS

SS

SS

SS

SS

InchesDrvn/lnRecvrd

24/19

24/21

24/24

24/18

24/18

24/20

24/18

24/20

24/24

EAan

on:3ur:ation:c:

DpthCsg.

0

2

4

6

8

10

12

14

16

Engineering, Science,d Technology, Inc.

LOG OF SOIL BORING

CGI(% LEL)

0

0

0

0

0

0

0

0

0

PID(ppm)

0

0

0

0

0

0

0

0

0

Blowsper6 in.

1113344422354111492443134689981311121212141415

Depthin

Feet

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

USCSLog

ML

SM

SM

CL

SM

SM

SM

GM

Job. No. Client: Location:61 13101/2007 Harford County DPW Bush Valley LFDrilling Method: Hollow Stem Auqer Boring No

EA10Sampling Method: StandardPenetration Test (SPT); 140 Ib hammer Sheet 1 of 2freely falling 30 in; 2 in OD split-spoon DrillingWater Leve 10'4" 82* StartTime 1430 1535 1210Date 04/13/99 04/13/99 04/13/99Reference grade grade

Finish1530

04/13/99

Surface Conditions: Dirt covered area between Bush Roadand Bynum Run. Sunny and Breezy.

Brown, moist clayey SILT and m/f SAND, trace orqanics

Brown, moist m/f SAND and clayey SILT

Light gray and brown, moist c/f SAND, some clayey SILT

Gray, moist, CLAY and SILT, little fine sand

Light brown, very moist, c/f SAND, some clayey silt

Dark gray, very moist, c/f SAND and clayey SILT, tracefine gravel

Dark gray, wet, c/f SAND, some clayey silt, trace fine gravel.lense of clayey silt at approx. 9 ft (added 5 gal of water dueto running sand)

Gray, wet, c/f GRAVEL and c/f SAND, some clayey silt. .

Green and white. SILT and CLAY, some fine sand anddecomposed rock

Green and white SILT and CLAY, some fine sand anddecomposed rock

BOH Q 18 ft; boring terminated1 330 - began reaming borehole with 1 2 in OD HSAAdded -10 oal of water while drilling with 12 in OD HSA

" " >

.oggedby: Courtney Lowe____________ Date: 04/13/99_____

Drilling Contractor: E2S1___________________ Driller: Dan Rncham/Sam Boyd

:: r3RR00027«t

Coordinates;Surface ElevatCasing AboveReference ElevReference Des

SampleType

InchesDrvn/lnRecvrd

-

--

EA Engineering, Science,and Technology, Inc.

LOG OF SOIL BORING

on:Bur:ation:c:

UpthCsg.

CGI(% LEL)

PID(PPm)

Blowsper6 in.

Depthin

Feet

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

USCSLog

Job. No. Client:6113101/2007 Harford County DPWDrilling Method:

Sampling Method:

Water LevelTimeDateReferenceSurface Conditions:

Location:/ Bush Valley LF

Boring No.EA10

•--Sheet 2 of 2

DrillingStart Finish1210 153C

04/13/99 04/13/1

*

Screen set from 1 7' to 7' below arade pSandpack set from 18' to 5' below grade (No.2 18'-6': No.1 £Bentonite seal from 5' to 3.7'Grout from 3.7' to grade »-14 bags No.2 sand &1 bag No. 1 sand1 bucket of bentonite pellets ?

Screen and casing are 4 " OD

9;1

—— "*

fif1i

•*•_,1}m

— — — —— iLogged by: -! CourtneyLowe ___________ Date: ' 04/13/99

Drilling Contractor E2SI_________________ Driller: Dan Fincham/Sam Boyd

BSCoordinates:Surface Elevation:

L$ EA Engineering,k Science, andA Technology. Inc.

LOQ OF SOIL BORING

Casing Above Surface:Reference Elevation:Reference Description:-

Type In.

Logged by:DriBng Contractor

Depth %LELPID(ppm)

12,0

Do

-

InFeet0

2

4

6

8

10

12

14

16

16

20

Log

f{

ML,

Ml-

Job. No. Clent Harford County Location:•1131.01 M»- Department of Public Works Bush Valley LF.DriOing Method: WpQW BorlnaMa. /^..\

B-A0"")Sheet 1 of fe

DrHRngWaterLev. start FinishTime 0-7 nfDate « /?T7Reference i fSfl f /-/-/>Surface Conditions. /WfisrfAt y.j-J*"

' '

/•/ c/ *7, / , r/V/y c/«?vy

_ 1L.., r, t TV . yy -> fr ————

/7«ie&/3c/t. faroy f tA/t/(~. £m Jti«e£+ -T/ 7"*'

/*IC/M/X;.O >f' J5fc«/ LJ/C/&&•

&oti ® n'

Steve Wttont Data: Ifa* -«••«••••> it~j»«.-i.gf|| DriBar ££&.f- &fa/£Q*J ~f

Wttt temporary groundwitertampflrx) point tnttaltd? l/t. tfy glv»cofia1ruedondetai»

AR000276

es EAan

Engineering, Science,d Technology, Inc.

LOG OF SOIL BORINGCoordinates:Surface Elevation:Casing Above Sur:Reference Elevation:Reference Desc:

SampleType

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

InchesDrvn/lnRecvrd

24/18

24/8

24/20

24/24

24/24

24/24

24/22

24/18

24/24

24/8

DpthCsg.

0

2

4

6

8

10

12

14

16

18

CGI(% LEL)

0

0

0

0

0

0

0

0

0

0

PID(ppm)

0

0

1.2

0

0

0

1

0

0

0

Blowsper6 in.

1221334342212223246622362346581010899129121412

Depthin

Feet

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

?n

usesLog

ML

ML

ML/CL

ML/CL

CL

CL

SM

SM

SM/GM

SM/GM

GM

Job. No. Client: Location:6113101/2007 Harford County DPW BushVallevLFDrilling Method: Hollow Stem Auaer Boring No

EA12Sampling Method: StandardPenetration Test (SPT); 1 40 Ib hammer Sheet 1Of 2freely fallinc 30 in; 2 in OD split-spoon DrillinaWater Leve 10'5" 8'8" StartTime 1200 745 1035Date 04/14/99 04/15/99 04/14/99Reference qrade TOC

Finish1400

04/14/99

Surface Conditions: Grass covered area adjacent tosanitary sewer line

Brown, moist clayey SILT, little fine sand, trace orqanics

Brown, moist clayey SILT, little m/f sand, trace c/f graveltrace organ ics

Brown, moist SILT and CLAY, litie m/f sand, trace orqanics

6-7 Brown, moist SILT and CLAY, some m/f sand, trace organic

7-8 Brown and qray, CLAY and SILT, little m/f sand

Brown and arav, moist. CLAY and SILT, some m/f sand,increasing sand content with depth

Light arav and brown, very moist to wet. m/f SAND,some clayey silt

"Liqht arav, wet. c/f SAND, some clayey silt

Brown, wet, c/f SAND and c/f GRAVEL, little clayey silt

Brown, wet, c/f SAND and c/f GRAVEL, little clayey silt

Added water-runninq sand

Brown, wet. c/f GRAVEL and c/f SAND, little ctavev silt

<_oggedby: Courtney Lowe____________ D^v . W14/99_____

Drilling Contractor: E2SI ________________ Driller: Dan Rncham/Sam Boyd

RR000277

Coordinates:Surface ElevatiCasing Above IReference ElevReference Des

SampleType

SS

SS-

SS

~

InchesDrvn/lnRecvrd

24/24

24/24

24/24

EA Engineering, Science,and Technology, Inc.

LOG OF SOIL BORING

on:5ur:ation:c:

DpthCsg.

20

22

24

CGI(% LEL)

0

0

0

PID(ppm)

0

0

0

Blowsper6 in.

224512222246

Depthin

Feet

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

USCSLog

CL

SM

CL

ML

Job. No, Client: Location:6i 13101/2007 Harford County DPW Bush Valley LFDrilling Method: Borinq No.

EA12Sampling Method:

Sheet 2 of 2Drillinq

Water Level 10'5" 8'8" Start FinishTime 1200 745 1035 1400Date 04/14/99 04/15/99 04/14/99 04/1 4/£Reference qrade TOCSurface Conditions: »

?Black, moist CLAY and SILT, little m/f sand

*Brown, wet, c/f SAND, some clayey silt :

*

Black, moist CLAY and SILT, little m/f sand^

Black, moist, clayey SILT, little m/f sand .

BOH @ 26 ft; boring terminated -Finished drilling @ 1200Beqan reaminq borehole @ 1245 ?

tScreen 8' -18'Riser 8 - +2 .No.2 sand 6' 9' - 18' 5'; 1 4 bags !No.1 sand 5' 9" - 6' 9'; 1 .5 baas »Bentonite 4' 1"- 5' 9"; 1 bag

f2' PVC casing stick up; 4" OD PVC |

i_

••«,

rL

Logged by: CoOrtneyLowe___________ Date: 04/14/99_____ , H,S IDrilling Contractor: E2SI__________________ Driller: Dan Fincham/Sam Boyd

~< •" :^ flR000278 '

B9Coordinates:Surface Elevation:

u$ EA Engineering,k Science, andA Technology, Inc.

LOG OF SOIL BORING

Casing Above Surface:Reference Elevation:Reference Description:

In. DepthCGI%LEL

PtD(Ppm)

/oot

DepthtoFeet0

2

4

6

6

10

12

14

16

1B

20

USCSLog

ML

ML

ML.

Job. No. Ctant HarfOPd County Location:ensi.tn Mt Department of Public Works Bush Valley L FDrUBng Method: Geefwe* BorlnaMo \

£~ - lfAl3^SamDdna Method: ~Ofe«aMHet-«i«0fear '

Sheet 1 o* *DrlWnq

WaterLev. start Flntahi mm t v ** / c^&fflft....- —— —— — —— — — —— ———— —— ————— ——— _ —— » 4//1/94 ttJrt/9*Reference v ' ' / "/' " * /Surface Conditions: t*\Qsrfi ' Q trf

M*<t ks*<* . vvt*. chut* ff/f-. r. /"/-

r/r. fa *"*,. ™*\ * — f y*Y

r1 fffifflL't- Qs&is *tA/vl^ £ (&ts€ds J * * if TrttCC^,s ft r ' f

"T'/*Xt/ •JQ.**Of

e°n <®\3 -£*.

Logged by: Steve Wetzant_____________ Data:DriUing Contractor TM^SSBL_________ Oj**: . fifauf-W»a temporary Q/oun*wter*srnpo ^ tf yes, give constmctfandetaBe

HR000279

Appendix A3

Well Construction Diagrams

RR000280

WELL NO: EA-10WELL COMPLETION DIAGRAM

LOCKINGSTEEL COVER

3 FT. SOWRECONCRETE PAD

GRADE

WATER LEVQ. 8-2'U APBL 1009

8 M. 0.0. PROTECTIVESTEEL CASMC

•CEMEHr-BEMTOWTE GROUTFROU GRADE TO U a

•4 H ID. SCHONJUt 40 PVC RtSERCASK FROM 2JO FT. ABOVEORICMAL GRADE TO 5.0 FT.

-BENTOMTE PELLETSFROU 3.6 FT. TO SO R.

•GRADATIONAL FUBt PACKSAND 10 FT. TO 17.5 FT.

•4 M. U). 0.01 M. SLOTSCHEDULE 40 PVC SCREENFROM 7jO FT. TO 17i» R.

1

•THREADED SCHEDULE 40PVC CAP AT 17.0 FT

-BOREHOLE DEPTH AT 175 FT.e.0 M.

BOREHOLENOTE: WELL FEATURES NOT TO SCALE

EA ENGINEERING,SCIENCE. ANDTECHNOLOGY, INC.

BUSH VALLEY LANDnaHMFORO COUNTY, IMRVUND

WELL COMPLETION DIAGRAMWELL NO: EA-10

PROJECT UCRPAP

DESIGNED BYCBL

DRUM BYJBS

CHECKED BY SCALE

JOT TO SCALEDATE6-4-99

PROJECT NO61131.01

FIGURE1

AR000281

WELL NO: EA-12WELL COMPLETION DIAGRAM

LOCKMGSTEEL COCR

Of™ \ \ _ QflWION(FT)

o-i ———^, LL^ .. j ^ j .—>=—a—*—J__ f ^-—a—gi».v,........———— i-sow

- 300WtTFR IFVF1 «.T ——X- 1 " CTtn rACMR

10 —1 »

-29020H

-280•I conu eatff m A t tr

30 —i- ————4 ti ID. SCHEDULE 40 PVC RISER. * CASMC FROM US FT. MCNE

-270, w _..._.._ — _ _ _ _ _ ._ _._ . ..

40-

f3 FT. SQUARECONCRETE PAD-%

owoe-i \\ . —— V— r-7

——— __- — 1. ——— . —————— lp " " v.

'W Xt/mTER LEva s.r — *-15 M>RL 1999

fl

ll51

1

1

1 1

1

'" 1

•••••i

*

I

1ZOM.OflEHOL

*

V

W

IM

^

:

i

i

^

«BH

r

bArnlUnOPLASTIC Of

3 — r —— • — » — ,p ^ —— a —— a..., . . . . . v , . ____

\ x< ^^ « M. OJl PRCrTECIW

STKL CASK

———— CEMDff-BOOWm CROUTFROM fiRMC TO 4.1 FT.

CASMG FROU 2JO FT. AflOVtORICHM. CWOt TO LO FT.

- ——— flEMTOWTE PEllTTSFROM 4.1 FT. TO 5J FT.

i ———— GWOMKINIU. FLTER PACKSAND 18 FT. TO 185 FT.

———— 4 N. UX OjQ2 M. SLOT

FROM 10 FT. TO 1BA FT.

s~ THREADED SCHEDULE 40^ PWC CAP AT 18,0 FT

U ——— BOHEHOLf DEPTH AT taS FT.

1-260so-j

-25060H

fl * """-240

I____I -*—————CtttfyflOWL FILTH* HCK70-1

-23080H

L_ 210

100 -1

NOTE: WELL FEATURES NOT TO SCM£

EA ENGINEERING,SCIENCE. ANDTECHNOLOGY. INC.

BUSH VALLEY LANDFILLHARFORD COUNTY. IWTlUND

WELL COMPLETION DIAGRAMWELL NO: EA-12

PROJECT MGRPAP

DESIGNED BYCBL

DRAWN BT

JBSCHECKED BT SCALE

AS SHOWNDATE5-12-99

PROJECT NO61131.01

AR000282

FIGURE2

Appendix A4

Well Development Records

AROQ0283

EA EngutttriMg, Sdaue,«wf Technologyt Inc. ^MUMMM / ^ f wet MO.

______________________________P/?~/gField Record of WeN Purging and Sampling

Bush

* '

v - i *t StL&jvtfSS, 6 ATWM Condition

Sounding'Mfthod:

Odor MMvitot:lUyMo.:

WMD^de ^ FT

CMing Atow Surf MK t. WMMS 7. 5s? FT

7. fl M

Fu*.Tfaw

Oiplll

Wmm

ToM TuffeUkyC

/.r•"rH2

Z ML

22- LLB./•rJ"o 2i

±512fl.

Uio

HIM:

Spit 7: WNhWhem:

AR00028U

CDCDCDroooen

, Sdmcc,, Inc.

Field Record of WeU Purging and Sampling

""•" **•*•*D- - _ , / , < _ P " ~ #

WBLMO.

PeristoJ&c

B«NM*H Ovtm&arOMOdftt

Ttaw

//JS"

//r.r

Wm

TOM

fa*

,7.5-0

ThrtUfey

££.

Ji£i

£%L

Mar Mi inir- Xt/aIteyNo.: ___

//9FT

D*rti «• WMR O FTAS

WoMr VMHHK g>. / ft flalM

c

11.10

,rg.

t*>io

£21

/gti -

CoiMliar

* -

Q>77/ 7.

PA- i - - - -,la.

«* Mb»: Qua;

_____________________________ Tin*

WHn Whonc

//n*r

Field Record of Wen Purging and Sampling

wttiMO,

*l Jb/fe

W»i Condition Odor

Sowiding Mrthori:

Swtao BCM** Abw* SurfMK %, 0 Tp-

U*u** ti.&BUl ^ ^

//.

Ttn»m

T«OI IMWty

. /J"36 Hi o

^^ 7

As. g.6J g.JJO

?«5i m.

7

'HHQ.tCJ

7T Jd. O-T&Vf W h

/yyp 42A

OU wol Pump Orr? Ooioribo: fo

SpMt 7: Whh Whom:

y/""-'

t Scumct,i Inc. (J. . I war NO,

L /fcLT5-A . 7?/;.cA L&V/o*.Field Record of Well Purging and Sampling ^» .

nHVofcbthod:

W«l Condition

Saimdinq Malhod;

__ _________FTSurtooo BovoMon: Oopfli to UquM: ____ O FT

Abovo Surf «oo;

cJOVOQOfC

Rofdvnoo O*«onpitoti!

Oopch M W-or ____ /-\ FT

WMrCohmn: / "7 FTWon

Tlmo(mini

PumpingfUto(ffpmt

WoMim

Tot*

(0*11

Turbidity

4£2£-

PH

•- —— *- - •

a,

6.37

// r>.Q9/ 8.

2JL r. "7¥./ "

/ ^r. 7ll 0,*9/

5"

//. V^ ."7P a**

DM Wo« Pump Dry? OoMfbo:

SamoM by: _...______________ O** _

Svnplo TVp«^_______________„._________ "niM; _

SpHt J: With Whom;

.;;.:: " AR000287

WELL NO: EA-10WELL COMPLETION DIAGRAM

3 FT. SQtWCCONCRETE PAD

GRWC

13 tHOL 1909

NOTE: WELL FEATURES NOT TO SCALE

LOCKMGSTEEL COMER

<t1mm

'

1

1

1 1

1

1

v^

^mm

E

_

10 KLKMCHOU

*

*

»

V

^

«

1

^

k

-»*m

mi

f

puenc CAP

5 P" « -» — .y^_g — B — «"- - - ____

r\ < '^ « M. 0.0. PROTECTIVE

STEa OSWC

• ———— CEMENT-eENTONnE CROUTFROM GfWDE TO U FT.

4 M. LO. SCHEDULE 40 PVC RISEROfiMC FROU 2.0 FT. ««ORKWL CRKDE TO LO FT.

• ——— BEHTOMTE PELLETSFROM 16 FT. TO 5.0 n.

i ———— GRMM10WU. FLTER PACKSAND SuO n. TO 17.5 FT.

———— 4 ft LO. 04)1 t*. SLOTSCHEDULE 40 PVC. SCREEN .FROM 7jO FT. TO 17.0 FT.

^ - THREADED SCHEDUU 40S^ PVC CAP AT 170 R

f

EA ENGINEERING.SCIENCE. ANDTECHNOLOGY. INC.

BUSH VALLEY LANDFILLHARfORD COUKTY. MARYLAND

WELL COMPLETION DIAGRAMWELL NO: EA-10

PROJECT MCRPAP

DESIGNED BYCBL

DRAWN BYJBS

CHECKED BT SCALEJOT TO SCALE

DATE6-4-99

PROJECT NO61131.01

FGUREA4-1

AR000288

WELL NO: EA-12WELL COMPLETION DIAGRAM

LOCKMGSTEEL CMER

3 R. SQUARECONCRETE PAD

GRMX

WKIER LEVEL 8.7*15M>R1 1MB

rij

v

T

•i<i

• <•V H

••i

18,0 NtOREHOLJ

»

«

»

*

*

••^

-*

1

^

«

T••

^

r*1

PLASTIC CAP

5T ——— »——» —— ,p S —— B —— ffl , | k . , ,, . . ______

x '" V"^»— 6 ti 0 JL PROTECTNE

STEa CASING

1 ———— CaOfT-aEHTONrTE GROUTFROU GRADE TO 4.1 FT.

- — 4 tti LD. SCHEDULE 40 PVC RISERCASMC FROU 24 R. WOVEORICRW. GRACE TO 8.0 R.

• ——— BEHTOWTE PELLETSFROU 4.1 R. TO U R.

———— GRNMTIOIW. nLTOt PM9CSAND 18 R. TO 115 R.

———— 4 M. LO. 0.01 M. SIP''1 1 laiMi i iti aur> 1 1 IK i iiFROM LO FT. TO 18X) R.

^ THRCMED SCHEDULE 40^ PVC CW» AI HO R

L- ——— BOHEHOLf DEPTH AT 18-5 R.

NOTE: WELL FEATURES NOT TO SCALE

EA ENGINEERING,SCIENCE. ANDTECHNOLOGY. INC.

BUSH VALLEY LANDFILLHARFORD COUNTY, UARYIAHD

WELL COMPLETION DIAGRAMWELL NO: EA-12

PROJECT MGftPAP

DESIGNED BYCBL

DRAWN BYJBS

CHECKED BY SCALEIJOT TO SCALd

DATE6-4-99

PROJECT NO61131.01

FIGUREA4-2

RR000289

WELL NO: EA-11WELL COMPLETION DIAGRAM

THREADEDPVC CCMR1

GR«E-\\ WTER LEVEL Otf\ 14 tfHL 1999 w*'4m®r

V34) M.IOREHOU

*

*

*

«

*

«, •

'

'<®m&

———— BEMTOMTE SLURRYFROU GRADE TO 134 R.c BI in crucnHC 4A nur* UMJI:UCASWG FROU 141 R. MO*ORIMW. CJW* TO H-0 R.

———— FME FCTERSAND 134) R. TO 174) R

— — — 1 1/4 OJL PRE-MCKED SANDSTAINLESS STEEL SCREENFROU 14:0 R. TO 174) R.

^ — OCPOSBli SUNLESSX STEEL POWT 174) R

^ ____ cvumi/'ri r nrvrij AT \ i n FT

NOTE: WELL FEATURES NOT TO SCME

EA ENGINEERING.SCIENCE. ANDTECHNOLOGY. INC.

BUSH VALLEY lANDFILLHVfORO COUNTY, UARTlANO

WELL COMPLETION DIAGRAMWELL NO: EA-11

PROJECT UCRPAP

DESIGNEDSMW

DRWM BYJBS

CHECKED BY SCALETO SCALti

GATE6-4-99

PROJECT NO61131.01

FIGUREA4-3

RR000290

WELL NO: EA-13WELL COMPLETION DIAGRAM

THREADEDPVC COVERi

GRADE -i\ WATER LEVa Offt 14 ***, 1999 .

1

!

1

1

1

1

•MM

\y

*

*

i

«

^

34) IN.BOREHOLE

———— BENTONTE SLURRYFROU GRADE TO 134) R.

———— £ M. LO. SCHEDULE 40 PVC RISERCASNC FROU 141 R. ABOVEORJCtW. GRADE TO 144) R.

———— FME FUERSAND 134) R. TO 1741 FT.

SHUNLESS STEEL SCREENFROU 144) R. TO 1741 R.

^ DGPOSBLE SWNUSSs STEa POINT 17.0 R

- ——— BOREHOLE DEPTH AT 18.0 FT.

NOTE: WELL FEATURES NOT TO SCALE

EA ENGINEERING.SCIENCE. ANDTECHNOLOGY. INC.

BUSH VALLEY LANDFILLWRFORD COUNTY. MARYLAND

WELL COMPLETION DIAGRAMWELL NO: EA-13

PROJECT UGRPAP

DESIGNED BYSMW

DRAWN BY

JBSCHECKED BY SCALE

JOT TO SCALEDATE6-4-99

PROJECT NO61131.01

FIGUREA4-4

flR00029l

Appendix B

SVGA Procedures

AROQ0292

APPENDIX B SOIL VAPOR CONTAMINANT ASSESSMENT

B.I Methods and Materials

B,l.l Shallow Soil Gas Samples

An SVGA survey was conducted at Bush Valley Landfill to evaluate the extent of potentialmigration of organic constituents through the subsurface soil. Soil vapor sampling locationswere established around the perimeter of the landfill, within and beyond the limit of waste. Thelocations were placed at approximately 100-ft intervals beyond the limit of waste, and 200-ftintervals within, using a Sokkia electronic distance measurer (EDM), tapes, and visual sightings.Alphanumeric designations were assigned to each sampling location. The east-west trendingsurvey lines were assigned alphabetic designations, A through J, and the north-south trendinglines were assigned numerals, 1-17, beginning from the western-most line. The origin of thegrid, Al, was the southwest corner. Four of the proposed locations, Al 1-A14, were notaccessible due to overgrown brush and were therefore, not sampled. A vapor sample could notbe collected from location G4 due to the presence of standing water.

To collect the soil vapor sample, small diameter, hollow steel probes with a 6-in. screenedinterval at the terminus, were driven to a depth of 5.5 ft below ground surface. Six locations onthe southern portion of the grid were sampled at a second depth of 7 ft. A vacuum gauge wasattached to the top of the probe and a vacuum applied for a minimum of 2 minutes to evacuateambient air from the probe. During pumping, resistance to vapor flow was measured via the in-line vacuum gauge. If the vacuum gauge shows essentially no reduction in pressure after thevacuum pump is activated, vapors are being readily obtained. Typically, a 1-minute purge timeis adequate. However, a 2-minute purge was performed during field activities due to theresistance to vapor flow experienced at many of the sampling locations. Subsequent to purgingthe probe, a sampling device was installed on the top of the probe. The device consisted of avacuum gauge with tubing leading to an exterior port on a plastic container. A tedlar bag wasplaced within the container, with tubing leading to the exterior port. A vacuum was applied tothe container, allowing the bag to fill will soil vapor pulled from the subsurface.

This type of device was used to insure an adequate amount of vapor sample for analysis ofcarbon dioxide, carbon monoxide, and oxygen using direct reading instruments. A sub-samplefrom the tedlar bag was used to analyze for benzene, toluene, ethylbenzene, m&p-xylene, o-xylene, methylene chloride, trans 1,2-dichloroethylene (trans 1,2-DCE), cis 1,2-dichloroethylene(cis 1,2-DCE), l,l,l-trichloroethahe(TCA), carbon tetrafchloridCi trichloroethylene (TCE), and

B-l HR000293

tetrachloroethylene (PCE) using a Varian 3300 gas chromatograph (GC) equipped with an flameionization detector and a electron capture detector.

Soil vapor samples tend to contain many compounds. When a sample is injected into the GC,compounds are first separated by an appropriate analytical column. As the separated compoundselute from the GC column, they enter the detector and create a signal. The signal is thenamplified, integrated, and reported as a chromatographic peak.

The integrating software prints out a chromatogram, which is a continuous graph of GC detectorresponse to the eluting compounds. Subsequently, a numerical summary of peak areas is printed.

The GC was calibrated by injecting a known amount of vapor standard containing the »compounds of interest onto each column. Compound retention time and response data are usedto identify and quantify the selected compounds in the samples.

Standards were run at the beginning and end of each day. Blanks were run at the beginning ofthe day and as needed at the discretion of the GC chemist. "

L

B.I.2 Deep Soil Gas Samples -4.

Deep soil gas investigations were completed by Target Environmental Services under contract andsupervision of EA. Direct-push technology was used to advance connected 3-4 foot sections ofnarrow diameter threaded steel casing to the sampling depth of approximately 17 ft. Once at depth,the casing was hydraulically raised several inches in order to release a disposable drive point and Jopen the bottom of the casing. Polyethylene tubing with a threaded stainless steel tip and "O" ring *was inserted into the casing to the bottom of the hole, and threaded through a plug which isolates .. the bottom-hole sampling chamber from the up-hole annulus. A sample of in-situ soil gas was then |withdrawn through the probe with a vacuum chamber and used to purge atmospheric air from thesampling system. A syringe equipped with a needle was used to penetrate a soft portion of the f

Bsampling tubing and withdraw an aliquot of soil gas. The sample was then injected into a pre-evacuated glass vial. The self-sealing vial was detached from the sampling syringe, packaged,labeled, and stored for laboratory analysis by Target Environmental Services. All sampling holes *-were backfilled with bentonite and the surface repaired with like material upon completion of the ?sampling. «

The deep soil gas samples were analyzed by Target Environmental Services "Home" Laboratory by Ia GC equipped with an election capture detector (ECD) for chlorinated compounds following

B"2 BR00029U

modified EPA GO 10 procedures, and a flame ionization detector (FID) for aromatic hydrocarbonsfollowing modified EPA G020 procedures. A thermal conductivity detector (TCD) was used foranalysis of methane and the fixed gases (oxygen, carbon dioxide, and carbon monoxide). Standardswere analyzed in order to quantify the chlorinated and aromatic compounds to a reporting limit of1 .0 (ag/L. The target compound for the deep soil gas analyses are provided in Table B-5.

New tubing and syringes were used for each sample. Prior to the day's field activities all samplingequipment and probes were decontaminated by washing with a Liquinox/water solution and rinsingthoroughly.

B.2 Results

B.2.1 Shallow Soil Gas Samples

A total of 77 soil vapor samples from 71 locations were analyzed on site between 18 and 28August 1998. The sampling locations are illustrated on Figure B-l. The results of the SVGA areshown in Table B-l. Samples were collected from a depth of 5.5 ft unless otherwise noted with asuffix of "-7" indicating a 7-ft sample depth.

Results indicate the presence of trace concentrations of chlorinated compounds within, north of,and at the southwest comer of the limit of waste. The deeper sample collected from location B4reported concentrations of TCE (0.03 ppm), and PCE (0.01 ppm). A concentration of 0.02 ppmof PCE was reported in the sample from location Dl. The sample from El, on the west side ofthe limit of waste, reported concentrations of TCA (0.04 ppm), TCE (1.2 ppm), and PCE (1.6ppm). The sample collected from E8, within the limit of waste, reported concentrations of cis-1,2-DCE (14 ppm), TCA (0.03 ppm), TCE (1.6 ppm) and PCE (4.5 ppm). Trace concentrationsof TCE at 0.06 ppm and 0.09 ppm, were reported in Fl and Gl, respectively. Traceconcentrations of PCE were reported in G10 (0.02 ppm), G14 (0.04 ppm), H10 (0.16 ppm), and110 (0.03 ppm). Location 110 is north of the limit of waste. Cis 1,2-DCE was reported in G14(3.7 ppm) and H10 (3.1 ppm).

The BTEX constituents, along with other unknown hydrocarbons, were quantified as totalhydrocarbons for comparison purposes. Hydrocarbons were reported throughout the site, withconcentrations near or over 100 ppm occurring just at or within the limit of waste exclusively:C4 (86 ppm), D2 (95 ppm), E2 (130 ppm), E4 (200 ppm), E8 (410 ppm), G10-14 (ranging 97-320 ppm), and H10 (280 ppm). Benzene was reported in 1 1 locations: B4-7 (1.4 ppm), C4 (2.9ppm), C6 (0.2 ppm), El (5.6 ppm), E2 (1.9 ppm), E4 (2 ppm), E 8 (3.3 ppm), G10 (2.2 ppm),

B-3 RRQ0029S

G12 (2.6 ppm), G14 (22 ppm), and HI0 (1.7 ppm). Results indicate the highest concentrationsof hydrocarbons occurring near the northeast and southwest portions of the limit of waste.

Methane is a natural breakdown product commonly found at landfills and, as expected, wasfound at varying concentrations throughout the site. The buildup of vapors, especially methane,to potentially explosive concentration is of concern at any landfill. The lower explosive limitconcentration of methane in air is 50,000 ppm (5 %). Table B-2 presents the reported methaneconcentrations as well as carbon dioxide, carbon monoxide, and oxygen, all of which areindicators of biogenic breakdown processes. The concentrations ranged from son-detect to86,000 ppm at location C4. Elevated concentrations (greater than 10,000 ppm) were generallylimited to within, north of, and west of the limit of waste. In addition to this general trend,elevated concentrations of methane were reported in B4 (12,000 ppm), B4-7 (41,000 ppm) andC14 (39,000 ppm), south and east of the limit of waste, respectively. Methane concentrationsappear to disseminate prior to reaching the residential area on the south side of the landfill.

The extent of methane was not fully delineated north and east of the landfill due to the presenceof wetland areas and streams. West of the landfill could not be fully characterized beyond thedirt access road during this field investigation due to property access issues.

B.I.2 Deep Soil Gas Samples

The analytical results of the deep soil vapor samples are provided in Table B.3 and B.4. Ingeneral, chlorinated and aromatic hydrocarbons concentrations in the deep soil vapor sampleswere low (i.e., less than 20 |ag/L). Elevated methane concentrations however were detected in 7out of the 8 samples collected. Methane concentrations, measured in percent, ranged between.21.7 and 48,9.

flR000296

BR000297

1 V)

e-si fN

so

S s* °-X ~ V

™ •• •_g» g BS S

s sss 00 00

(N (S (N

LU

uO

uC/D

ICQ

mUJ

CD

H

SO

9 9

"I£

o9eo oo99 9

99 9 9

o o9999999999 9

899999999999 99 99

gll? 9 9so

99 9SO

9 9(S (N cs $

9 9 999

n *CN (N (N (N

CN CN CN fN

9 9 9 9

0 «u "B '"*u "B '"*••£ B>»S9'

s vt

999999 V V

m s ss0.

s3ss s03 CD CQ ffi

' ft AR000298

I

CQUJUca<:

1 **isllfH*:_SS

V *+.A S B® *-&:..x *cL 1-5-*& s «•*? Jt a.S1 >. o.X ~

l?§f- c &•M|S

S-ffV fi- ft**I"t.H .&

1 *~*H a£§H?U Q.^3

g ASC^#£3lsi * ft3^3e

;SB*

•~ -Si3*1j, H->**sy e« o o.*i*e «lit***ssS

Ji' Of,- -• B: i*'"

VI

rn

*fnOV

1*1nOV

oo

9

o(NOV

om?CNCNO

O?o?o?oen9

ofnOV

CN

9

w

sor-i

*>mOV

C*lmOV

oo

?

ofN

?

Ofi

?

Os

O

O?o?o?ofn?

om?

S?a.r>9«•«u

Pt'

•o<*iOV

r-imOV

ooOV.

ofN

?

Ofn?

<nOd

o?

o?o9ofn?

OfnOV

CN00

9

0

VI

•*>f\OV

mf»iOV

00

oV

ofNOV

omOV

o?o?o?o?em9

om?

S9

SOOO

om

OCN

O«•V

Vlm

ONfN

O

9

o?o9

o9oen9

om?

S9

»3

*T

Vl

•*r

Ov

fNfN

V)

O

SO

OV

o?o?o9

o9

s?rsSO

?

V

VlV

ONfiOV

fnSOd

m

?

wn

?

OCNO

O?fnOO

o9

o9

s?fNSO?

V

v>V

CTim

9

r-fn?

mOV

v>

OV

•o

9

o?o?o?o9

S9

fNSO

9

V

.

VIV

CT.moV

rmOV

mOV

VI

OV

*o

?o9

o?o9

o9

s9

(NSO

?

V

. .

TTfN

o

&r-

fN

9

so

?

O

?

O

9

O

9

O

9

i9

(Mso

?

V

or-

OsmOV

sofn

V)pd

oV

£?

o?o9

o9

o9

S9

CNSOOV

V

ou

ONm

OroV

rVIoV

VI(NOV

m?

Vl

?

O

9

O?o9

o9

$9

<o?

V

U

J-

oroV

r-<nOV

VlfN

?

OV

Vl

?

O

9

o9

o9

o9

S9

VIVloV

V

a.*U

(N

Or-oV

or-

ON

m?

v>?o9

o?o9

o9

s9

Vl?

V

fNU

^fN

Or*oV

t»nOV

VlCN

?

OV

Vl

?

O?o9

o9

o9

S9

VN,

?

V

MU

NO

rr?

VI•?so

9

O<N

?

mCN

9

O

?

O

?

O

9

o9

X9

V)OV

V

TU

m

r*-voV

Vl~OV

•o

?oCN

?

mfN

?

Ho

o?o9

o9

s;9

v>?

V

Q

<N

r"T

?

Vl•«•?—?OP4

?

mCN

?

O

?

O?o9

o9

S9

VIOV

V

«nO

VlON

visOd

VIVl

end

oCN

mfN

9

o9

o9

o9

e9*•«n9

V)?

V

SO•<r

r—v?

VI

VIr-d

fnCN

?

O

?

O?o9

o?39

VlOV

V

a.

3s

oso

ON

VINO

VI

d

oo

?soVI

SO

"CN

~

O

9

So

»n9

o~oV

V

;

W

om

VIm?

1rf

V)so

O>

Os

O

9

o9

o9

o90t

29

oT?

V

Q

oN

ooo

o

oo

oCN

O?o?o9

o9Osm9

O•VOV

V

s

os

o

SOf

r

o?

o9

o9

o9o*m9

3oV

V

a.

s

ooCN

VIm

V

~CN

fN•Vd

soo

VIfN

?

fnoo

o?o9

o9Ot*n9

O^

?

V

oT

oso

V|

O

fnm

VI1

so

~

O9

fnOO

^

O•<roV

V

VIV

vimOV

TmV

<<r

?

oooV

VlfNOV

o?o?o?o9o>m9

o•*r9

V

oUJ

so

VlmOV

•*rmV

TJ-

?

00

oV

VlfN

9

od

o?

o?o?OHm9

o•*!•OV

V

Ul

(N

Tj-OV

vtTT

V

SO

V

OCN

?

fnCN?mCNd

ooV

o?o?VI?•fVIoV

rV

«•Ul

oo

TT

V

VlTTV

so

V

orsV

fnCN

?

O?o?o?o?*TV)

9

~«OOV

t-V

«UJ

-

o>CN

9

m

~00

?fn

?

so

9

o9

$d

o9

o9

m9

m?

$9

viV

ONrNV

N

V

00

V

fn

?

so

?

CN

d

CNO?ooV

o?m?

mOV

Os00

9

<NU.

VIV

ONfNOV

(N

V

00

V

m

?

SO

9

o?(NO

?

O

9

o9

m?

m?

S9

r*h

AR000299

ialll<2":_SS

« vA S i-6g-s

41?*O <J O.S' >-> 0,X~

4*">. S g5 § |w S a-

flQ

s~5 a2 S.3 CLH~

«»s O8 Si &3~u 9"y o.S. o.

WU o.H^Si'50•25? ISS-8 S5H-s5'

< gU 0.H£

-8tA**. « SR sP T Bufinas *C *O <-s•£•= E•a 5 g>* a 3SU

|I

r-CN

oor»i9

orn

soCNd

oo

9

mfNOV

CNOd

ONd

o?

o?fn

9

mmV

3s9

5

SOfS

OOfn?

f-CN

fnCNd

oo

oV

fifNOV

(NOd

ON

d

oV

o?rnoV

en

?

^

9

Q.IDQi5

VlV

oo*nOV

mfnoV

^dV

00

oV

mfN

9

Sd

SV

o?oV

m

V

fn

9

S?

N

VIV

ONCNOV

rfNoV

00

dV

mOV

*o

?o9N

?

O

V

o?

V

mOV

ONOQ

?

O

o

ONCNOV

SOm

mmd

*n

dV

so

?

p

V

fN

V

O?o?—9

fn?

OsOO

9

10

ovi

v,OO

oo

9

CNCN

CNOd

o?

o?

o9fn

9

mV

^9

SJ

5

r-ON

OOfnOV

00

p

oooV

soCN

O

V

O?oV

o9»n.

9

fnmV

59

S

3

o(Nrr

ooo

CN

fn

fNCN

Sd

CNo?o?o?

m

m9

ONOO

9

25

fNOOm

fN

or

~

CN

<N

mOd

CNo?o?o?—9

fnV

£9

a.Do45

PON

00moV

rnVI

CTvVld

00

?

fnfNOV

odV

ooV

o9

o9m

9

m

9

s9

<x

VlV

oofnOV

fnmoV

< -dV

oooV

mfN?O

9

oV

o?o9en

?

m9

5s9

S

VlV

00fn?

mfn?

T

9

00

?mfN

?

O

9

o?o?o9m

9

m

?

?

9

£

VlV

ONrsoV

t-CNOV

00

9

m

?

SO

?

Od

S?o?

o9—

9

fn?

Ose9

so

oVi

CN

r>m

ONCSd

moV

so

?

O

9(No?o9

o9—

9

n?

OsOO

9

96X

ooofN

fS

OT

<*fn

r-

sO

d

od

o9

o9

en

mOV

Os00

9

=>X

VIV

ONfNOV

r*CNoV

oo

9

m

?

SO

?

O?s?o9

O

9—

?

m?

Os00

9

WX

viV

ONfNOV

t-CNOV

00

dV

roV

SO

oV

o9

s?o?o?—

9

m9

£9

2x

ON

ONfNOV

r-rs?

00

dV

m

?

SO

?

fnOd

oood

o?

o9

fn9

<nOV

&9

o

VlV

ONfNOV

rrsOV

oo'dV

fnOV

vO

OV

o?39

o9

O?*n?

COOV

Os00

9

rj

VlV

ONrsoV

r-CNOV

00

dV

fn

OV

NO

?o9CNOoV

o?o?

?m

?

Os00

?

2

VlV

ONrs?

t-CNOV

oo

dV

fnoV

SO

9

o9CNOOV

ooV

o9

en9

m9

OsOO

?

AR000300

TABLE B-2 BUSH VALLEY SVCA.B10GENIC GAS RESULTS

SampleAi

Al-7A2A3A4A4-7A5A6A6-7A7A8A9A10BlB2B2-7B3B4B4-7B4-7B5B6B7B8B9BIOBllB12B13B14Cl

Cl-DUPC2C3C4C5C6C7C8C9CIOCll

Cll-DUPC12

Methane(ppm)<5<58<5<5<5<5<5<5<5<58.6<5<5<5<5<5

120004100065000<58.617<5<5159<5<5<5670500<512000860005800140001000<5

150001200016017003900

Carbon Monoxide(ppm)NA1423NA0000NA5636025030074159NA00002005NA011NA076041180660NA0

Carbon Dioxide(ppm)NA1025450NA4254800>49754650NA>49751350>49755003750800850425>4975>4975NA5253750550650>4975>4975>4975>4975NA575>4975NA5002575>4975>4975>4975>4975525>4975>4975975NA>4975

Oxygen(%)NA20.720.8NA20.820.720.220.7NA19.320.719.220.820.92120.820.820.314.7NA20.820.820.820.81720.42015.3NA20.815.4NA20.820.42.319.1111520.817.916.320.7NA18.5

AR000301

TABLE B-2 (continued)

SampleC13C14DlD2

D2-DUPD15ElE2E4

E4-DUPE6E8E10E12E14E16FlF2F17Gl

Gl-DUPG2G6G8G10G12G14

G14-DUPH1AH2H4H6H8H10HI2H14no112114Jll

Methane(ppm)15039000<5

6800065000<5

79000750007600077000480007800064002000<519

48000<5<5

3600036000<5<56200046000460005100051000<5<535<5

660006600032<5

62000<5<5<5

Carbon Monoxide(ppm)03807NA01527NA291570200013104NA1000528NA0050044002120010

Carbon Dioxide(ppm)>4975>4975>4975>4975NA>4975>4975>4975>4975NA>4975>4975>4975>4975975>4975>4975650>4975>4975NA>4975>4975>4975>4975>4975>4975NA>49751100>4975>4975>4975>4975>4975>4975>4975>4975>4975>4975

Oxygen "(%)15.37.720.86.9NA20.46.72.62.2NA133.320.816.620.717.914.820.813.74.1NA18.418.97.22.13.84NA17.620.817.519.86.8i.912.819.23.87.816.119.7

NA Not enough sample aliquot was available for analysis.

COUJ

O0.1co oQ. OUJ QUJ S

CO

se>fioACO2o>oin

EASG-6

33SI3a

1

QZ

QZ

QZ

Oz

QZ

oz

oz

z

-

|l.1-Dichloroethene

oz

oz

CM<O<b

d

CO

i*-coin

^

^

QZ

JMethytene Ch

loride

oz

QZ

Oz

oz

oz

oz

oz

oz

0Si

|trans

-1 ,2-Dtehloroeth

QZ

Oz

CM*-

toCO

0000CO

sCM

r*.'•'

QZ

|1.1 -

Dichloroethane

0 0z z

0 Oz z

*"• Q£ z

Q 0Z Z

o QCO Z

0 0Z Z

Q 0Z Z

Q QZ Z

0)

Ids-1 ,2-Dichloroethen

[Chloroform

oz

oz

oz

QZ

QZ

QZ

QZ

OZ

|l , 1 ,

1-Trichtoroethane

o az z

Q OZ Z

Q

Z pj

Z CM

Z CO

Q QZ Z

o oz z

o oz z

[Carbon Tetrachloride

ITrichloroethene

Q QZ Z

Q 0Z Z

Q £JZ (*j

Z CM

i!Q QZ Z

0 Oz z

o oz z

|l , 1 ,

2-Trichtoroethane

ITetrachloroethene

Oz

oz

oz

oz

CM

oz

oz

z

IBenzene

oz

JlCO

OZ

QZ

oi

QZ

Oz

QZ

Toluene

Q 0Z Z

Q 0Z Z

Q QZ Z

Q 0Z Z

O QZ Z

o oz z

a oz z

Q QZ Z

[Ethy (benzene

Ixytenes

(tota

l)

m - M U W W U U U M M U W U — *- —<2 zzzzzzzzzzzzzzz8.^^______________________________. toco I—1 I >

CD

E .CO _ .. _ „ ^

1 1I I•5 °Z coII ^O «Z 4-:

RR000303

COLU-JQ-

CO111O<D.COQSCCoCL

UJ

QO

21w m13COUJ

5<<CQLU-Jm

e "«S9

oto 1s* aCM T GO yi- OO CM *•

o> t— oo- aT- N. CO

/-.

*P 52 •v » toT- U> CO

Q

(O CO CO^ 3*- r* co

z«z

«.20

0)

o

ll

8

S" IIIQ

AR00030U

TABLE B-5 ANALYTES FOR DEEP SOIL GAS ANALYSIS

DetectorECD

FID

TCD

Analytescis-1 ,3-dichloroethene (C-l , 2-DCE)trichloroethene (TCE)U J-trichloroethane (FU.l-TCA)1,1-dichloroethane (1,1 - DC A)1,1-DCE/trichlorotriflouroethane (TCTFA)trans-l,2-dichloroethene (t-1, 2-DCE)tetrachloroethene (PCE)1,1,2-TCAmethylene chloridecarbon tetrachloride (CC1-4)benzenetolueneethylbenzeneM&P xylene, o-xylenemethaneoxygencarbon dioxidecarbon monoxide

HR000305

Appendix C

Maximum Landfill Gas Generation Calculations

&ROQ0306

® Protect ?u.«.li \/V, /If./ LfLf^lhil________ Project No. tV f/3/ • O 'Subject /?//?i ,/ti.fti L i !~'-( $*< tet-r . f et*. Sheet No. ____^ of____Xa.-/£_________________________ Drawing No.Computedby. '../n Date /j,/9.£ Checkedbv /•*(}&* Date

Si/--. ^

TZ- &K5l&tlt

1C'- 0.65 y

el< (/a i«« <**-

=• 33 (;prvi\/ ^d TZ- ' r\J D H y

' /7/'-'-A /A;" jC/&sxr

•- flw innuaJ ACG&fa-'?x /'arc.J PS

/?. -- jZ. ZZ tlh ly&-f ( €

/C ^ &,<.£/i$fa.d in A'ic ///' rv/f'.'

9 --

, 747

RR000307EA02flBB1CM5

® Protect . V"/L_________________________ Project No. (f \\ ? 1 Q \Sheet No. 7L af

Drawing No. __________Subject . .> A-.-- •- • .

i

Computed by: u j /'

f> " L /cv'^i

Date 0 e-<i Checket Date

O Ve^'us 5"0 -ft UJ * EC f{ ^ x .- .; -': L, ' ' f y i j _ ' ' i j l x

lu

(0 a

- >- . . .-. _ l«t -tnCV * CM

in <Kci«.-ti« » J'K/M- IS-IL f.

t =

zo,.t o t CA- y^ ^_ rr .-. u

AR000308EA0289BKM8

y Lrfs'/y^Jf__________ Project No.,~."(./>£/ n'•' f '-C-" fZ.-,-_i s. Sheet No.

___________________ Drawing No.Computed by: >g,,fi • Date .o-n-ofi Checked by / — — — Date

9, Irft

• ? 474 7-7 n->2^ j ' ' ' ' ' /

fit's Z'/yi.'tCMtJ £5 r/<s ;*.&*•*_ moth I >'&.-V-J - /4

AR000309EA0280B 10/95

Model Parameters

Lo : 6000.000000 ftA3 / Mg ***** Note : Default value not used ***'k: 0.050000 1/yr ***** Note : Default value not used ****

NMOC : 34.000000 ppmv ***** Note : Default value not used ****Methane : 50.000000 % volumeCarbon Dioxide : 50.000000 % volume

Air Toxics ParametersChemical Name Molecular Wt Concentration

Benzene 78.120 0.620Carbon Tetrachloride 153.810 0.000Chloroform 119.380 0.006Ethylene Dichloride 96.960 1.750Methylene Chloride 84.930 0.000Perchloroethene 165.830 0.099Trichloroethene 131.290 0.044Vinyl Chloride 62.500 5.3001,1-Dichloroethylene 96.940 0.180

Landfill Parameters

Year Opened: 1975 Current Year: 1998 Year Closed: 1983Capacity: 499400.000000 MgAverage Acceptance Rate: 21713.043478 MgfyearAverage Acceptance Rate Required fromCurrent Year to Closure Year: 0.000000 Mg/year

Model Parameters

Methane Emission RateYear Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 3.538E+002 1.873E+0071977 1.249E+005 6.903E+002 3.654E+0071978 1.873E+005 1.010E+003 5.349E+0071979 2.497E+005 1.315E+003 6.961 E+0071980 3.121 E+005 1.605E+003 8.494E+0071981 3.746E+005 1.880E+003 9.952E+0071982 4.370E+005 2.142E+003 1.134E+0081983 4.994E+005 2.392E+003 1.266E+0081984 4.994E+005 2.275E+003 1.204E+0081985 4.994E+005 2.164E+003 1.145E+0081986 4.994E+005 2.058E+003 1.090E+0081987 4.994E+005 1.958E+003 1.036E+0081988 4.994E+005 1.863E-IO03 9.859E-f0071989 4.994E+005 1.772E+003 9.378E+0071990 4.994E+005 1.685E+003 8.921 E+0071991 4.994E+005 1.603E+003 8.486E+007

AR0003IO

1992 4.994E+005 1.525E+003 8.072E+0071993 4.994E+005 1.451E+003 7.678E+0071994 4.994E+005 1.380E+003 7.304E+0071995 4.994E+005 1.313E+003 6.948E+0071996 4.994E+005 1.249E+003 6.609E+0071997 4.994E+005 1.188E+003 6.286E+0071998 4.994E+005 1.130E+003 5.980E+0071999 4.994E+005 1.075E+003 5.688E+0072000 4.994E+005 1.022E+003 5.411E+0072001 4.994E+005 9.723E+002 5.147E+0072002 4.994E+005 9.249E+002 4.896E+0072003 4.994E+005 8.798E+002 4.657E+0072004 4.994E+005 8.369E+002 4.430E+0072005 4.994E+005 7.961 E+002 4.214E+0072006 4.994E+005 7.573E+002 4.008E+0072007 4.994E+005 7.203E+002 3.813E+0072008 4.994E+005 6.852 E+002 3.627E+0072009 4.994E+005 6.518E+002 3.450E+0072010 4.994E+005 6.200E+002 3.282E+0072011 4.994E+005 5.898E+002 3.122E+0072012 4.994E+005 5.61 OE+002 2.970E+Q072013 4.994E+005 5.336E+002 2.825E+0072014 4.994E+005 5.076E+002 2.687E+0072015 4.994E+005 4.828E+002 2.556E+0072016 4.994E+005 4.593E+002 2.431E+0072017 4.994E+005 4.369E+002 2.313E+0072018 4.994E+005 4.156E+002 2 00E+0072019 4.994E+005 3.953 E+002 2.093E+0072020 4.994E+005 3.760E+002 1.991 E-fO072021 4.994E+005 3.577E+002 1.893E+0072022 4.994E+005 3.403E+002 1.801E+0072023 4.994E+005 3.237E+002 1.713E+0072024 4.994E+005 3.079E+002 1.630E+0072025 4.994E+005 2.929E+002 1.550E+0072026 4.994E+005 2.786E+002 1.475E+0072027 4.994E+005 2.650E+002 1.403E+0072028 4.994E+005 2.521 E+002 1.334E+0072029 4.994E+005 2.398E+002 1 69E+0072030 4.994E+005 2.281 E+002 1.207E+0072031 4.994E+005 2.170E+002 1.148E+0072032 4.994E+005 2.064E+002 1.092E+0072033 4.994E+005 1.963E+002 1.039E+007

Carbon Dioxide Emission RateYear Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)~~"~"*"~s == ~ i ^ —> _ ^_^^___^^ •_•• • imnsf ~sais u*B &A iiu1976 6.243E+004 9.707E+002 1.873E+0071977 1.249E+005 1.894E+003 3.654E+0071978 1.873E+005 2.772E+003 5.349E+0071979 2.497E+005 3.608E+003 6.961 E+0071980 3.121 E+005 4.403E+003 8.494E+007

AR0003

1981 3.746E+005 5.159E+003 9.952E+0071982 4.370E+005 5.878E+003 1.134E+0081983 4.994E+005 6.562E+003 1.266E+0081984 4.994E+005 6.242E+003 1.204E+0081985 4.994E+005 5.937E+003 1.145E+0081985 4.994E+005 5.648E+003 1.090E+0081987 4.994E+005 5.372E+003 1.036E+0081988 4.994E+005 5.110E+003 9.859E+0071989 4.994E+005 4.861 E+003 9.378E+0071990 4.994E+005 4.624E+003 8.921 E+0071991 4.994E+005 4.39 9 E+003 8.486 E+0071992 4.994E+005 4.184E+003 8.072E+0071993 4.994E+005 3.980E+003 7.678E+0071994 4.994E+005 3.786E+003 7.304E+0071995 4.994E+005 3.601 E+003 6.946E+0071996 4.994E+005 3.426E+003 6.609E+0071997 4.994E+005 3.259E+003 6.286E+0071998 4.994E+005 3.1 OOE+003 5.980E+0071999 4.994E+005 2.948E+003 5.688E+0072000 4.994E+005 2.805E+003 5.411 E+0072001 4.994E+005 2.668E+003 5.147E+0072002 4.994E+005 2.538E+003 4.896E+0072003 4.994E+005 2.414E+003 4.657E+0072004 4.994E+005 2.296E+003 4.430E+0072005 4.994E+005 2.184E+003 4.214E+0072006 4.994E+005 2.078E+003 4.008E+0072007 4.994E+005 1.976E+003 3.813E+0072008 4.994E+005 1.880E+003 3.627E+0072009 4.994E+005 1.768E+003 3.450E+0072010 4.994E+005 1.701 E+003 3.282E+0072011 4.994E+005 1.618E+003 3.122E+0072012 4.994E+005 1.539E+003 2.970E+0072013 4.994E+005 1-464E+003 2.825E+0072014 4.994E+005 1.393E+003 2.687E+0072015 4.994E+005 1.325E+003 2.556E+0072016 4.994E+005 1.260E+003 2.431 E+0072017 4.994E+005 1.199E+003 2.313E+0072018 4.994E+005 1.140E+003 2.200E+0072019 4.994E+005 1.085E+003 2.093E+0072020 4.994E+005 1.032E+003 1.991 E+0072021 4.994E+005 9.815E+002 1.893E+0072022 4.994E+005 9.336E+002 1.801 E+0072023 4.994E+005 8.881E+002 1.713E+0072024 4.994E+005 8.447E+002 1.630E+0072025 4.994E+005 8.035E+002 1.550E+0072026 4.994E+005 7.644E+002 1.475E+0072027 4.994E+005 7.271 E+002 1.403E+0072028 4.994E+005 6.916E+002 1.334E+0072029 4.994E+005 6.579E+002 1.269E+0072030 4.994E+005 6.258E+002 1.207E+0072031 4.994E+005 5.953E+002 1.148E+007

flR0003!2

2032 4.994E+005 5.662E+002 1.092E+0072033 4.994E+005 5.386E+002 1.039E+007

NMOC Emission Rate (as Hexane)Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 1.293E-001 1.273E+0031977 1.249E+005 2.522E-001 2.485E+0031978 1.873E+005 3.692E-001 3.637E+0031979 2.497E+005 4.804E-001 4.733E+003 s1980 3.121E+005 5.863E-001 5.776E+0031981 3.746E+005 6.869E-001 6.768E+0031982 4.370E+005 7.827E-001 7.711 E+0031983 4.994E+005 8.738E-001 8.608E+0031984 4.994E+005 8.311E-001 8.189 E+0031985 4.994E+005 7.906E-001 7.789E+003 *1986 4.994E+005 7.521E-001 7.409E+003 '1987 4.994E+005 7.154E-001 7.048E+0031988 4.994E+005 6.805 E-001 6.704E+0031989 4.994E+005 6.473E-001 6.377E+0031990 4.994E+005 6.157E-001 6.066E+0031991 4.994E+005 5.857E-001 5.770E+0031992 4.994E+005 5.571 E-001 5.489E+0031993 4.994E+005 5.300E-001 5.221 E+0031994 4.994E+005 5.041 E-001 4.967E+0031995 4.994E+005 4.795E-001 4.724E+0031996 4.994E+005 4.561 E-001 4.494E+0031997 4.994E+005 4.339 E-001 4.275E+0031998 4.994E+005 4.127E-001 4.066E+0031999 4.994E+005 3.926E-001 3.868E+0032000 4.994E+005 3.735 E-001 3.679E+0032001 4.994E+005 3.552E-001 3.500E+0032002 4.994E+005 3.379 E-001 3.329E+0032003 4.994E+005 3.214 E-001 3.167E+0032004 4.994E+005 3.058E-001 3.012E+0032005 4.994E+005 2.908 E-001 2.865E+CO3 *2006 4.994E+005 2.767E-001 2.726E+003 *•2007 4.994E+005 2.632E-001 2.593E+0032008 4.994E+005 2.503 E-001 2.466E+0032009 4.994E+005 2.381 E-001 2.346E+0032010 4.994E+005 2 6 5 E-001 2.232E+0032011 4.994E+005 2.155E-001 2.123E+0032012 4.994E+005 2.050 E-001 2.019E+0032013 4.994E+005 1.950E-001 1.921 E+0032014 4.994E+005 1.855E-001 1.827E+0032015 4.994E+005 1.764E-001 1.738E+0032016 4.994E+005 1-678E-001 1.653E+0032017 4.994E+005 1.596 E-001 1.573E+0032018 4.994E+005 1.518E-001 1.496E+0032019 4.994E+005 1.444E-001 1.423E+0032020 4.994E+005 1.374E-001 1.354E+003

AR0003I3

2021 4.994E+005 1.307E-001 1.288E+0032022 4.994E+.005 1.243E-001 1.225E+0032023 4.994E+005 1.183E-001 1.165E+0032024 4.994E+005 1.125E-001 1.108E+0032025 4.994E+005 1.070E-001 1.054E+0032026 4.994E+005 1.018E-001 1.003E+0032027 4.994E+005 9.682E-002 9.538E+0022028 4.994E+005 9.209E-002 9.073E+0022029 4.994E+005 8.760E-002 8.631 E+0022030 4.994E+005 8.333E-002 8.210E+0022031 4.994E+005 7.927E-002 7.809E+0022032 4.994E+005 7.540E-002 7.429E+0022033 4.994E+005 7.172E-002 7.066E+002

Selected Air Toxic: Benzene

Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 2.137E-003 2.322E+0011977 1.249E+005 4.169E-003 4.531 E+0011978 1.873E+005 6.102E-003 6.632E+0011979 2.497E+005 7.941 E-003 8.631 E+0011980 3.121E+005 9.691 E-003 1.053E+0021981 3.746E+005 1.135E-002 1.234E+0021982 4.370E+005 1.294E-002 1.406E+0021983 4.994E+005 - 1.444E-002 1.570E+0021984 4.994E+005 1.374E-002 1.493E+0021985 4.994E+005 1.307E-002 1.420E+0021986 4.994E+005 1.243E-002 1.351 E+0021987 4.994E+005 1.183E-002 1.285E+0021988 4.994E+005 1.125E-002 1.223E+0021989 4.994E+005 1.070E-002 1.163E+0021990 4.994E+005 1.018E-002 1.106E+0021991 4.994E+005 9.682 E-003 1.052E+0021992 4.994E+005 9.209E-003 1.001 E+0021993 4.994E+005 8.760E-003 9.521 E+0011994 4.994E+005 8.333E-003 9.057E+0011995 4.994E+005 7.927E-003 8.615E+0011996 4.994E+005 7.540E-003 8.195E+0011997 4.994E+005 7.172E-003 7.795E+0011998 4.994E+005 6.822E-003 7.415E+0011999 4.994E+005 6.490E-003 7.053E+0012000 4.994E+005 6.173E-003 6.709E+0012001 4.994E+005 5.872E-003 6.382E+0012002 4.994E+005 5.586E-003 6.071 E+0012003 4.994E+005 5.313E-003 5.775E+0012004 4.994E+005 5.054E-003 5.493E+0012005 4.994E+005 4.808E-003 5.225E+0012006 4.994E+005 4.573E-003 4.970E+0012007 4.994E+005 4.350E-003 4.728E+0012008 4.994E+005 4.138E-003 4.497E+001

AR0003II*

2009 4.994E+005 3.936E-003 4.278E+0012010 4.994E+005 3.744E-003 4.069E+0012011 4.994E+005 3.562E-003 3.871 E+0012012 4.994E+005 3.388E-003 3.682 E+0012013 4.994E+005 3.223E-003 3.503E+0012014 4.994E+005 3.066E-003 3.332 E+0012015 4.994E+005 2.916E-003 3.169E+0012016 4.994E+005 2.774E-003 3.015E+0012017 4.994E+005 2.639E-003 2.868E+0012018 4.994E+005 2.51 OE-003 2.728E+0012019 4.994E+005 2.387E-003 2.595E+0012020 4.994E+005 2.271 E-003 2.468E+0012021 4.994E+005 2.160E-003 2.348E+0012022 4.994E+005 2.055E-003 2.233E+0012023 4.994E+005 1.955E-003 2.124 E+0012024 4.994E+005 1.859E-003 2.021 E+0012025 4.994E+005 1.769E-003 1.922E+0012026 4.994E+005 1.682E-003 1.829E+0012027 4.994E+005 1.600E-003 1.739E+0012028 4.994E+005 1.522E-003 1.655E+0012029 4.994E+005 1.448E-003 1.574E+0012030 4.994E+005 1.377E-003 1.497E+0012031 4.994E+005 1.31 OE-003 1.424E+0012032 4.994E+005 1.246E-003 1.355E+0012033 4.994E+005 1.186E-003 1.289E+001

Selected Air Toxic: Carbon Tetrachloride

Selection Results were All Zero

Selected Air Toxic: Chloroform

Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 3.054E-005 2.172E-0011977 1.249E+005 5.960E-005 4.239E-0011978 1.873E+005 8.724E-005 6.204E-0011979 2.497E+005 1.135E-004 8.074E-0011980 3.121E+005 1.385E-004 9.853E-0011981 3.746E+005 1.623E-004 1.154E+0001982 4.370E+005 1.850E-004 1.315E+0001983 4.994E+005 2.065E-004 1.468E+0001984 4.994E+005 1.964E-004 1.397E+0001985 4.994E+005 1.868E-004 1.329E+0001986 4.994E+005 1.777E-004 1.264E+0001987 4.994E+005 1.690E-004 1.202E+0001988 4.994E+005 1.608E-004 1.144E+0001969 4.994E+005 1.530E-004 1.088E+0001990 4.994E+005 1.455E-004 1.035E+0001991 4.994E+005 1.384E-004 9.844 E-001

•]:i

AR0003I5

1992 4.994E+005 1.317E-004 9.364E-0011993 4.994E+005 1.252E-004 8.907E-0011994 4.994E+005 1.191E-004 8.472E-0011995 4.994E+005 1.133E-004 8.059E-0011996 4.994E+005 1.078E-004 7.666E-0011997 4.994E+005 1.025E-004 7.292E-0011998 4.994E+005 9.753E-005 6.937E-0011999 4.994E+005 9.278E-005 6.598E-0012000 4.994E+005 8.825E-005 6.277E-0012001 4.994E+005 8.395E-005 5.970E-0012002 4.994E+005 7.985E-005 5.679E-0012003 4.994E+005 7.596E-005 5.402E-0012004 4.994E+005 7.225E-005 5.139E-0012005 4.994E+005 6.873E-005 4.888E-0012006 4.994E+005 6.538E-005 4.650E-0012007 4.994E+005 6.219E-005 4.423E-0012008 4.994E+005 5.916E-005 4.207E-0012009 4.994E+005 5.627E-005 4.002E-0012010 4.994E+005 5.353E-005 3.807E-0012011 4.994E+005 5.092E-005 3.621 E-0012012 4.994E+005 4.843E-005 3.445E-0012013 4.994E+005 4.607E-005 .3.277E-0012014 4.994E+005 4.382E-005 3.117E-0012015 4.994E+005 4.169E-005 2.965E-0012016 4.994E+005 3.965E-005 2.820E-0012017 4.994E+005 3.772E-005 2.683E-0012018 4.994E+005 3.588E-005 2.5 52 E-0012019 4.994E+005 3.413E-005 2.427E-0012020 4.994E+005 3.247E-005 2.309E-0012021 4.994E+005 3.088E-005 2.196 E-0012022 4.994E+005 2.938E-005 2.089E-0012023 4.994E+005 2.794E-005 1.987E-0012024 4.994E+005 2.658E-005 1.890E-0012025 4.994E+005 2.528E-005 1.798E-0012026 4.994E+005 2.405E-005 1.711 E-0012027 4.994E+005 2.288E-005 1.627E-0012028 4.994E+005 2.176E-005 1.548E-0012029 4.994E+005 2.070E-005 1.472E-0012030 4.994E+005 1.969E-005 1.400E-0012031 4.994E+005 1.873E-005 1.332E-0012032 4.994E+005 1.782E-005 1.267E-0012033 4.994E+005 1.695E-005 1-205E-001

Selected Air Toxic: Ethylene Dichloride

Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 7.640E-003 6.555E+0011977 1.249E+005 1.491E-002 1.279E+0021978 1.873E+005 2.182E-002 1.872E+0021979 2.497E+005 2.839E-002 2.436E+002

AR000316

1980 3.121 E+005 3.465E-002 2.973E+002 j1981 3.746E+005 4.060E-002 3.483E+0021982 4.370E+005 4.626E-002 3.969E+002 .11983 4.994E+005 5.164E-002 4.431E+002 . j1984 4.994E+005 4.912E-002 4.215E+002 J1985 4.994E+005 4.673E-002 4.009E+0021986 4.994E+005 4.445E-002 3.814E+002 I1987 4.994E+005 4.228E-002 3.628E+002 l1988 4.994E+005 4.022E-002 3.451 E+0021989 4.994E+005 3.826E-002 3.282 E+002 ']1990 4.994E+005 3.639E-002 3.122 E+002 i1991 4.994E+005 3.462E-002 2.970E+0021992 4.994E+005 3.293E-002 2.825E+002 |1993 4.994E+005 3.132E-002 2.687E+002 j1994 4.994E+005 2.979E-002 2.556E+0021995 4.994E+005 2.834E-002 2.432E+002 ?1996 4.994E+005 2.696E-002 2.313E+002 j1997 4.994E+005 2.564E-002 2.200E+0021998 4.994E+005 2.439E-002 2.093E+0021999 4.994E+005 2.320E-002 1.991 E+0022000 4.994E+005 2.207E-002 1.894E+0022001 4.994E+005 2.1 OOE-002 1.801 E+0022002 4.994E+005 1.997E-002 1.714E+0022003 4.994E+005 1.900E-002 1.630E+0022004 4.994E+005 1.807E-002 1.551 E+0022005 4.994E+005 1.719E-002 1.475E+0022006 4.994E+005 1.635E-002 1.403E+0022007 4.994E+005 1.555E-002 1.335E+0022008 4.994E+005 1.480E-002 1.269E+002 t2009 4.994E+005 1.407E-002 1.208E+002 ]2010 4.994E+005 1.339E-002 1.149E+0022011 4.994E+005 1.273E-002 1.093E+0022012 4.994E+005 1.211E-002 1.039E+0022013 4.994E+005 1.152E-002 9.886 E+0012014 4.994E+005 1.096E-002 ' 9.404E+0012015 4.994E+005 1.043E-002 8.946E+0012016 4.994E+005 9.918E-003 8.509E+0012017 4.994E+005 9.434E-003 8.094E+0012018 4.994E+005 8.974E-003 7.700E+0012019 4.994E+005 8.536E-003 7.324E+0012020 4.994E+005 8.120E-003 6.967E+0012021 4.994E+005 7.724E-003 6.627E+0012022 4.994E+005 7.347E-003 6.304E+0012023 4.994E+005 6.989E-003 5.996E+0012024 4.994E+005 6.648E-003 5.704E+0012025 4.994E+005 6.324E-003 5.426E+0012026 4.994E+005 6.016E-003 5.161 E+0012027 4.994E+005 5.722E-003 4.909E+0012028 4.994E+005 5.443E-003 4.670E+0012029 4.994E+005 5.178E-003 4.442E+0012030 4.994E+005 4.925E-003 4.226E+001

AR0003I7

2031 4.994E+005 4.685E-003 4.020E+0012032 4.994E+005 4.456E-003 3.823E+0012033 4.994E+005 4.239E-003 3.637E+001

Selected Air Toxic: Methylene Chloride

Selection Results were All Zero

Selected Air Toxic: Perchloroethene

Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 7.271 E-004 3.723E+0001977 1.249E+005 1.419E-003 7.264E+0001978 1.873E+005 2.077E-003 1.063E+0011979 2.497E+005 2.703E-003 1.384E+0011980 3.121E+005 3.298E-003 1.689E+0011981 3.746E+005 3.864E-003 1.979E+0011982 4.370E+005 4.403E-003 2.254E+0011983 4.994E+005 4.915E-003 2.517E+OOT1984 4.994E+005 4.676E-003 2.394E+0011985 4.994E+005 4.448E-003 2.277E+0011986 4.994E+005 4.231 E-003 2.166E+0011987 4.994E+005 4.024E-003 2.060E+0011988 4.994E+005 3.828E-003 1.960E+0011989 4.994E+005 3.641 E-003 1.864E+0011990 4.994E+005 3.464E-003 1.773E+0011991 4.994E+005 3.295E-003 1.687E+0011992 4.994E+005 3.134E-003 1.605E+0011993 4.994E+005 2.981 E-003 1.526E+0011994 4.994E+005 2.836E-003 1.452E+0011995 4.994E+005 2.698E-003 1.381 E+0011996 4.994E+005 2.566E-003 1.314E+0011997 4.994E+005 2.441 E-003 1.250E+0011998 4.994E+005 2.322E-003 1.189E+0011999 4.994E+005 2.209E-003 1.131 E+0012000 4.994E+005 2.101 E-003 1.076E+0012001 4.994E+005 1.998E-003 1.023E+0012002 4.994E+005 1.901 E-003 9.733E+0002003 4.994E+005 1.808E-003 9.258E+0002004 4.994E+005 1.720E-003 8.807E+0002005 4.994E+005 1.636E-003 8.377E+0002006 4.994E+005 1.556E-003 7.969E+0002007 4.994E+005 1.480E-003 7.5BOE+0002008 4.994E+005 1.408E-003 7.210E+0002009 4.994E+005 1.340E-003 6.859E+0002010 4.994E+005 1.274E-003 6.524E+0002011 4.994E+005 1.212E-003 6.206E+0002012 4.994E+005 1.153E-003 5.903E+0002013 4.994E+005 1.097E-003 5.616E+000

AR0003I8.

2014 4.994E+005 1.043E-003 5.342E+0002015 4.994E+005 9.924E-004 5.081 E+0002016 4.994E+005 9.440E-004 4.833E+0002017 4.994E+005 8.980E-004 4.598E+0002018 4.994E+005 8.542E-004 4.373E+0002019 4.994E+005 8.125E-004 4.160E+0002020 4.994E+005 7.729E-004 3.957E+0002021 4.994E+005 7.352E-004 3.764E+0002022 4.994E+005 6.993E-004 3.581 E+0002023 4.994E+005 6.652E-004 3.406E+0002024 4.994E+005 6.328E-004 3.240E+0002025 4.994E+005 6.019E-004 3.082E+0002026 4.994E+005 5.726E-004 2.932E+0002027 4.994E+005 5.446E-004 2.789E+0002028 4.994E+005 5.181E-004 2.6 53 E+0002029 4.994E+005 4.928E-004 2.523E+0002030 4.994E+005 4.688E-004 2.400E+0002031 4.994E+005 4.45 9 E-004 2.2 83 E+0002032 4.994E+005 4.242E-004 2.172 E+0002033 4.994E+005 4.03 5 E-004 2.066E+000

Selected Air Toxic: Trichloroethene

Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 2.543E-004 1.644E+0001977 1.249E+005 4.961 E-004 3.208E+0001978 1.873E+005 7.262E-004 4.696E+0001979 2.497E+005 9.450E-004 6.111 E+0001980 3.121E+005 1.153E-003 7.458E+0001981 3.746E+005 1.351 E-003 8.738E+0001982 4.370E+005 1.540E-003 9.956E+0001983 4.994E+005 1.719E-003 1.111E+0011984 4.994E+005 1.635E-003 1.057E+0011985 4.994E+005 1.555E-003 1.006E+0011966 4.994E+005 1.479E-003 9.567E+0001987 4.994E+005 1.407E-003 9.100E+0001988 4.994E+005 1.339E-003 8.656E+0001989 4.994E+005 1.273E-003 8.234E+0001990 4.994E+005 1.211 E-003 7.833E+0001991 4.994E+005 1.152E-003 7.451 E+0001992 4.994E+005 1.096E-003 7.087E+0001993 4.994E+005 1.042E-003 6.742E+0001994 4.994E+005 9.916E-004 6.413E+0001995 4.994E+005 9.433E-004 6.100E+0001996 4.994E+005 8.972E-004 5.803E+0001997 4.994E+005 8.535E-004 5.520E+0001998 4.994E+005 8.119E-004 5.250E+0001999 4.994E+005 7.723E-004 4.994E+0002000 4.994E+005 7.346E-004 4.751 E+0002001 4.994E+005 6.988E-004 4.519E+000

AR0003I9

2002 4.994E+005 6.647E-004 4.299E+0002003 4.994E+005 6.323E-004 4.089E+0002004 4.994E+005 6.014E-004 3.890E+0002005 4.994E+005 5.721 E-004 3.700E+0002006 4.994E+005 5.442E-004 3.519E+0002007 4.994E+005 5.177E-004 3.348E+0002008 4.994E+005 4.924E-004 3.184E+0002009 4.994E+005 4.684E-004 3.029E+0002010 4.994E+005 4.456E-004 2.881 E+0002011 4.994E+005 4.238E-004 2.741 E+0002012 4.994E+005 4.032E-004 2.607E+0002013 4.994E+005 3.835E-004 2.480E+0002014 4.994E+005 3.648E-004 2.359E+0002015 4.994E+005 3.470E-004 2.244E+0002Q16 4.994E+005 3.301E-004 2.135E+0002017 4.994E+005 3.140E-004 2.031E+0002018 4.994E+005 2.987E-004 1.931 E+0002019 4.994E+005 2.841 E-004 1.837E+0002020 4.994E+005 2.702E-004 1.748E+0002021 4.994E+005 2.571 E-004 1.662E+0002022 4.994E+005 2.445E-004 1.581 E+0002023 4.994E+005 2.326E-004 1.504E+0002024 4.994E+005 2.213E-004 1.431 E+0002025 4.994E+005 2.105E-004 1.361 E+0002026 4.994E+005 2.002E-004 1.295E+0002027 4.994E+005 1.904E-004 1.232E+0002028 4.994E+005 1.812E-004 1.172E+0002029 4.994E+005 1.723E-004 1.114E+0002030 4.994E+005 1.639E-004 1.060E+0002031 4.994E+005 1.559E-004 1.008E+0002032 4.994E+005 1.483E-004 9.592 E-0012033 4.994E+005 1.411 E-004 9.124E-001

Selected Air Toxic: Vinyl Chloride

Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 1.461E-002 1.985E+0021977 1.249E+005 2.851 E-002 3.873E+0021978 1.873E+005 4.173E-002 5.670E+0021979 2.497E+005 5.431 E-002 7.378E+0021980 3.121 E+005 6.628E-002 9.004E+0021981 3.746E+005 7.766E-002 1.055E+0031982 4.370E+005 8.848E-002 1.202E+0031983 4.994E+005 9.878E-002 1.342E+0031984 4.994E+005 9.396E-002 1.276E+0031985 4.994E+005 B.938E-002 1514E+0031986 4.994E+005 8.502E-002 1.155E+0031987 4.994E+005 8.087E-002 1.099E+0031988 4.994E+005 7.693E-002 1.045E+0031989 4.994E+005 7.318E-002 9.941 E+002

AR000320

1990 4.994E+005 6.961 E-002 9.456E+002 • ]1991 4.994E+005 6.621 E-002 8.995E+0021992 4.994E+005 6.298E-002 8.556E+002 <•]1993 4.994E+005 5.991 E-002 8.139E+002 {f1994 4.994E+005 5.699E-002 7.742E+0021995 4.994E+005 5.421 E-002 7.365E+002 ,1996 4.994E+005 5.157E-002 7.005E+002 }1997 4.994E+005 4.905E-002 6.664E+0021998 4.994E+005 4.666E-002 6.339E+0021999 4.994E+005 4.438E-002 6.030E+002 I2000 4.994E+005 4.222E-002 5.735E+002 '2001 4.994E+005 4.016E-002 5.456E+0022002 4.994E+005 3.820E-002 5.190E+002 ' {2003 4.994E+005 3.634E-002 4.937E+002 I2004 4.994E+005 3.457E-002 4.696E+0022005 4.994E+005 3.288E-002 4.467E+002 ?2006 4.994E+005 3.128E-002 4.249E+002 \2007 4.994E+005 2.975E-002 4.042E+0022008 4.994E+005 2.830E-002 3.845E+002 \2009 4.994E+005 2.692E-002 3.657 E+002 '2010 4.994E+005 2.561 E-002 3.479E+0022011 4.994E+005 2.436 E-002 3.309E+0022012 4.994E+005 2.317E-002 3.148E+0022013 4.994E+005 2.204E-002 2.994E+0022014 4.994E+005 2.097E-002 2.848E+0022015 4.994E+005 1.994E-002 2.709E+0022016 4.994E+005 1.897E-002 2.577E+0022017 4.994E+005 1.805E-002 2.451 E+0022018 4.994E+005 1.717E-002 2.332E+002 !2019 4.994E+005 1.633E-002 2.218 E+0022020 4.994E+005 1.553E-002 2.110E+0022021 4.994E+005 1.477E-002 2.007E+0022022 4.994E+005 1.405E-002 1.909E+0022023 4.994E+005 1.337E-002 1.816E+0022024 4.994E+005 1.272E-002 1.727E+0022025 4.994E+005 1.210E-002 1.643E+002 }2026 4.994E+005 1.151 E-002 - 1.563E+002 ;2027 4.994E+005 1.094E-002 1.487E+0022028 4.994E+005 1.041 E-002 1.414E+002 !2029 4.994E+005 9.903E-003 1.345E+O02 :2030 4.994E+005 9.420E-003 1.280E+0022031 4.994E+005 8.961E-003 1.217E+0022032 4.994E+005 8.524E-003 1.158E+0022033 4.994E+005 8.108E-003 1.101 E+002

Selected Air Toxic: 1,1 -Dichloroethylene

Year Refuse In Place (Mg) (Mg/yr) (Cubic Ft/yr)

1976 6.243E+004 7.697E-004 6.742E+0001977 1.249E+005 1.502E-003 1.315E+001

AR00032I

1978 1.873E+005 2.198E-003 1.926E+0011979 2.497E+005 2.861 E-003 2.506E+0011980 3.121E+005 3.491E-003 3.058E+0011981 3.746E+005 4.091 E-003 3.583E+0011982 4.370E+005 4.661 E-003 4.082E+0011983 4.994E+005 5.203E-003 4.557E+0011984 4.994E+005 4.950E-003 4.335E+0011985 4.994E+005 4.708E-003 4.124E+0011986 4.994E+005 4.479E-003 3.923E+0011987 4.994E+005 4.260E-003 3.731 E+0011988 4.994E+005 4.052E-003 3.549E+0011989 4.994E+005 3.855E-003 3.376E+0011990 4.994E+005 3.667E-003 3.212E+0011991 4.994E+005 3.488E-003 3.055E+0011992 4.994E+005 3.318E-003 2.906E+0011993 4.994E+005 3.156E-003 2.764E+0011994 4.994E+005 3.002E-003 2.629E+0011995 4.994E+005 2.856E-003 2.501 E+0011996 4.994E+005 2.716E-003 2.379E+0011997 4.994E+005 2.584E-003 2.263E+0011998 4.994E+005 2.458E-003 2.153E+0011999 4.994E+005 2.338E-003 2.048 E+0012000 4.994E+005 2.224E-003 1.948E+0012001 4.994E+005 2.116E-003 1.853E+0012002 4.994E+005 2.012E-003 1.763E+0012003 4.994E+005 1.914E-003 1.677E+0012004 4.994E+005 1.821 E-003 1.595E+0012005 4.994E+005 1.732E-003 1.517E+0012006 4.994E+005 1.648E-003 1.443E+0012007 4.994E+005 1.567E-003 1.373E+0012008 4.994E+005 1.491 E-003 1.306E+0012009 4.994E+005 1.418E-003 1.242E+0012010 4.994E+005 1.349E-003 1.181 E+0012011 4.994E+005 1.283E-003 1.124E+0012012 4.994E+005 1.221 E-003 1.069E+0012013 4.994E+005 1.161 E-003 1.017E+0012014 4.994E+005 1.104E-003 9.673E+0002015 4.994E+005 1.051 E-003 9.201 E+0002016 4.994E+005 9.993E-004 8.752E+0002017 4.994E+005 9.506E-004 8.326E+0002018 4.994E+005 9.042E-004 7.920E+0002019 4.994E+005 8.601 E-004 7.533E+0002020 4.994E+005 8.1B2E-004 7.166E+0002021 4.994E+005 7.783E-004 6.816E+0002022 4.994E+005 7.403E-004 6.484E+0002023 4.994E+005 7.042E-004 6.168E+0002024 4.994E+005 6.699E-004 5.867E+0002025 4.994E+005 6.372E-004 5.581 E+0002026 4.994E+005 6.061 E-004 5.309E+0002027 4.994E+005 5.765E-004 5.050E+0002028 4.994E+005 5.484E-004 4.803E+000

RR000322

il2029 4.994E+005 5.217E-004 4.569E+0002030 4.994E+005 4.962E-004 . 4.346E+0002031 4.994E+005 4.720E-004 4.134E+0002032 4.994E+005 4.4 90 E-004 3.933E+0002033 4.994E+005 4.271 E-004 3.741 E+000

flR000323

••on* IB b» UMtf lor OiUnHn-ig Ljndai OM*•* tjndoa, Mrtart Cow**. Hvytad

SVGA

AlA3B1A9B3B2MA5A8A7C1C2C9MaeC488B7aaaaA8AaBIO08caCTcacaAWCIOB11B12C12B19CISC11B14C14D1801oaEiaE14E12E8E8EWE4E2E1nraHBnomJ11MM014IMF17moHttH808OB010H>03012H1A01

0a000000008700

12000120000

aaooo8417000u18

14000880010000

190000

12000a0

aooo01801800

WOOD00

aaooo180

2000480007800084007800078000780004800000

09000000

8100000

8800039

800008*0000

4800000

480000

98000_a —

A ———— _

0000000000000002J0000000u000000000000000000000u0I1*840e0000e22001.70000u00u00

0•M0190012a14u41B1C31M070205.1BJ

. . &40u002*0700IS02788aaa1219«a21•tt4100200noao11e0ie00e4ao002800801001600087a27

PCE

000000000001022aia04300000000000000000000000000aoB00023OuOlaoa4400014eoataoiflflf000ao«00at*00e0OOB0on00002

_-S ——

ice00000000000000000000000aoa0000000000000000000001.80001.200800008

f 1

ooa—— S ——

. T rtrttf"0ndai

000000000000000000000000000000000000000000000000000000000

000000_5_

Chotrt*

000000000000000000000000000000000000000000000

000000000 .00000000000o

Art« SVGA. eondMHdAll units are in ppm

AR00032I*

Appendix D

Wetland Delineation Data Forms

AR000325

DATA FORM JS .__£.ROUTINE WETTJXND DETsSMINATlONnS87 CCS Wettanos Delineation Manual) ————————

Proiect.'SitB: £&trf~ &*</&*Aoolieant/Ownen d&&'&. fdxvfaInvestigator • •xr /-C ^ 1Oo Normal Circumstances exist on the site? Ye£l_(££{PIs tne sits significantly disturbed (Atypical Situation)? c XNoIs tne area a potential Problem Area? Yes (ft$J

(If needed, exotain on reverse.)

Date: &£/& *County: &~)6nyiState: /n& -Community ID:Transect ID:Plot ID:

VEGETATION

•1 :

3..4.

0.7.

Sa_et*»

-to-.H-.T£

IS..16.

;«. i. :'..-• - _••;- J r*- ?u;'*iPvreant af Oafrvnant Soaaaa mat «ra OttU pACW er FAC• (axenioifi

-Aarnanu:

HYDROLOGY

Mwoad D«t» (OaaenOa tn^ 'Straam. La«a. or Tk|a Gau<_ Aanai PhoiaqraonaOOW

M« Macvrtad Oau

n«*d CtearvBQan*; . ,_S*canaa/v indicatar* (2 or mar* raouirva):

Qaeoi af Surfaea Wat«r Cx _finj

Qaom m Pr»« W«t»r in ?in A) rr- finj

: M S«wmad Sail:

inunaacva

Wtf

iin Uopar 11 Inenaa

W« *r M*nuOnftSattinwnt 0«oo»aOratna a PaRarm m Wadanas

r> (2 or mera raouirvaRoet Qiarmais in UeD«r •! Inent*•Mrf L»av»_ 4

Sail Surwv Oau -lauvri 7««t {

Dinar (EAtiatn in Ramanul •

•M-(\R000326

SOILS

Mao Umt Nama(Sana* and Phaa

tSwo«r«wat: ______________ _____ " J rrtiim Ma»Md 7*M? Yea Na

Matmt CXor Mac9« Ca*a« Mojff. Tanura.Hgf*»n fMuB.»tt M»_rl 'Mu **! Mat-tt Adww •f*CT/Cawr««t gmiemi . ate

^x

Hydric Sad

, MtaM fiawadan . ____ Higfi Orgama Camanc in Surfaaa Livar in SanrliM4elW*r " . . . ~_^ " "~_ __ Ofoania Slraaaind inSandv *•«*•_—— "A«M^M«iaiuraRaff»na^ '—— —— Uatad an Lac* Hv<rt« Saia Un ---— -. Kadytfnq Candiaana _ _ Uatad an Na*an4 Hvtfiid Soda Lwc ; ;

ar Law-Chrema Coldn _,_ . __ Otfwr (EniMi in Rwnadut ____.' •..".. ."

Ramants:

WETLAND

(CitfatWadand Hvdfatagy Praaam/ Yad Ma —

So«J« Prvaanc/ Ya*

(Ora*.,

Is (to* SamoMng Paint WftMn a WaVand? Yaa

X

flR000327

g-'DATA FORM

ROUTINE WETLAND DETERMINATION(1987 CSE Wenanes Delineation Manual)

Proiecs/Site: $"* &//&/Aooiicant/Owner <&'*£''£•[ 1*r— rVInvestigator f%jt- . fsr> /Do Normal Circumstances exist on the site? Yes ^NcpIs tne site significantly disturbed (Atypical Situation)? X ) NoIs tne area a potential Problem Area? S'es <go>

(If needed, exniain on reverse.)

Date: B / X iSCounty: Xfen&-X.State: /

CommunityTransect IDPlot ID:

v\/>ID::

VEGETATION

Indieerer

i.

4.

S.

6..

7..

8.

Srr.ru

s.10..

11.

12.

13.

14._

1S._

16.

Percent of Dominant Sovete* met ere OBL. FAC^V ar FACsino FAC-I.

Remenea:

HYDROLOGY

ra Recanted Data (Oesenoe in Aemenui:__mi_r Sireem. Lwte. er T«le Gauge

Aeoei Photagrvaney- _ OtBer/\_ No Racartad Oet* AvwlaDla

n«wl C&eervetione:

Oaatn of Surface Weier *— (irU

Q«Rfi to Pr*« Weter m Pin /I/** _ fin.1

Qefltn en S«ur«ed Soil: /yff~ flpj

Weeand H>«n)iagv Inoieaten:. Pnmary Indicecon:

___ inunaaceaSetunned in Uoper 1 2 tncnee

_ water Menu

_^_ Seoimenr Ovoowta

Seeanoary inoieeioni (2 er more reourvol:OadUed Root Otennei* m Uooer '.t Incfle*Weter*StBn«d L»ev«»lAcal Satl Survw Oeu

_ _ FAC-Meutm 7«tOmar (CxDl«n in Rernanul

m^^—— »a » «* ^

RR000328

SOILS

Mao Unit Nemo(Sanaa and Phnei:

Taxanemv (Suttgrawi:

*,*!. 0T l-nPT";Oeoin Matrix Color

/ rlHel Ott varvaaane>xCoflrirm Maeead Tv»a? Yea No

X !Macda Calan Maree Taxiur*. C«nereaana.rMun***i Moml >ltninaenee/Canm«r Smierwf*. tte.

/ \// "/

/ ' 'T

/X *

Hydrie Sail Indicator: X

1 Km HLjLjil—j - 1 IIIIUMH

SuiXdic Odor_ Aquia Moieture Re^ma/Redupno Candioona

_ Gtoyad ar Law-Chrafna Calan

_ Cancreoont_ru- High Orgetve Camam in Surface L»var in Seno ».. Organrt Screew«tg in Sandy Soila

Uatad an Lacd Hydric Soto Li«t * * <_ Uatad an Naaamt Hydrie Seila U«ti _ Ochar (EntaMi in Aamarlul

Rements:

/WETLAND DETERMINATION

"iw ro p n roc Vegatanan Pvvfani/ vY*JWedand Hydralagv Prwam; Ya«Hydnc Soda Preeant/ Y*» (

Na (Crctat (CrcJ*

"S ) , I* tm« S«no*in4 fame WIlMn a Weaand? X Yea y r1-£**ffipP £*&st ^ ——

oy

AR000329

-l -»

DATA FORMROUTINE WETLAND DETERMINATIONU93? CCS Wenanos Deiineaticn Manual)

Project/Site: &<& PA//&SAoDiicant/Owner A6s£sd' fX fa/Investigator dk/£- X_^K

Do Normal Circumstances exist on tne site? Yes < p)Is tne site significantly disturbed (Atypical Situation)? <25* NoIs tne area a potential Problem Area? Yes /ti$

(If needed, exolain on reverse.) ^ ^

Date: S/*/?*County: y jtitsyOWState: X MCommunity ID:Transect 10:Plot ID:

VEGETATION

t.

3.*.

5.

a..7.

I/ ErfC.

10..

11.

Soectr* Srrtruf* indieirer

1*-.13..

**•.IS.

16.

Percent of Domnent Soeciae tnat ere OS1_ FACW or FAC(eKcmoino FAC-). * ' ."''"' "**.'"T' ——

Remenu: <*£.

HYDROLOGY

___ Recorded Data (Oeeenoa in Remanui:____ Strvem. LMO. or Tide Geuge^ Aenel Phoiogni0ne

V" _ Other/V No Racordad Oeu AvWaole ...

•«d Cbearvavarte:

OOaom at Surteee Weterr OrU

Deem ta P™- W«ter in Pic /r/T (in.}

OaoOl ta Saturated Soil: f fr _ OnJ

Remanca: - ' •'-:'" V'-"1V :7. -••*-«• *= - -*.--* r-..- ,- - **

WeOend Hydratagy Inoicarara: •• "-,;• •_ " 'Ptmwry Indteator*: - -- -.--..,.- _ .. . .

_<_ inunaatea_i_ Satumad in UoDer 1 Z Incne*

__ Water Menu._ OrrfT Unee

. - - Sediment OeooeinX Oretnege Pettoms m Weoanos

SecarMery indicatan (Z or mar* reouireal:OadUed Root Chennvia in Uoo«f 1Z Incne*

_ Watar^StMtMd LaavMLoeM Sod Survey DataFAC-Neutm Ta«Otner (£zoJ«n in Remanut

... ......... .™__RR000330

\

SOILS

Mao Unit Ni(Sen** and Ptiaaai: __________________________^_____ Oramaga CUaa:

fSuftgrawat: - . --.-..._'""" __ ~ "~-" / ______ Canftrm Mao»aa, Tyoa? Yea Na

.Oeotfi - ': Matrat Cator"' MaoMCalara - Macoa Tavnira.

>V<?f>T«*i Mami Abuf»at**ce/CgBT> tT amieruf*. ete.

z_ __ x

.______ ' Cancmaana _ _„___.__.„,____ ____.•" ;Hhrac Emedwi , , ; __ High Organ* Coment in Surface Uv*r in Sanav S-l»

__ Svlffdte Oder"" —" '" : ~| t Organ* Streewng in Sandy Sail« '"~~" J' ~' ''__ •;Aduic Maiatun Reama * , Uaiad an Laca* Hydrid Saila iiitt ~ ^ :

__ Redudng Candiaans __r Uatad an Hawiwt Hydlic Sotfa Uct ' - • -— Clavad ar Law-Chroma rnlan =z=——— Otltar (EaatoMi in RemarMt _,. . . .." .„._,!- .

Rentenca:

WETLAND DETERMINATION

Vagnawn Prvaam? QCa) HaWedaitd Hydrvt*gy Prteem/ Ya» N*

Soila Ptveant/ "" Ya« Na Is tfta Stfming Pomt Wltfiin a Wedand? ( Yaa ) Na

HR00033I

DATA FORMROUTINE WETLAND DETERMINATION

(1387 CCE Wetianas Delineation Manual)

Project/Site: J l£/k*SAooJicant/Owner: fifafc fa fa/Investigator tffc>*~ / £s* /

Do Normal Circumstances exist on the site? JxpiC 2'is tne site significantly disturbed (Atypical Situation}? (i**)J&.Is tne area a potential Problem Area? Yes (No)

(If needed, exotain on reverse.)

Date: f/f/f/ -County: Ms&etState: ,&•&

Community ID:Transect ID:Plot ID:

VEGETATION

Srren/m

3.

s6..

7.

Soectv. Sfrtnjm t«aie§r,r

9.

10._

11.

1Z._

13..

1*.

is..«

Percent of Oominent Seectee met urn 08L. FAOV or FAC(ezcmoinq FAC-). _ , J 1"1'**", ---

Remeru: H

i_

HYDROLOGY

-_' Recorded Data {Descnoe in Romenut:*•' ' __•. Streem, Lue. or Tide Geuga -

. Aenet Photograene!/• __ Omer

XL_NO Recoraad Data Aveiiatta

neid C£)eerv*QQne:

Oeotn of Surface Weter (_)_ _ fin.1

Oeotn to Fnt« Weter m ?ic /v. _/>" _ **"J

Oeotn to Samnted Soil: AZ ~ RnJ

WeOend Hyarolagy Inaiceton: 'Pnmary Indicator*: ..

^ inunaetecSeturwted in Uoper \2 Incnee

__ Water Menu^ Onft Unee

- .. Seoiment OeoostaV^ Orwnege Penem* in Wettenas

Second ary Indicator* (2 or more reouireo):__O»dued Root Otenrte4e in Uooer '•;___ Weter-St*n*d Leave*_ _ Local Soil Survey Oeu__ FAC-Neutrtf Te«^__ Otfter (Enian in Remanul

Reman: • ' •• ' N— " "• ' -"••"•• i*ur:*wl«-->i ;• ~- • •-— r-.f •*•-.* -i-w i* . --- . .-,.-;

Incne*

"

„, 4

flRO'00332

ISOILS X

Mae Unit Name(Senea and Pneeet;

Taxanomv rSuttgraudl

P*_fHe Q*_enatian!Oaaui

DraHtaao Ceaa: jSBe*d O&aarvaoana jr

* ' CanMnrt Maooed "v 4? Yea Na

Matmc Cjior Mataa Cafan • Mama "anura. Conereoom.

s -

• ?

\

Hydrie

Conanoani_ _ High Organ* Cantant in Surface Liver in Sandy Soil*

" ~ ~"_"__ Organic Straateing in Sandy SWe r———••---•——Regime Uatad an Uc* Hytfnc Saito L»«' " \

, Reduerng Candioart* Uatad an Na n Mydric Sdfla U»t "*•"'', Clayad er U Chrome CffHer. j.- .. _ pmar (g«* n in Remartu)——..__:-.__'

Remenca*

~7

WETO-AND

Vagvcnwn Pmam/Wedand Hvdratagy Preaam/Hyane Soda Preeain/ Yew Na —

(Grtiet

la trua S«no«nq Point Wflhm a Wedand? Yew No

oy nOU&AC*

AR000333

DATA FORMROUTINE WETLAND DETERMINATION

:'• 987 CCS Wetiancs Delineation Manual)

Proiecr/Si»: $S*s4 tfeJf&SAooiicant/Owner jf fa J W-V1 n vestJcator &o <- /<F/n /Do Normal Circumstances exist on the site? Yes (Is tne site significantly disturbed (Atypical Situation)? < 5f) ifeIs tne araa a potential Problem Area? Yes No)

(If needed, exotain on reverse.)

Date: /A/£tfCounty: A&r&*c£State: /?//)

Community 10:Transect 10:Plot 10:

VEGETATION

Bf f aiy»f Specie* S_tr-tum

1 . /Va / />

3.*.

5..

a._7.t.

s.10..11..12..

13.

IS..

15.

Percent af Oaminam Soeciee mat are 08U FACA/ or FAC[•xauain FAC-J. "'1

HYDROLOGY

R*can9e< Data (De.enOe in Remenut:_ Streem. LM.«. or Tide Ceuga

_^ Aen« Photo qreoneV _ Omer/ Na Reearaod Oeu AwlaBla

n«*d Ctiaarwnanet

Oeotn of Surfece Weter C_-X fin.)

Oeotn ta Fr»« Water in Pic /T/rT fin.l

Oeooi ta 3«turvted Soil: fUn firU

^ _RMiurui _i? y*vf tf/

Weeend Hvarotogy inoicatamPnmary Indieatars:

_m_ inunaetad__ Saturated tn Uoper 1 Z Incne*_ Water Menu

Qnft LJnee_ij Seoiment OeeoMCi>^ Oretnege Pettem* m WeOanas

Secanoery Indiceton (2 or more reauirea):_ Ondized Root Chennvts in Uooer \2 Incne*_ Wetef Started Leevea

lactt Sod Sufwy Oeu_ t FAC-N«utr« T««t

Otftor (Eaailoin in Remenut

RR00033U

1SOILS______________________________________________________^>

Mao Urwi Neme ^r * j(Senea and Phatai: _,.____. __ Omnaga Caaa: S_ _ [•

field O&aarvaoane S* *Tuenemv (Svtogiwdi: __________ __ __________ Canftrm MeooeOxTvve? Yea Na

0«tn Matnx Color Maoia Calara Mama ,S Tenure. Caneraaan*._ *fruf*tf> c</Cflfffftit 3rnic tr . etc.____

Hydrie Soil Indicator*:

< Concraaoni ...... .Eviaad n High Orgaree Content in Surface Layer in Sandy S»

_ SullWtt O br __ Organic Strea«ing in S«ndy Soda,_ Aquia Majatura Raguna _ Uatad on LAU< Hydrie Saila Lwt___ Rodu6ng Condition* _._ Utad an Havana) Hydrie Sad* U*t

CMvad ar Lo<»-Chfome Catoni Othar ifjcokmn in Remarlul .....

WETLAND

Vega Mean Pweant/Wetland Hydratagy Prvaam? Yaa No

Sod* Preeanc/ Yaa Na

tCrdai

Is true Semoung Paint Wltfwt a Wadand? ( Yea ) No

oy

flR000335

DATA FORMROUTINE WETLAND DETERMINATION

!'987 CCE Wetiancs Delineancn Manual)

Proiec=/SJte: &$/! tb//**/Aoniicant/Owner /T n ^ X&*-,- fInvestigator S*AJ *- / £srt '

Do Normal Circumstances exist on trie site? Yes <ao2Is tne site significantly disturbed (Atypical Situation)? <£e}J NoIs tne araa a potential Problem Area? Yes^^No)

(If needed, exolain on reverse.)

Date: £/$~/?%County: Mrrt4>sr(State: 'yy?vO

Community ID:Transect ID:Plot ID:

VEGETATION

OommeT "»f*r So»-t»» Stnrum tndieeror

i. -?£,,*,< e$k&f A- ffct*)*Z. .*f /urf'h M O£<—3. < X-X * #<vi>< / //C-A.s.6.

7.

a.

Percent of Dominant Soeciee Wet ire OBL. FAOV or FAC(•xauoin? FAC*).

Ramanu: J *+S *&?& **f++- --?** * **~

Domnenf »*f*r Soeeip* Sfr.ruirt maietror

S.

10.

n.1Z.

13.

1*.

IS.

16. '

*"''

HYDROLOGY

.._ Recarted Octe I0«_enae in Aemencj):Streem. Laxe, er Tide GeugeAenel PhotogreoneOmer

V^ No RecwQed Oeta AvwiaDle

"*td Cbeerveoon*:

rOQeam of Surieee Weiert *• — fin.)

Octroi to Fr*« Werer <n Pttr r\J/r fin.]

OeoOi to S«iume<l Soil: «y7" finj

RementK ,t>>/T?J*X £?rT<S. « (T-V

Weoend Hyarology Inaieetor.:Pnmery Indicator*:

_ inunaeteoSetunned in Uoper 1 Z IncneeWeter Mems

^ Onfl LJnee

X" Dreinege Pirterm rn WeOengsSeconoery Indicators tZ or mere reoutreol:

___OndUwJ Root Chenneia in Uootr *,t lncn«»_____ Weter-Staned Leeve*

L0cM Soil Survey OeuFAC-NeutrM i e»tOW»r (Esitan in Remenu)

flR000336

SOILS

Mao Umt NomeCSeneo and Ptiaoai:

T ojcenamy fSwftoroudlt

*-.*,. Qefsrtrf-.0«tn Matmt Calor Mono Colon

Qrorftaoa G*fxf ' |Held Obaen*OBona - *Canftrtjr'Moooed Tyoa? Yeo NaX ^t

Man* ' / Tomira. Cangradono. . s

/ n

7Hydha Sail Indicator*:

. IBiUiaol .-„_.„--. - Concretion* __._..__... ... .. . ..._____ Ht*»c Cotoedon .X __ High Organ* Content in Surface Livor in Sandy £•

~,^ StrffMo Odor /'~ ~" _ __ Organia Spooring inSandy Soilo_ - - - ---•— —__ Aguie MoiatUf* Re^mo * " ___ Ustod on"Uc* HydrfC Sate U«t__ Reducing Candioans _ Uatad an NaaanaJ Hytffid Soda Lbt

d law-Chroma Colon . Othar lEjgtmn in Kemarfcal __._.. _..i_,7 '..

Remeras:

WETLAND DETERMINATION

H^Mrvpnync Vegvtvoon P oont*Wedand Hydro*ogy Prooant?Hyonc Soda Pt*iaiu/

TBW

Yoo

No (OnsetNo -—Na — la (ft* SemoMng P«nC Wltftm o Wedand? (f**) No

RR000337

DATA FORMROUTINE WETLAND DETERMINATION

(1937 CCS Wctianos Oelineaticn Manual)

Proieci'Site: 4%j5f/ 6fe//**sAooiicant/Owner f<-7<£r"V sZ,.~)U,Investigator fk)*- / £s?7 'Do Normal Circumstances exist on tne site? Yu j3p)Is tne srce significantly disturbed (Atypical Situation)? (Jei NoIs tne area a potential Problem Area? Yes (tfoi

{If needed, exolain on reverse.)

Date: £/*T/?8County: Sfa ffState: /7?ft

Community ID:Transect ID:Plot ID:

VEGETATION

wO* ***# T *)"*T 5O9CtV9 5fTiTtU*W 'fttJfCVfOF

1. "/ ^ f &/$#(&i' /&* j Tu>J-z. <fc>*,t <~ts,*P'>»i*s & s /tru*3. '4.

S. - - *

e.7.B. -f - - - .-». •. - .- .»!-» : ,".. -: '•_',-

Dorvtnenr *•T«T Soeetrv Srr»njm "»oietrer

3.

10.

11.

1Z.

13.

14. ' '

IS. !. *

Ptreem of Oonvnent Soeoe* met are OSL. FACW or FAC(ezcmoing FAC*). - " *"

Remenu: X o c -7 *' ' ..... <%* j *> -£?s*' A^ &G.&'r~ -'JLX,

JX, .. j ry* &9&f f Jo/, '->

- - ' ' ~ "• • - '"' ' • '• "*' ' ~, . . i

j

HYDROLOGY

___ Reearoed 0«t» (De*cnOa in Remarul:^ Screem. Le«e. ar Tide Gouge^_ Aenei Photograone

I/ __ .Other/\ No Racanod Data AvarfaOle

e*d Cbcarwoon*:

n* m af Sur4*ee W«er *• — - fin.)

•fnn ta Fr+m Wvter in Pic A/ ft fin.)

n«0ot ta Saturated Soil: /VJ±L _ finj

RamentK _^_i.>ye— »- CV/». "

Weoand Hydralagv Inoicators:Primary Indicator.: .

_ inunaateoSaturated in Uoper 1 Z IncneeWater Menu

__( Onft Line*_^ Seoiment Oeooeiay^ Drainage Petteme m Wedandi

Seconcery Indicator* (Z or more reoxurecl:Osdiz*d Root Chennvi* m Uooer ;i IrenesWater-StBn«d Leave*Loe« Soil Surwy Data

Omer (Eaoiein in Remcnul

AR000338

SOILS_________________________________________ , j

Mao Umt NamefSenea and Phoaoi; Dramaga Caaa: .•_• _ ____ 1

Pie* Obaarvovona <•' |T«xanofnv iSuoorouoi: ~ "* "-"'_____ • Confirm Meoo<d 7ypa? Yea Na

Oeotn Matnx Cslar Motto Colon Mono S? Tenuro. Canaroaona.MoffTwr

Hydno Soil Indiootuiai

,. . ConcfQBona. . ___.., , ....____..•eaon _A High Orgof*o Content in Surfooo Uver in Senoy SoiU

___S««o1dOdor ~" "_ _ Orqonio Streaming in Sandy Soda —-———-- —__ AdMa Moiotura Re^mo " " __ Ua«ad on Local Hydrto Soilo U«t —•*—"••

(aduong Condioona Lltiod on Nooon Hydno Soilo Liat uClayed of LawOifomo Colon . ... __Ott»or (CaiMi in Ramonut _—... V. "':_...

WETIANO

Hydfophyoc Vagatnon Prwem?Wedond Hydrology Proaam?Hywio Sod* Ptieaiit/

<?££> No iCnael

Yoo No. ——&Jitofc*f

ICreJei

la true S«no»ng PoHiC WltJw o Wetland? / *O Na

AR000339

DATA FORM **ROUTINE WETLAND DETERMINATION

('987 CCS Wettancs Oelinea'rtcn Manual)

Proieci'Site: &&$/ /&/v*lSAooticant/Owner /j&sfa '{S**JbsInvesticatcr tfoi- X £-SH

Do Normal Orcumstances exist on trie site? 5*<C s)Is tne site significantly disturbed (Atypical Situation)? Y© NoIs tne area a potential Problem Area? Yes (^

(If needed, exotain on reverse.)

Date: /7 fffCounty: /4_>?£State: si

CommunityTransect IDPlot ID:

*4ID::

VEGETATION

Soeetex

5-.«._7.

8.

S.

10-.n._iz..13.

IS..

16.

-Percent of Oomtnent Soeciae mat are OBL. FACW or FAC(exauding FAC-).

Remeru;

HYDROLOGY

__ Reea

^NoR

S*»d C&i

Oeotn

Qetnn

Oe«rm

rood O«ie tOeeenO* in Remanut:__vStreem. Lwie. or Tide Geuge

Aenet Photograon*^ ^ Otrivrecofload Data Avwleeie

af Surface Water f ) finJ

to frmm Water ift Pic X/X_^_f»nJ

ta Shunned Soil: ** *l » .0nJ

Waaand Hydratogy Inoicaton:pnmarv Indicator*:

____ inumatadSeturvted in Uooor 1 Z Incnee *

_ Wet er Menu_ Onft Une*Seaiment Qeoo«io

_ Qrvnege Pertem* m WedenqsSeconoery Indicator* (Z or more reouireot:

Oadiz*d Root Chennei* in Uooer *.Z incne*__Weter-Sl»n»d Leave*

Local Soil Survey Qeca__ FAC-Nautral Te«

Otnar (ExDlain in Remanu)

Remena: firwftQ- 0*~ ?*/*• " ^ '"

AR000340

SOILS

Hydrie Sod Indioocora;

_ Conoreoort* ___ High Orgafao Comom in Surface Lever in Sandy__ Organic Streeung in Sendy Soila

Ltotod on Lac Hvdna SoMo Uot''__ Uatod on Novonoi Hydrie Soda List

Otftar (Cniwi in Remarkj) .

WETLAND DETEHMINAT70N

Hydnjortyoe Vegetooon Prvoom?Wetfand Hydrology Prveam/Hyvne So*le Pr*eont/

/Yoo) No fGrtfolSrg* No ——• n F*/W — .

(Crdoi

Is tr-e SemoMig Paint WhMn o WeOand? /Y>o J Na

Oy

RR0003I4I

DATA FORMROUTINE WETLAND DETERMINATION _/0 ,

(1987 CCE Wettanos Delineation Manual) ~ ' ~~

Project/Site: *j*fX **&&Applicant/Owner A& r*/ &>**&?Investtcator: &t*jt /*Tsn

Do Normal Gr cum stances exist on tne site? Yes (3)Is tne site significantly disturbed (Atypical Situation)? Sftt tfoIs tne arva a potential Problem Area? Wrt $

(If needed, explain on reverse.)

Date: ft&/?£County: >fc£-*<i-State: & b

Community ID:Transect ID:Plot ID:

VEGETATION

1. j r***/' , rt*. it &*> /r3. Ml~ /*£*+>*> ~7~

/. V3. < i/<Z "*.+*&•'<*. s)**"*"*-*' r

f t7.

9.

1°-.11.1Z,.

13.

1*.

IS..

16.

Percent of 0 eminent Soecta* tnat ar* 08^ FAC" or FAC(excluding FAC*}. ~

Remaru:

HYDROLOGY

_ Recanted Dot* (OeeenOa m Remenul:Str*em. Lute, ar Tide Gauge

. Aenei Photograone

/\ No Racortad Data Avedada

netd Ctiaorvatian*:

Oeaai of Surface Water CX finj

Deotn to Fr»« W«tar in Pic /"// (InJ

Oaetn to S«nmted Soil: A^f* finJ

Remarvos *£ 0(-'**-Jr~ ; r pc.fr " - - -:

Weoond Hyonrtagy inoicoton:Ptwnary Indicator*:

__ tnwnoateaSaturated in Uoper 1 Z Incnee

__ Water Menu__ Onft Line*

Seoiment Deoe*iQ>C Qrotnege Petteirw in Wedenoi

Seconoary (ndieaton (Z or more reouireal:Ondiied Root Chennet* in Uooer '. Z Inene*

___ Wat*r-Stjon«d Leave*Locri Soil Survey 0*u

__ ( FAC-Neutr** Te*tOtner lEacstMn in Revnanut

SOILS

\

Mao Unit NametSene* and Pn**at; Oramogo C«*a: _

Betd O&*arvaaan*Taxonomy (Suowowot: _______________ Confirm Maooad Tyo« x' Yea Na

Doom Matnx Color Moid* Color* Mont* £a£tura. Coneroaono.M«i»Tt

XH rtrie Soil Indicator*:

_.Hwtoool / '•' Concrooon* . ......... -__ Ht*M CatoaooiyX _ _ _ _ High Orgarec Cont*nt in Surface Liver in Sanr • S

SuUtdicOdotX _ Orgonia StfeeKJng in Sandy Soil* _"_ /___ Aowc Moiriton R*gimo Uatod on Local Hydhc Soil* U*t__ Roduong CAndiocns __ Uatod on Nonnol Hydric Soil* Lwt__ GIoyM or Law-Chrome Color* - __ Othor (Sxaimn in Mamarkal/ _____

WETUVNO

Myeraariyac Vegovoon Prveent/Wedortd Hydrotogy Prevent?Hyanc Soil* Preeanc?

X?*a) No ICrdot-Yoo No • — -Yea Na -

(C a

l« tm* Swnming Point Whhin o Wedand? C*™) '

?4 AR0003lt3!\'-' A

DATA FORM "^ ^ /7ROUTINE WETLAND DETERMINATION

(1387 CCS Wecanas Oelineancn Manual)

Proieci/Sjte: Ptof* fiSr&SApplicant/Owner $Arifaf ' (at~&/Investigator / j X v* /

Do Normal Crcumstances exist on tne site? Ye_? (tioj1Is tne site significantly disturbed (Atypical Situation)? ( «3> NoIs tne ar%a a potential Problem Area? Yes $>

(If needed, explain on reverse.)

Date: o/ /ffiCounty: jbtfvef.State: /frt>

Community ID:Transect 10:Plot ID:

VEGETATION

3omm*«f *•»«? Soecte* Srretu Indreeror

1. r7<A nxx " /1 /V" / t*0* A(f '&r jtstr y' /** ^ EA? \A)3. ^t^ey 7f'>'tT<g*. fr @R£—4.

5.

a.7.

i." • * •

Ptreern of Pominant Soeoe* mat ere OBl_ FACW or FAC(•xoueinq FAC*).

Remenes: __2^ — _X L £&?r?*£ "~ ,.. / ^ //y<A - j$Cts" st ft*~+*& Ls*f*****~

/

n_rr-m«m w»nT Soecres Strsnjm i«0ietter

s.10.

11.12.

13.

1*.

IS.

IB. -«• -.-...- ;

-- - —— -• - • - - — —— -• -• —— -.— --. ;

HYDROLOGY

__ Recoraad Oata (Oe*cno* in Remenui:Stream. Le~*. or Tide Ceuge

_^ Aenw Photograon*..*• _ OmerA- No Recanted Data AvvlaOla

n*M3 Cb*erv*aon*:

Qanm of Surfeee Water L S (in.1

n«rm ta &•• Weter m Pic / ^ (in.l

n Mti u ««iunned Soil: /l/f* finj

ReiiiM**' £ty>r*Sjt*C &>?**- 0Jr- #!•* <«

WeOend HyonMogv tnoicatonn ;Prwnary Indicator*:

__ inunoatea_ Setunneq in UoDer 1Z Incne*__ Weter Menu_ Onft Linee

V Orvnege Penerrn m Wedena*Secenaery Inaieotar* (Z or more featured:

Oadized Root Chennet* in Ueper \ 1 Incne*_ Water- Started Leave*

Local Sod Survey Oeu_ PAC-Neutnt Te*rOmer lExslain in Remental

< /£*#*/>**'*- • — -

fcf-<r L- - * ,^I

rt

SOILS ^X^ *

Mao Unit Name ,x^ ' 1{Sen** and Ph**ai: ________________________________^___ Omnag* Co*>: ^ I

fie* Ob-arvaoorj*-Taxanomv (Su»«rouoi: ________________________________. Canflrm MooM Tyo*7 Y*a No

°*ow **«« Cator Motto Colors MOW. / T*«ura. Cmrooona.JTC.______

Hydrie Sail Indicator*:

Kito*al .X _ Concraoon*Cojdedon _ ^ Higri Organic Contvnt in Surface L»v*r in Sanov

, SwIIWo Odor , Onaania Streaming in Sandy Soil*Aque Matotur* Re^ma _ UaUd on Local Hydhe Soilo U«tRoAtong Condioons __ Uatod on Nooonat Hydric Soilo U*r*loyod or Low-Chromo Colon __ OttMr lEnlam in Remoriu)

0 /nements:

X-'

WETUXND DETERMINATION

HyOroorrvtic Vagooraon Pr**om?Wedond Hydrology Proaam?Hyone Sotle Pi**oiu/

C&ftD Na (Cre**tYe* No —Y*e Na -

.+ S».I*

(Gndei

^ \l> en* Semoung Point Within a Wedand? V^eo Jto

ay

AR0003l*5

DATA FORMROUTINE WETLAND DETERMINATION

(1387 CCE Wetianos Delineation Manual)

Pfoieci'Site: /&*$/ &fi&sAoolicant/Owner fifa£&C st**M*sInvesu'catpr /J&u£ S&01

Oo Normal Grcumstances exist on me site? Yss /NgIs tne site significantly disturbed (Atypical Situation)? /rei NoIs me area a potential Problem Area? TVs <$2

(If needed, exolain on reverse.)

Date: £ A~/fCounty: / ^ '•*<State: S#J>

Community ID:Transect ID:Plot ID:

VEGETATION

joeete. ___ Stratum

T3.

S.

6.,

7.m

I.

Comment **yf 3o*ett«_________ Stratum fajeafor

3.

10..

11..

12..

13.

15.

Percent of Pomtnant Soeae* mat are OBl_ FAC// or FAC(exouoing FAC-l.

Remenu:

HYDROLOGY

r__ Recoraed Pot* (0**eno* m Remerut:__ Stream. L*«a. or T_Se Ceuge

Aanol Phetegraon*\f __ otn*r

/£__ No Recorded Pau AvwlaCM*

n*»d Cb*ervaoane:

ODeem af Surface Water - fin.)

Oeotn to Frw Watar in Pic /L//' fin.)

/ /y4-Oeetn to Samrotad Soil: f f\ fl-j

Remamo: ^ ^ r/fy> ~ <& £"

Weoand Hyoralogy Inoicetor*:Primary Indiootor*:

___ inunoatad__ Sotum*d in Uooor 1 Z Incne*

__ Water MenuOnft Line*

^?< On*neg* PeRem* in WeoendsSeconaary Inorcaior* (2 or more reoureal:

Oi»dU*d Root Chermvl* m Uooer '•! tncn**_ u W*t*r-Stoined L**ve*

Loc« Soil Survey Q*u_ FAC-NOUV* T*«

Omer lEnlain in Ramenui

-,-tT - AJkt -

flR0003U6

SOILS

Mao Unit NameCSenea and Phaaat: _____________ _______________/Oranogo Caaa:t5raino

S Raid Ottaarvooon*/ToKononw tSuogrovolt _________ __________£_ _ Conttim Mooood Tyoo? Y*a No*——————————————T

Oaotn Mount Color MotB* Colon / More* Tonura. Con«ro«ona.MO left'' A puffd *nc*rCtfff O*T amjC UT . OfC. ___

Hydho Soil

_..... ^^ Cancraoon* . _ . . ... ___w Gsioooon _ High Orgarac Content in Surface Uivar in Sana-

tor _;~ ~*_ _ Orgor-o Siro*ejnq in Sandy Sotfa - ""'_, Agiao Moi*tur* R*guno "~ Uatod on Uc-< Hy nd Soilo Uat 'f~_ Reduang CondtQons __ Uatod on Nooonal H rte Soilo Uat-___Cloyod or LowOiromo Colon Othar l£™iawi in Ramanta) . . . ._.——— -..

WETUXND DETERMINATION

Hydroorryoc VagaoHMn Pr»**m7Wedond Hydrelagy Pr***m7Hydnc Sod* Pi leem.

YaoY**

No ICrdolNoNo

(Cm*

1* tft* S_mo-r*g Point Whhin o WeOend? / ** J h

AR0003I*?

DATA FORMROUTINE WETLAND DETERMINATION

It987 CCS Wenancs Delineation Manual)

Proiecs/Site: &S/ J /'tyAooiicant/Owner: dLrfird '(S~jUsInvesticaton / ^ X >'

Oo Normal Grcumstances exist on the site? Yes (No)Is tne site significantly disturbed (Atypical Situation)? YM NoIs tne area a potential Problem Area? res <tfo>

(If needed, explain on reverse.)

Date: #/£/?*County: /V ^ *efState: S#A

Community ID:Transect ID:Plot ID:

VEGETATION

9emt«*i»T *»»»T Soeete* Strerum Indicatori . -J n/ e£&sus fr fr ^ *3.4.

5.

a.7.«. . - ...

Percent of Pominant Soeeiea tnat we OBL. FACW er FAC(•xetuoing FA C-l.

R*m*ru: - j/£ -•£*+#- ,-< —- • -/oO

Don-"i*«T "--f Sotct*. Srr*njm i"SieBtor

3.

10.

n.12.

13.1*. . . --

IS.16. ------

.. <? -,- . ---- ^

•- - - - -• ---•*—*- -• • — ' —————— ' ———— - — - .

HYDROLOGY

Racomad Pata IDevenDe in Remarul:Stream. UMLO. or Tide GauceAenei Photo areone

\/- _ Other£\_ No Recalled Oato AvwlaDla

Se»d Cba*rv*«on*:

0*o0t of Surface Weter XX Tiru)

Oeooi to Fr»o Wat*r m Pic /V£*~ finj

Qeotlt to SoniFBtad Soil: s? /< flnj

Weeand MyonHagv Inoieatonr• Pt u nary Indicator*:

inunooted^_ Setumed tn Uoper 1 2 Inenee

Water Menu_ Onft Line*

2^ Oreinege Pettem* in WeOeno*Seccnoery Indicator* (2 or more rvouireo):

mi_ ODdiz*d Root Chertnei* m Uooer : 2 Incne*Water* Stan*d Leave*

__ Lacal Soil Survey OeuFAC-Neutnl T*«t

ji_i Oth*r (Cmtain in Remanu)

Memono: f/O f . <"<< 0 Xv* ^ 'C<3L/3 /

RR0003U8

<\

SOILS

Mao Unit NemefSene* and Phaaat:

Tovonomv (Suftgrovoi: •-•______ ______ Confirm Mooooa TWO? .Yea Na

0*oin Maun Color Mate* Colon More* / Temtur*. Conerooono.fi£C£e*l Horiton_._. fMur**xt Manry_ tMum«4i Mot*t> Abunqjnee/ConTi tn Structure, *te._____

X/More* /Atnjnajne*/Com

XXxx

/

Hydric Soil Indicator*:

Hi*to*al .' Concraoon*i_jmM Hraoe fiotoadan / _ High Organic Content in Surface Liver in Sana*___ Sulfidw Odor / ~\~ ^_ Onjenio Slraaiing in Sandy Saila " - - - —__Aqw«Mai«urfcR*g»na " ""'" Uatad on Loc* Hydne Soil* U*t

_ Roduang C ndioon* _ Uatod on Nooonol Mydfio Soda lift_ Ctayod or/Low-Ouomo Colon . .. Other (faalain in Romanui ..Jt_ _ _ „_ ;.

Remams:

WETLAND OETEHMINATIONC

Hydrvohvae Vagoovoon Pr«**m7Wedond Hydrology Pr***m?Hyone Sad* Preeant?

/ M) No (Crelo)

Yaa Na^

(Cnalt

1* im* SamoHng Paint WhMn o WeOand? (*$ M

ay

DATA FORMROUTINE WETLAND DETERMINATION

1*987 CCE Wenanos Delineation Manual)

Proiec=/Site: &C/ tft-6k/Aoniicant/Owner: jfa " SX»»WfInvestigator Cto* X^vrf xDo Normai Grcumstances exist on tne site? Ye* $9)Is tne site significantly disturbed (Atypical Situation)? (Yej) No.Is tne area a potential Problem Area? "Yes &i

(If needed, exolain on reverse.)

Date: XSVCounty: /fc £ >*State: /#£

Community ID:Transect ID:Plot ID:

VEGETATION

Oomnetr PI«"T Soecte* Strenjm Indiecror

1. JW<,r, ffytC f /T1- /$***>*•<•ab«

3.

4.

S.

6.

7.

8. : - - "

Percent of Dominant Soecie* met are OBU. FACW or FAC(exaucring FAC-K

Remero: - < C _. < -<-i (CL .-t)0 X

*4,«. / ^

OoT«-*nr »*»«T Soeet-- Srr»rum '"Ore true

9.

10.

11.

12.

13.

1*.

IS.

IS. •

;

HYDROLOGY

_ _ Raearoad Data (Oeecnoe in Remenui:Sire em. l_«xe. or Tide GougeAenet Photogresne

\s ..-_ Olftar/v No Recorded Oata Awledt*

n««d Cb*erv*uon*:

Oeotn of Surface wetar _ f ) finj

Oeom to Fr»« Wn*r m Pic /*/ // finj

Oeotn ca Scomted Soil: /I//} finJ

RevnaRs:

Weoand Hyorolagy Inoicetor*:Pnmary Indieaton:

__ InundatedSeturated in Upper 1 2 Incnee

_^ Wetor Menu. Onft Line*

_ _ Seoiment 0 •00*10^ Oneinege P«nem* in Wedencts

Seconoary indicator* (Z or more reduirec):Oedized Root Channvi* in Uooer ". 1 Incne*

_ Water-Stoned Lceve*Local Soil Survey OataFAC-N*utnri i e«iOther (Exoiam in Remencjl

AR000350

'I/ *f(

SOILS

Mao Unit Name[Sen** and *h***i:

Taxonomv (Sudgrouoi:

P*_r1l* Qfggnonm;Deotn Matrn Color Motto Colon

.1

•• i

. f

Omnaoo C**«: ',FteM O&aarvaeon* -*Conftrm Maooao Typo? Y^o^Na

^L •Mom* Taxnira Concroaono.Abuf»«»»»c*rCe-m-(_t Sm*-T_r<». *te.

/

/

/

/

//

/

Hydric Soil Indicotam

_ Conentoon*__ High Organo Content in Surface Layer in Sanov '4. Organic Streewng in Sandy SoilaLatad on Uacat Hytirte Soilo Li«t

_ , iioons Liotod on Nogonri Hydiie Soila List___ Glayod orJ& Ovemo Colon .._ Other (Exolam in Remark*)

Remerxa:

DETT-aMINATION

H rv 9O AVOCWedond HwHyonc Sod*

V*g, rtBOOn Pr*_*m?Irolagy Preeent?Pi eent/

rvo.7YaoY**

^

)NONoNa5*4

(Crdalt- —

*Va^

(Crc*-s* — s

la tnia Semoung Point Wh>_n a Wetland? \Y**J Na

a

flR00035l

xDATA FORM

ROUTINE WETLAND DETERMINATION(1987 CCE Weflanas Delineancn Manual)

Project/Site: firt ftl/fayApplicant/Owner / (TX rVInvestigator ffae- /£srt '

Oo Normal Grcumstances exist on tne site? Y_s (JTOIs tne sha significantly disturbed (Atypical Situation)? *cs) NoIs me area a potential Problem Area? res t&

(If needed, explain on reverse.)

Date: &/T/P&County: /ftx » — State: /9i$

Community ID:Transect ID:Plot ID:

VEGETATION

Soeei-« Sjr»tvm Indicator

3.

A.

S.,

e.7%

I.

3.

™>.

'K12.

13.

IS.

Percent of Dominant Soecie* mat ar* 08t_ FAOW or FACJ *«cniding FAC-1.__________________________

Remencs: --- -.——-_..._ , .—— . ._ , _- .^

HYDROLOGY

_ Recoraed Oata (D**enO* in Remenui:Slreem. Low*, or Tide Geug*

_. A«nel Photograan*y/" OmeriA^ No Raeonlad Pata Avodaote

"*«d Cbeerwoone:

Q««m af Surteee Water C,X UrU

neatn ta Fr»* Werer in Pic /**' ' finj

/ll d—QeotA ta Squinted Sad: /y/ »nJ

Renia*«i;

WeOand Hyoroiagy tnoicatonnPnmary Indicator*; -

_ inwnoated_ Seturwted in Uoper 1£ Inene*__ Weter Menu__ Onft Line*

"X Dreinege P*R*m* in Wedanq.Secorvery Indicator* (2 or more reouireot:

Ondized Root Chermet* in Uoo«r ~>Z tncne*__ W*t*r>Stain*d Leave*

Local Soil Survvy OauFAC*N*tjtr*t i **tOmer (£miain in Remencjt

AR000352

SOILS

Mao Unit Name(Sen** end Pho**i: Oromega

Taxonomy ISyOgrovoi: _________ _______ COBffrm MaO»ao Typo? Ye* Na

Maun Color Moot* Colon Mon* Tonura. Caneroaona.

Hydho Soil Indicator*:

., _ .._ . _ __ _ _ Concraoon* ,. ___,, ..........ion _ High Orgono Content in Surfooo Lavar in Sandy S«

Odor ~ " _^~ ^^ Orgonia Stroacing in Sandy Soila ———— — • —_^, Aoiaa Moiatur* R*9m* " Uotod on loo* Hydno SooVLUt ~/.. Rodueing Condioon* _ Uotod on NovoMi Hydrie Soilo List ' '

or Le -Chroma Colan .. Other (Eaten in JUfnoriu) ___._"A '.•; ' -**

Rements:

WETLAND DETBWINATION

Weoand Hy<Hyane Sod*

«• - -»*g*cooitrotogyrVPriieiit/

m Pr**om?•aam;

Yoa No —

(Crete*

1* 0-* Samaiing Point Within o Waflond? <JtW No

•---•vj -«tt--

HR000353

,/DATA FORM

ROUTINE WETXANO DETERMINATION(1387 CCE Wenanos Delineation Manual)

$#>

Proiect/Site: St-yf .//*//&/Applicant/Owner: 46syfar*( / /" VJ .KA/Investicator &J*- /f/n 'Do Normal Grcumstances exist on the site? _ Yes (S3Is tne site significantly disturbed tAcypicai Situation)? (Je NoIs tne area a potential Problem Area? Yes (No)

[If needed, explain on reverse.)

Date: 8 /?fCounty: Aksrt*'-'*State: ShJ)

Community ID:Transect ID:Plot ID:

VEGETATION

3o~Bt * r ** T SpjCjg Srr*mm Indteafor

1.

3.

S.,

6..

7._

8.

Qemtnam *-»*f Soecte< __ Sff»fum

9. ____________________' •

10.,

11._

12..

13._

1*.

1S--16.

Percent of Dominant Soeciee tfiet are 08U FAC*// or FAC(excluding FAC*).

Remanu:

HYDROLOGY

__ Recorded Oata (Deeenoe tn Remanut:Stream. La*,*, or Tide GeugeAenM Phoiagraone

., _ OtherA No Recorded Oata AvwJeCle

ne«d Cbaorvenan*:

Oeatn ef Surface Wetar: C (inJ

Oemn ta FTM Water in Pic A' " ,,finjA/ 4—

Decnti ta Scnirated Sail: ' ' (inJ

RemjrKa? •

Weoend Hydrvtagy Indicators:Primary Indieaton:

_ Inunoated_ Seflimed in Uoper 1 2 Incne*__ Water Menu__ Onfi Line*

Sediment Oeoo*iajC. Onvnege P*nem* in WeOands

Seconoary Indicator* (Z or more reourta):OBdixed Root Chonnei* in Ugoer :i IncnesW*t*r- Started La eve*Local Soil Survey Oeu

__ FAC-Neutrtf 7**tOOier (Exaiain in Remanul

AR00035U

\

SOILS

Mao Unit(Sene* ana PhaMt: ___^_____________^—————^——^_____ Oroinago CU»e:

Re* ObaerTaxonomy tSuoorouoi: ________________ Conn** Maaoeo Tyoo? Y*o No

Oeotn Maun Calor Mooio Colon Mono X Taxwro. CoMrooono.Mo**T> fM_».e*« Moretl

Hydrio Soil Indicator*:

Concmoon* . ...,_ __...... .,.,__ High Orgofw Comont in Surface Layer in Sanov

__ __" ' —^ OrgoiM StTM«ing in Sandy Sofla - • - •- ~__ Agw/Moiatur* R. me — - __ u ttd «n LOM* Hydiio Soito Urt ,

Candioono __Limd on Naoenai Hytlhc Soilo Lwtor Uw-Chromo Colon -- __Othor (Exatmn in Remark*) _ _ . / _ . ;

Remar

WETIANO OETEHMINAT1ON

Wetland Hydrology Prooont ?Hy«nc Sod* Pr***nc/

Ye*Y*a

No (CrctolNo —

(Crete

la ooo S«-enng P*im Within o We, end 7 fi*y M"

DR000355

DATA FORMROUTINE WETLAND DETERMINATION

(1287 CC£ Wettanos Delineation Manual)

Proiact/Site: CS '/*/fa/Applicant/Owner: Mtr&reJ &u-~*yInvestigator &)*- >V/#

Do Normai Circumstances exist on the site? Yes /RbIs tne site significantly disturbed (Atypical Situation)? / es) J2\Is tne area a potential Problem Area? T1" <£S/

(If needed, exnlain on reverse.)

Date: £/S*/frfCounty: flfa&rd.State: /n&

Community ID:Transect ID:Plot ID:

VEGETATION

Str»Tum

i.

3.

4.

S._

s._7.

S.

Oormnenr "»nr So.dM Sfrerur- '"tficirer

S.

10._

11._

'*•.13..

1*-.IS.

16.

Percent of Dominant Soecie* that ar* OBL. FACJV or FAC(exaucrtng FAC-}.

Remenu:

Recorded D*t* (Oe.enOe in Remerui:Streem. Lane, or Tide Geug*

__ Aenel PhotogrooneOlfier_._._

No Recwded Data AwlaDle Weter Maru

CA*erveaona:

Oeoin of Surface Water

„W«.r m Ac

ta Setunrted Soil:

O (inJ

finj

Weoand Hydrology tnaieetors;Pnmary Indicators:

^__ inundatedSaturated in Uoper 1 2 Incne*

Onft IJneeSeoiment Oeoenta

Pattern* in WeOenasSecondary Indicator* (2 or more reouirea):

Oadiied Root Chermet* m Uoo«r M Incne*___ W*ter-St*n«d Leave*__Loc« Soil Survey Oata

Om*r

RR000356

J

SOILS

Mao Unit Name > • 1(Sana* ana Phnai: __ Ononogo ^ '_ _

field Qttoo«voo7onaT«K*nomv rSuttgrouot: • - Conflfnvntfaoooo Typo? Y*a Na

Motm Color Moca* Colon More*

Z.

Hydrie Soil Indieatonc

. L Concnaon* - . - . . . ._ ,. _Hf*M f toeoon ^ High Orgonrc Content in Surface Lavwr in Senoy

Odor _ ~_~ " ~ ,_ „, Orgonia Scroacing in Sandy Soil* _ ._.._"!__ A fio Moiatur* R*9m* __ U»iod on Loetf Hydric Sod* Lurt

tang Condition* __ U*t*d on Novonol Hydlio Soilo lot '" ''Gleyod ar Law-Chroma Colon Olnor (£n**n in Mantanto) .... .,.

Remaota:

WETTJXNO OETEHMINAT1ON

Hydraom/OC VegoVMWedond Hydrology PrHy«nc Sod* f*re*ant/

m Present/••am?

Voo No (CrdolYe* M* Yoo No . —4,«#/ c+f

(Crctal

1* owe SatnoMng Poinc Within o Weaand? ?T99\ No

ay

flR000357

DATA FORMROUTINE WETUXNO DETERMINATION

(1987 CCS Wetianos Delineation Manual)

Proi«cr.'Sira: jSfr$4 jkJ?&sAnniieant/Qwner: fiksfcst. fl V*"Investrcator /5u - 7£/n

Oo Normal Circumstances exist on trie site? <rej) NoIs tne site significantly disturbed (Atypical Situation)? Yes (±$Is tne area a potential Problem Area? £Jf?P No

(If needed, exoiain on reverse.)

Date: £/&/?#County: /fa fy-atState: /*L&

Communitv ID:Transect ID:Plot ID:

VEGETATION

3om**e*r •l»wf Soeete* Stranjm Indicator

1. Jcv'tAbr' f*(At+"'at*r /¥ &Mu +Z. ' ''3.4.

S.

6.7.

a.

Percent of Dominant Specie* met are 081. FACW or FAC(excusing FAC*|.

Rements: . _._ -. . , .-. ... . . .. _.. ._ .. __

Oo-mnanf **«nr Sotete* Srf»tum '"Oiettor

3.

10.

11.

12.

13.

u. " " •- •'IS.16. -.-..,.._

-. . ———— .._-..-.. ... , - .._ — -— • —

HYDROLOGY

__'_ Recorded Data IOe«enOe in Remenui:_ Streem. La*o. or Tide Geuge

Aenei Photo green*___ Omer

X n No Recanted 0*u Avwlaole

S»«J Cbeerwnona:

Decnn of Surface Water ( s firul

Qetroi to Fr*« Water m Pic / ^ finj

Oeotn to Smroted Soil: A/**~_ firxj

MamancK

Wooand Hydrology InoicatorstPrimary indicator*: - .

_^_ inunoatad__^ Satumed in Ueoer 1 £ Incnea__ Weter Menu__ Onft Line*

y^ Omnage Penarrt* m WedenoiSecor-lery Inoieatar* (Z or mora reduiredi:

_ Oodued Root Channei* in Uooer *> 2 Incne*__ Water-Started Laavo*

UACJH Sod Survvy Oata__ FAC-Neutr* 7e«

Other (Exahan in Remanul

AR000358

SOILS ______________________ I•B HHH H M|__MH Ha HH BO|a*B MHBHHI BMiHMH ^ HM BIV ^ ^ ^ ^ _H_l_ _ __l| _H « MM£!<4t

Mao Umt Nome(Senea end Ph**air_______ Omnag* C**a: _ __ __. •'

Feid Ob**rvaoan*Taxonomv (SuAgrouot: ______________ ___________ Confirm Maoood Type? '

Oeoui Maim Calor MocB* Colon More* T**turjxCiner«oon«.Mewl * frjnqaffc**Catw*Tt 8m*e Gre, tte. ____

Hydrie Sail Indicator*:

, Hf*to*ol / _ _ Concreoon*, Ht*«« CaioedopX __ High Organic Content in Surface Laver in Sendy, Sulfidio Od r _ Organic Str*e«ing in Sandy Soile, A«M M ctur* R*guna _ Uotod on Lae Hydrie Soil* Li*t

Condioons __ Luted on Nooonot Hytfrie Soilo Li«tor LavrChromo Colon __ Othar (Eniam in RenwUt

flemermi

WETLAND DETERMINATION

Hydrophyte Vegvamon Pr»*em?Wedond Hydrology Pvvaent/Hyonc Sod* Praoent/

tfv*) No (GrelolToo No ——Yoo Na ~"S&nMt C*s

[CrcJet

It tm* Swnoung Potnc WUtm a W*dand? ^Y«o) N«

x

oy

AR000359

OATA FORMROUTINE WETUXNO DETERMINATION

(1387 CCS Wetianos Deiineancn Manual)

Praiic=.'Site: /7 -V A '*VAnnlieant/Qwnen farv srt Sa u »>V

Do Normal Circumstances exist on me site? Yes Q*o)Is me site significantly disturbed (Atypical Situation)? (?e$ NoIs me area a potential Problem Araa? Yes (No)

(If needed, exolam on reverse.)

Date: 8 /&/?*County: / ^ ^State: _•*,£

Community ID:Transect 10:Plot ID:

VEGETATION

3omt»»e»»T •l»«f Soecte« Stratum Indicator

1. -S/vl-ftwr rw>'«<u M /ftfti-fi2. <fo*cAf 'eMttw # Ffc»+-3.4.

5.

9.

7.1. " " "" -" - ' -

Percent of Dominant Soeciea tnat are OBL. FACW or FAC(excmoing FAC*). „

Remenu: 2 '«AU*-X--/S6i*:'t,X ~&S.*&*

Oe*T«tner<r »»«"r Soeciev Stratum "«dtetfer

s. •10.11.12.

13."

1*.

IS.

IB. ' "' —

.-.• . ' .-•-;:•, -.. - - ———

HYDROLOGY

, Recorded Oata (Oe*cno* in Remenul:___Str»*m, La*a. or Tide Geuge_ Aenei Photogrean*

\s* — _ OO»*rA No R*cttrd*d Oeta Aveilabla

ne*d Cbaerwoom:

7Oeotn of Surface Water <— S (IrU

Oeotn to fn* Water in Pic /V ~ (inJ

Deotn to Summed Soil: X*vT (InJ

Remareo; " -11 -'• ' • ' • -" '~

Weoand Hydroiegy Inoieaton:Pnmary Indicator*:

_ inundated_ Saturated in Uoper 1Z tncne*Water Menu

_<i_ Onft LJnee

^^C Orainege PeRem* in WetlandsSecondary inoieatar* (2 or more r*duiredt:

__ Ondized Root Channel* in Uooer '1 Inen**___ Watar-Stamwi Laava*

Local Soil Survey Oeta. _ ( FAC-M*UV« T*«t

Omer (Exstain in Remarxjt

AR000360

SOILS_____

Moo Umt Nome(Senea and Phe*ei:__________________________________ Onwiogo C««

RoM Oaaervaj_T«onomv tSuogrewl:_______________ _________ . - Connim M*Wed Type? Y.o N

Oe«eriBiiimOaow Momx Color Moot* Colon Mom* S Tenure. Caneroaons.SSSSS3L M7*It" (Mun*** M«»«Tt o+j*** MoMtt A&uf-a.- Cgmtett 8tr--rui"i. «te.

Hydrio Soil

Concreoon*. __ High Orgarva Content in Surfece Layer in Sonav So**

"';~ """ — ~_ Orgonio Sireaajng in Sandy Soil* —- -— — —••••••'Maiatur* Me^mo " Uatod 'on UeofHydrtc

Reduong Condioons Listed en Neoonal Hvdno Soite LiotGlayod or LowChramo Colon ...... . __ Otnar t£x*mn in Kemarkol ____ •

Reraema:

WETLAND DETERMINATION

Vagaiooon Pr**ant? ee) No ICrdotWedond HWratagY Proaem? T»S No —Hyanc Soila Prevent? Yea Na >• on* Samoiing Point WHT*n o Wedond7 ej? No

AR00036I

DATA FORMROUTINE WETUXNO DETERMINATION

(1987 CCE Wenanas Deiineaticn Manual)

Praiaer/Sire: &l*f , &#&*Aoolieant/Owner fltrfaA _3 J<vInvestieatDr: f*M)£ /£/*

Do Normal Grcumstances exist on the site? Yfis No)Is ma stta significantly disturbed (Atypical Situation)? (£e£ N£»Is me araa a potential Problem Area? Yes &)

(If needed, exolain on reverse.)

Date: «4/*>County: / ' / <-State: /%D

Communitv ID:Transect ID:Plot ID:

VEGETATION

1.^_ S rratum In i afor

»JT // ft

3.

6. tfT.me.

Severe* Stratum '"aiearor

10.

11.,'*-.13..

14.

/y

IS..

IS.

Percent of Dominant Soeoe* mat are OBl_ FACW or FACtexouoing FAC-)._

Hemanu: ---—/£./-<,-

HYDROLOGY

__ Reel

S\ Ho*

Se»d Ctt

Deotn

Oetnn

Davtn

tided Oota (Deecnoe m Aemerui:_ Stream. I_*K*. or Tide Ceuge

AeneJ PhotograeneOmer

acomed Oata AvwIaOle

aerwuon*:

of Surface Water ( finj

to Frve Water m Pic /"/I finj

to Saonted Soil: -- fl/A (InJ

Wetlend Hyaro**gy Inwcetor*:Pnmery Indicator*:

_ Irkinoated_ Setui *t*U in Uoper 12 Inert**_^ Weter Menu_ Onft Unee___ Sediment Oeoonay£ Ononeg* Pattern* m Wedandi

Secowary Indteaiort (2 or more reouiredl:Ondiied Root Channel* in Uooer '• 2 Incne*W*ter-St*o*d Laeve*Local Soil Survey OatJ

__ FAC-Newal T*«Otner (EacBi«n in Remanu)

Remerw ' - - •" - • ' - - -

RR000362

SOILS _________-_.___________________-__-^_______^_Mao Umt Name(Senee and Ptimei: , ________ ^ __ —— _ ^ _ Onwwge C«««:

FfeM O&eorvoaon*Confirm M.ooo« Ty,.?

Merit! Ab-nd*ne*/e-mte-T

Hydria Sod Indicator*:

_ ___ _ Concreoon* _..,_^... _ r High Organ* Comom in Surface Layer in Sandy

~— 77J;_.~ ,,,. ~ Oraonio Stree no in Sendv Soito -nir* Regurw "" ~ '*' Llotod on Local Hvdrie Soio LiotCondioono ..Uocod on Nooonol Hydric Soilo U*t

or Uvi Chromo Colon __ Other tEniaM in Ramerfc*! _

WETIAND OETERMINATION

Hvdroprfyae VcgetMon Pr*oom? Q_ "• (Gn*o»Weoand Hydrology Prveem? Tw No •——

Soila frveenc/ Yeo No — la tree Swncwng PoiM Wltfm o Weflond7 ** No

oy

flR000363

DATA FORMROUTINE WETUXNO OETHHMINATION

(1987 CCE Wecanos Deiineaticn Manual)

P reject/Site: ts-Xn l/A4*&/Aooiicant/Owner r y-v-X /"oWKvInvesticatort £%*)£ / £?ft

Do Normal Circumstances exist on me site? Yes <Sg3Is tne site significantly disturbed (Atypical Situation)? <YeJ NoIs me area a potential Problem Area? * t^i ^es ^-^

(If needed, exolain on reverse.) V!*'''*

Date: £/& </?&County: / o_v*CS:ate: /ffdCommunity ID: ______^Transect ID:Plot ID:

VEGETATION

StretM-- Indicator

1.

Ci; #?/•'**!3..*._

5.

ffr-

«..

7.

s.

OofTtnenf ~*snr SotCtt. _______ Sffanjm

s. At'O-.11..

I*-.13.

1*-.is..16.

Percent of Oonvnent Soeae* met are OBL. FACW or FAC(excluding FAC-).

Remenu: xr-* *- **fy — — - -'- ~-?- ->- - ,.-.--.--- .. *._...—r —,—,-*——- •-/ - - , J/—/ / J ^ V I j* f m \^_tff ft. (T~ £>*?*-*- f r - ± $ •/'** J u /"

HYDROLOGY

___ Recorded Oar* iDeienoe m Remenut:Sffeem. LBM.O. or Tide Geuge

_ Aenei Photograoneis __ OtfierX No Recorded Oata AvwJeoJe

ne*d Caaervetien*:

n»am t*t Surtace Water C/ finj

O rm ta ft-— W«rer in Pit: //A .(inJ

DMA IA Sninted Soil: A/T flnj

Riinam*' -< " A C/i£>8_ - "/*•£ ^ >/*/**-

Weoend Hyoratogy Inoiceton:Pnmory indicator*:

. inundatedSaturated in Uooer 1 2 Incne*

^ Water Menu^ Onfl Une*_ Seoiment OeoonciX Orwnege Pettem* m Wedenas

Secorwery indieetor* (2 or more r*ouredl:Qvdized Root Channete m Uooer >2 Incn**W*t*f>5t»r»ed Leave*LocM Soil Surv*v Oau

__ FAC-N*uvtt T**tOtner lEmian in Remenui

.

^ IH H MBHMaHMMaBMMaHMHHHHI W 1 "*

AR000361*

SOILS

Mao Unit Name(Seneo and Pneaoi:

Taxonomy fSuftgrvuoi:

*,*,. QtirBfT-0»tn Matm Color

OromeoeyCU**: '1,Ft*t*r'0ttoervaaon* |j/CoitHm* Meooed Typo? Y** Na

Mono Colon Mom* Tenuro. Concroaom. !fMuM**ti MOT*TI /Ab_-«*f»e*/C*fTrr»« rryy-u»-». *«. -

X J/ r.

/ ' - - - • - ^

/ . . . *

-/ •-Hydrio Sod IndiioiorosX

^^^ HrnsvM __ „^ ^ Mt0Q£ Q0IW0Qfl

>9ulll tttt Otfor " *,/ Aquie Moictur* Refpm*

/___ Reducing Condioons__ Clayed or LoM-Chromo Colon

— - ._ Conereoon*_ High Orgorea Content in Surface Layer in Sonar ^

;"_ ^ Orqonie Streeung in Sandy Soda -Uoiod on Loe* HXne Sod* U*t

Otner tfcgton in Rementot ... ..

Rement*:

WETLAND DETERMINATION

Hvaropnvoc Viflaiooon Prveent/ CjCvW.aarrt Hydrafegv Proeem? TooHy«nc Soil* Prevent/ Ye*

No (Gfdel (Crtie• *^ j»- ^

No **" t* O-* Samoung Pome Wrltfwi o Wedand? QT*0 Na

oy

AR000365

OATA FORMROUTINE WETIANO OETEKMINAT10N

(1387 CCE Wetianos Delineation Manual)

Praien'Sin: J&&( j£/fe</Anniiearrt/Owner jfas&rif rx/v *JInvestigator X^VX^/t /

Do Normal Circumstances exist on tne site? Yes <tfoIs tne site significantly disturbed (Atypical Situation)? Yes) No,Is me area a potential Problem Area? Yes <rto

(If needed, exolain on reverse.)

Date: £/6>/?t>County: jfafc rd-State: s*-£>

Community 10:Transect ID: 'Plot ID:

VEGETATION

*»*tr Soec»»» Srr_n/m Indicator

a..4.

S.

7._

I.

Depr«ine»r **»f > Soeetf- Stratum n->d>eater

3.

1°-.11..

12-.iav14.

IS.

Percent el Dominant Soecie* met ar* OBL, FACW or FAC(••ouding FAC-). __

Romanes: -—r"T

HYDROLOGY

R*c«

^ NoR

mod 0«t* IO**cno* m Remenul:Stream. Lax*, or Tide GaugeAenal Photegraan*Otfter

ecoraed Ooca Av ilaBla

Se»d Cbcervooan*:

Oeotn of Surf*c* Water £X finj

Oeotn

Deem

to Free Water in Pic A finj

to Sflwnned Sail: & n (InJ

Weoend HyonMogy Inaicaton*Pnmary Indicator*:

_ Inundated_ Setunned in Uooer 1 2 Inene*__ Weter Menu

Qnft Linea_ Seoiment Oeooeia< Or»_nage Pen*rn» m We derma

Secorfoery Indicate-* (2 or more recuirec):_ OadUed Root Channei* in Uoo*r ">Z Inene*__Water»SUmed Leeve*i> Loc* Soil Survey Oau__ FAC-Neutr** 7e«

OtJIer (E»I«n in Romanes)

ftefnantK *-7— ~ -' -^V» ' _/ _ - •- ••-=-=. j- -.- —t---.- -- —— - . .-/ e .»/ r/6,..

flROOO.366

SOILS

\

' - Vv*'" %

^ • 'X.-' , N.

'.

1 /

Mao Unit Name j/ v (Senee end Phnoi: Dnanee* Caaa: ,

Rt*d Obaerveoena JTaxonomv (SuAgrouot: / Connrm Meooed "yoe? Yee Ne

*?"'tr2txrt_a__ / ^0*om Matrix Color Moot* Colors Mam* Tenure. Concraoona. '" \[Inene*) Herixon fMunvet* MO*»T* 'Mu**a*l Moi*fl /AtKina*nc*/Con wT Srnicwri etc.

XX -

Xy/ s*

XXX

Hydric Soil Indicator.;/

___ Ifitiuttt ___ Conereoon*,^_ Hme Eotoedon __ High Organ* Content in Surface Layer in Sandy i

.'-"-"" ftd** Odor Organic Straewng in Sandy Soila - ----- -Z Aqiao Moietur* Repine _rm Uotod on Lac* Hydrie Soilo U*t iXI~ Raducing Condtoen* __ Lined en NeoenoJ Hydric Soila Un

- - ./__ CJeyod or Low-Chroma Colon _ m Other t&oiein in Remark*) . .

R-vnenta:

WETLAND DETEaMINATlON

Hydroohyoe Vegotooon Pr**ent/" Wedand Hydrologv Preeem/Hydnc So*l* Preeent/

<2SY*oYe*

) No (Gnri*»No, —Ne^

(Crdet

1* tni* Semoitng Point Within o Wetfand? (J***) Na

ay nQufc>Cc

AR000367

-/ ->> (/-,

DATA FORMROUTINE WETLAND DETERMINATION

(1387 CCE Wettanos

Proiect/Site: £t*i£ v*.#bAonlicant/Own'cr: > -*6 , 3 -XvInvestigator /Hot- Sf-M /Do Normal Grcumstances exist on the site? Yes (N|>Is tfie site significantly disturbed (Atypical Situation!? X»O NoIs tne area a potential Problem Area? -Ycs /fJo)

(If needed, exolam on reverse.)

Date: g/sfaCounty: jfa-£r<fState: /KJ>

Community ID:Transect ID:Plot ID:

VEGETATION

Srr*njm Indicator

1..•

3._

*.a

5.

7"

7.

Oerrtnefff ***"r 3o*c*rT_________ S rr*tum

a. £*£<«10..11.

14._

IS.#

18.

Percent of Dominant Soeciea met are O8L. FAC// or FAC.' (excluding FAC-I.

&/ */

Remenu:: ,p_

HYDROLOGY

_ _ Recorded Deta (Devcnoe in Remanu):_ Streem. Laxa. or Tide Geug*_ Aenei Photograane

\/" _ OtherA._ No Reconted Oata AvwJeale

n«id Cb

Oeotn

Oetnn

Oeotft

•arveaone:

of Surface Water ( J finj

to Fr*« W*t*r in Pic ^ /**- (in.1

to Santnrced Soil: &— finj

Weoend Hydrology Inoicetors:Pnrnery Indicaiar*:

_^ inunoaiaa_ _S«tur*teo in Uoper 1Z Incrtee. _ Water Meru_^ Onfl Linee__^ Seoiment O*OO*IQ></' Oraineg* P*n*rm in Wetland*

Secondary Indicator* 12 or more reouirec):Oadiied Root Channel* in Uooar \2 Incne*

_ Water-Stoned Laeve*__ Local Soil Surwy Oata__ FAC-N*«tr** Te*T__ Other (Ejoilein in Remanca)

R n vc /?far sore #£ fa_ ^-r/fipe ,..-.,....*...... ,,;»•

RR000368

SOILS______ ___ __ ____________ ______________________________________________________________________________________ V i

Mao Unit NometSenee end Pheeoi* Wfj*** <s( Dnonege Caao:

Fieri Obiefveoen*Taxonomy tSuooreifOi: ______ . _____ Confirm Moooed Type? Y*e Ne

Mount Calor MatOe Colon Merge ' Tenure. Concrevono.

<-'//'7- r r?

'> isfczrt

Hydrie Soil IndieotonE

Concreoon* - ...—.> . . ™———— •„,.'Epioedon _ High Orgenm Content in Surfoo* Lover in Senov

On-onio Str*aeJng in Jangy Soilo ' ' ~", Aoioo Moiature Re me U««od on Ueol Hydno Soito U*tReduang Condioono Uotod on NOMM! Hydho Soilo List' Sloy d of UoerChromo Colon __ Other l&<p**n in RemerMl - -•

Remoncs:

WETUXNO OET-aMINATION

Hydnaphyoe Vegetooon Pweent/ \Y*} "* fdndelWedond Hydrology Preeentr* (V NoHyone So*le Pr«*ant/ C_ ^ "• 1* tn* Someiiiig Point Within o Wedand?

(Cretei

Na

AR000369

DATA FORMROUTINE WETLAND DETERMINATION

(1987 CCE Wettanos Delineation Manual!

Proiec-/Sire: Ac/ l£./&/Aooiicant/Owner ffi.* **- Co PyInvestigator do£ , £sn '

Do Normal Grcumstances exist on the site? Yea to*Is tne site significantly disturbed (Atypical Situation)? (X?* NoIs tne area a potential Problem Area? Yes <&D

(If needed, exolain on reverse.)

Date: ''&/*#?County: /f - LState: M£>

Community ID:Transect ID:Plot ID:

VEGETATION

Sj-*njm__ indicator Qor"**ern ***-r Soecte* Srranjm

a. *Ju*i&uj 'few's_______/^/T

T*-.13.,

14._

_15..

16.

Percent of Dominant Soeeie* that ar* O6L. FAC f or FAC /SUL •/(excnioing FAC-t. . /™*_/4

R*m«nta: /f rf,/ - ^ .- '- *i «>',-/_-r- r-. / /.- '.--/

HYDROLOGY

_ Recorded Data (Oeecnbe in Remenui:^ Stream. LAA*. or Tid* Gaug*

Aenei Photogreane—— Other

A_ No Recorded Oata AvwlaMa

»e*d CA*arveoen*:

Deem of Surface Water fin.)

0*0tn to Fr»» W*t*r in PiC & fin.1 •_. i

Oeotn to Soumad Soil: & (inJ ..*

Remetw** •» " ' --•- - ,-r.w •- - " ' ^~

WeOand Hyarotogy Indicators:Pnmory Indicator*:

tnunoatedJ,A SetUrned in Uoper 1 2 Incne*__ Water Menu

Onft IJnee

X^ Omnege Pattern* m WedenoxSeecnoery Indicetorj (2 or more reouireel:

Ondiied Root Chennet* in Uoo«r «1 Incne*___W*t*r-Su«n»d Laeve*

LOCM Sail Survey Oata_ FAC-Nautfal Te«t

Other (£xxH«n in Remenui

HR00037Q

SOILS

Moo Unit Name * • -(Sene* end Pha*ai: ___________________ ______ Orewwgo COM: -

Obeafveaen*Taxonomv rSuogrouol: _ '_____ _" Confirm Maoo*d Type? —Ye* -Na .

_ , t^~ *r*'Oeotn Meow CaJar " MetB* Colon More* Tenure. Conoreoen*.Metrrt fMu»*e4l Meiet* Abuna»ne*rCawrtOT jtnjetuf*. ottt '

7 r>e "E // /k. "'•':. . • /

Hydrie Sad Indicator*:

Concreaona _, Hr**j« Gpioadon _ High Organ* Content in Surface Layer rn Sandy S«'

Od°' r .. .* . . ,__.. . ~ Oroonia Slreoiung in Sandy '__ Aowe Moiitur* Reffme __ Uowd on Local Hydnc SoOo Li«__ Reducing Candiaone _ Unod on Neoenri Hydrie Soilo Li«V- Cloyod or Uw<hromo Cotnn -- Other (fat*« « Hemerm ———_

Rament*;

WETUXND DETERMINATION

Hydroprwoe Vegetmen Pr»**m7 (1Wedond Hydrology Prevent? . QHydne Soil* Preeont/ (

A) M« (CrdolSP "*eo\ No

-• - (Crete*

1* tnt* Swnoeng Penn Vrlthin o Weflond? ' £•*) N"

AR00037I- X

OATA FORMROUTINE WETLAND DETERMINATION

(1987 CCS Wenanos Delineation Manual)

Prcreci'Site: £*e*f pa/fayAoolicant/Owner. / fetC 3« rVInvestigator /<y / £>#{.

Do Normal Circumstances exist on the site? Yes (tfg)Is the site significantly disturbed (Atypical Situation)? Yes <SS>Is the area a potential Problem Area? Yes (

(If needed, explain on reverse.)

Date: £fe/f(County: C- ' CState: y*>z>

Communitv ID:Transect ID:Plot ID:

VEGETATION

Sjr*~um Indicator

T3.

-5*5.

10.

12.

13.

14._

15.

Percent of Dominant Soeaee met are OBL. FAOV or FAC(ezeiuoina FAC*}. ... ,- '

Remanu: -

V

HYDROLOGY

i_ r Racoraed 0«t* (OeeenOe m Remantai:__^SweorTt. La-,e, or Tide Gauge

AeneJ Photegreoney^ __ _ Omer/\-_ No Recorded Data AwleOte

ne«d Cto

Oeotn

Qecnn

Oaotn

aarveaan*:

of Surface Wat*r ^ , (inJ

to Pre« Water m Pic finj

ta S«mnrt*d Soil: - /< - (inJ

Wettend HyonKegy Indicetor*:Primary Indicator*:

__ inunoated^ Seturated in Uoper li Inene*

__ Water Menu^ OnfT Line*_ SeaimenT OeooeitsV^" Orvnage Penems in Wetland*

Secondary Indicator* (2 or more reouireol:Oadixed Root Channel* in Uooer '.I Incne*

___ Water-Stained Leave*LocM Soil Survey 0«u

__ FAC-Neuui* 7*«Oth*r (Eastern in Romanul

.

MefnafKK " - " " " ' ' " - . - - . - • - - • - - - • - - • • - - •

flR000372

\\SOILS

Meo Unit Name(Sanee ano Pheeei:

Tannomv (Suftgrowoi:

*»*o Ouemine*.Dootn Maim Colorflncne*? Wewron (Munve*' Meitr)

/(-/*- /? 2 5y#er£

-

"

. . .Hydrie Soi IndieouMis

_ _ rfftfWc CDiBV on

_ AOWO Meieaire Regune

J_^GI->eder to Chfomo Color*

RemerK*:

Wm-AND OETEHMINAT10N

''i ^O' rc v v nvA '••m/ f \ftiWedand Hydrology Preoem/ *<H no Soil* PrieeiH/ p

I!Orameoe Caaa: - - • ~ |Re4d Otoaorvoaona .^ .._ . ,r r-'1^Confirm Meooea Ty»o? '"-'Yoo'* No '

.. ..-.- .r«-o,:Mono Colon Mono - T*«turo. Condroaono. ^fMunveH Meif fl Abund*nca/C0nTf •!( Sfiwcwro. *IC.

7 2 s/s, j#*//*tA~ £fo? *£r/£\

-— " .•.-•?!-.. ... _. Jv-.-. ?i

.--—--" -' ——— -•;;-> ,-r

Xj^ Conentoonf _ ___ __ _ . , _. .: ._. ;/ ^_ High Orgofeo Cantanc in Surfaoe Lover in Sanr v

Oroonio Streaming in Sondy Soilo —— -.--•- -__ Uocod on Local Hydria Soilo U«T, Uotod on Nnonoi Hydrie Soilo List_ Other (Crpian in Remark*! _____ _ ____ L— -

•-.- —-v - -• .- ' -'-.-... . • .— »t :••» • -

. - . - *:v -•

No (Gftfol " ICre*No - ~ .No lo true Svnoiing Peint Within o Wedond? (Y No

TTe V f 4

flR000373

DATA FORMROUTINE WETLAND DETERMINATION(1987 CCS We can as Delineation Manual)

Proietr=.'S;te: /**fd &//tyAoolicant/Owner: /]far*&rs(. £.'&**&*Investigator <_&tJ^. v#i

Do Normal Circumstances exist on the site?Is tne site significantly disturbed (Atypical Situation)?Is tne area a potential Problem Area?

(If needed, explain on reverse.)

(Yep -NoYes <fi§Yes fg)

Date: 6/ / 8County: ,/$£/-$•<, --XState: sHb

Community ID:Transect ID:Plot ID:

VEGETATION

Speeres Streiym Indicator

3.

S.,

S..

7.

Qer-tninf **-r Soectgt Stratum^

9.___________________L_____10..11..

12-.13.

1*._

's-.16.

Percent of Dominenl Soeaee met are OBL. FACW or FAC(•xouoing FAC*).

Remeru: -

HYDROLOGY

___ R*cara*d Oeta (D**cno* tn Remoru):Streem. LBK*. er Tide Geug*

__. Aenei Photogreone__ Other

No Recorded Data AwlaMe

SewJ CH

Oeetn

Oeotn

Death

•erveoon*:

of Surface Water fin.)

to Free Watar m Pic (inJ

to Saturated Soil: '~~ finj

Weoend Hydrmogy Inaicaton:Primary Indicator*:

_ tnunoatea.... Seturwteo in Uoper 1 2 Incnee

___ Weter Menu_ Onfl Linee_ _ Seaiment Oeoowo_ __ Oreinag* Pettem* tn Wedanet*

Seconcery Indieaton (2 or more reouireo):OxMiz-d Root Charmed* in Uooer \2 tnene*

__ W*t*r-Stanvd Laove*_ Local Soil Survey Oata__ FAC'Neunl 7e*t_ Other (Em«n in Remanul

(Um-"s j&(«tA£{ fa" fa ^ ***&* J>*+£ (ty*< \

flR00037k

SOILS

Moo Unit Name(Sen** eno Phaeert

Taxonomy (Subgrouoi:

fr,ffl. g p*,!*--

0*ow Matrix Calor Meta* Colon

/

/

/

/

/

//

Hydric Sail Indicator*: /

^^^ rfiato*ol f . . ^_^ ^ rw*Qc Cpiojpdon ^ ^

... SullWo fldor —— __ Aguie Wotanir* Regurie _»_»

_,_ Raduteng Candioono _ __OUved ar Law-Chramo Cater*/

Rem*ncs: /

/WrTLANO DETErlMINATION

Hirtpoorfroe Vegvomon Prveem/ Ye* No ICrdelWettand Hvdratogy Prnam/ Yeo No *""""~Hyanc Soil* Prevent/ Y*e No - — ~

-

D»n. = 1

Eanlrm Meooed Ty»e? Ye* Noy. ........ - . -,

Mom Texture. Concreaono.

/

*'

• : . _ — . . _ •- - ....... . ...„ . ,

.- .

- — ~- - ... - ... . ....

Concretion* .High Orgorae Cement in Surface Layer in Sana >Orgont* Streewng in Sandy Soila - - —— — -LUtad on Locri Hydhc Soilo List"

Other lEniam in Remarks) _ .

• - . . . , i • . - . - .

1* tni* Semoiing Point Within o WeOand? 'Yeo No,

ay

flR000375

•J>iV

t

?

j*

i ~

ROUTINE WETLA.N(1987 CC£ Wetiano

0 DETERMINATIONs Delineation Manual) . • — —————————

Project/Site: j&&{ &//&s Date: <?/£/£$Applicant/Owner - x«fr-fr£> x S&&+JL*s County: v4w *»Investigator rt&ot. :•--• *r ' State: >vf£Do NorrnaTarcumstances exist on trie site? _Yes NQ) "Community ID:Is the site sianificantty disturbed (Atypical Situation)? (Yesj No Transect 10: -Is tne area a potential Problem Area? Yes No) Plot 10: -

(If needed, exotain on reverse.)

VEGETATION " " - ----- - —— -. ~ ..........i. .» . j . - - r

_)of*w»*e"Y **««f Soeeie* Srrvnift* Indicator

\sJJ *&-a*<fak ~.-_ty.«. /5&*U -z.J&.c**s tfM*t#s #• F&X*3. /C/*r- ,,c. ^ / W/-

•'*: jfc~i iM>ft*''~~ # OBL/ f tf9.7. •_.....„-.'g-£ V K*£ R-. i.'.--»J-oost->».Ci Jitrr»-i v*;ip*O rtijJM _

p^m»«*nT " wr Soeete* Stratum i^Qiearor

9. ....„„. _ ...:. . .._—....10.

ti.12.""1 3 . - . . - . - - . - - . - . — . - -1 -. -i Kjir fl Tto« »»•; .Ti i

IS. *1«- ««-..-=,- .i»K

Percent of Oominont Soeaco'thot v* 08L.VFACW or FAC xx^A V -JT -«" """' .-""""_ _ •——».«*•»» Ji^ •:•--! U*>*M» i ii-* t-,»_ S**' ffo ft7 -ill'i(*W,i _ ----. --(••emaing FAC-I. , -: , -—— * r . — —

fl«™.. J ,, -—— >-7 S***%r , rAfifJ* . *# $*& *¥ /&«& ' '

:» r»irr ir -

HYDROLOGY

>~-

*"W

. Recorded Dote (Deccno* m RemantaJ:' - -is. :. __ Stroorn. La»e. or Tide Gauge -.-*-_-.. .-- . . r.-

Aena* Photegreena"!> __ Other/X No Racorted Oata AvwIoOte • ^ r,. .

ne*d Cbeorvovon*:

n- rr, -V SU M. Wat*K ._ ^ «nj

n-,-« m P™. W_-.r ,n Kc A!" finj

9---P ^ MU M* Sad: A/T* _flnj

Weeond Mydfoiagy Inoiceton; : .T — i "* ';••* 1_ — '-•-',Pnmory Indieotor*: ;-; . 4 fc_I" .-.. •

_ Inunoeteo_ .. Setunned in Uooor 1 2 Incne*~ Water Menu

_ Onfl Line* '. _ Seoiment Deooeio _. .... . „ . .,.^ Orvnage Panama in Weflano* 3

Secondary Indieatora (2 or more reauireo):Oadized Root Channeie in Uooar i 2 Incnaa

_ Weter-S Coined L*eve*Loc« Soil Survey Oau

___ PAC*N*UV« ~e«Other iCortam in Remenu) i

ll«MMI»-A "«fy. - * .* '4JC ^- . , ,_,«.XL-. t;t* > -v* .. S ' ^ ^

/xd?-> * *rri-s'M~ -

AR000376

..« 'fSOILS

Mao Umt Nome - s" ''" — — ----- —— — - ••-— —— —— - —(Seneo ana Phooeir' :

i — r *~ . vTaxonomy (SuOgrOMOt! ' --— -- _=tr.. - -

-. • • • ^ - - »t , r «y . W*'* — :~ - \ l! -— ' s, /' 1P'-rUe Pe_eTtBBofg — •• .Oeotn - _' ' Motra Color Moc8o Colon * ' Mono(tneneel Mvifron "- (Mun*e<< Moivrf rMyne^M Metvrt Abvnoa

-- -fc, • - - -~ - -*r- S

- ^

Promogo C u: ^ \PWtO Okoorwoaw* - -

— r- Canftmt Myrifeod Tyoe? ~Yo» No•iu- : if;:iX^-"-vr- -...C ,-X ... Twnure, Concreeono.f*ee _af-ff*fT -' pVpui">, ate.r '>'•"" .* " ~ J.' " ' «--_»—-•»-•

r1

i

7,.- ,../ -,., .1

_ _...__-. .,..„_. .-.-- /_, .... • - - . . • ..,. . :

— ~x.. ...,„_ _ .x~__.„-. — _,_ — -. . - -

Hydrie Sod IndiootorK / ; : :

rfiefBeal i "^ * " Concreoonv

... - —

— - ——— - —— -- -. - - ••••

~ Hnmc bi aoon , & - • High Orgono Comonc in S«irf oeo Liver in Sanay~~ —— ~ SuUUtfOdor —————— ————— ~ O*«onio Streeung in Sandy Soila "'"_"" _

;

J

Anrfo Moieture Revmo __ Uotod on Local Hytfrto Soilo listBtoucind Conaioono __ Uotod on Naoen* «v**« So»o U«

. ^ _ - /Cloyod or U*-Chromo Colon — :-— ——— __ OO*er (Eaton in Memofta) ———— .... _'.-—.

Rema« a:

O.«.J"*._-». •*:.- *.- — .'-j-j-- - *-"-- .-•m>JX i'.t-T*»mni'-nH ^---- J*.-..'* - — - - - •'"*' ; T«MMJ» i''' . • afS 'wr*' ' "r- •> -• ~ —-••-

..-«• --rats -*1- '

WETUXND OETEHMINATION

Hydroohyoe Vogwnon Prwam/,'. fci> No ICrrtolWedand Hydrology Preeant/ ."/„" "Yeo NoHyone Sod* «Teea«/ ._. . . Yeo No —

(Crdel

I* tni* S«no»ng Point Within o Weflond? (YooJ N

AR000377

Appendix E

Ground Water Monitoring Analytical Data Tables

flR000378

tO HW g aoj >- ra• 3 «O |

3 0)< (E

O

O

c/)W « —-J en 3<? ? £2 < KO

O

OW en —

o 3o d d d " d d d d " d d d d d d d d o " d d d d N " d d o d d d d c }s 5 o:

oa

otoLOV -> K•-93• >. (fl5 ro a)O 5 cr

O

« s:T- en

Q D D r 3 D D Z 3 Q 3 Q D D D Q D Q

GO CO CD CO o to CO CO CO QO <O 4 CO „„. CO CO (0 (O fsj CO A CO (O lO'"o ooo^ ^ o o o ^ o ^ o 0 0 0 0 ^ * 0 0 ^ * 0 0 0

D

*f^ ^*^__. "^'TT-^, (Q^^^co1*^^ —. co t o ^ f*i fo ^ M f > _ _ ^ ^ r ^ c o c o_• ^ -j _• CN _• ^• _- *\ CN :=; • _• • I* ^: ^ CD ^L CN _• _j - —; CO lO - _- • _- _- -O O 3 O O O " O O O ~ O O O O O O O O O O O O

DI3^Z)Z3Z>DDDZ)ZJ^D3ZI^3DD^33^ODZJDDD^^=)I3

UJtrQ oi —

"-f ^ ^ ^ . ^ " ^ c o ^ t O ' i c o T r ^ - f t o f o ^ r p f o - v c o c o v c o t o ^ r r - c o c p c od d d d d d d d d d d o d c i d d d d d c i d d d d d d d d d'? < o:

oODZ)=J=)DZ3=)=)DZ)ZiD=)r33D

QV3 m —

10 r - ^ ^ co r co TT co ~F *& co co co co co co ^ co <o r - co co coo d d d d d d d d o d c s d d d d d d d d d d d d d d d d dS < ceo3 D 13 D D

~ g^COTT^ C O C O ^ ^ ~ T ^ C D ~ f C O f O ^ C O C O f O C O ^ h ^ C O C O O O " " " "

o d ^ d d d d ^ d d d d d d d d d o d d d d d d d d d

ZJZ)DI3 D D D3D3 3 D D D D D D D I3DDDDI3I3

^- •"-•«•_. r) -f -f ». eocoto o d o o d d o o o o o o o o o o o o o o o o o o o o o

*

-5m o zt uj Q co

AR000379

•1Olo>O)

X

CQLL1

OCCLL.WLU_JQ.S<COOLUJ

Q

uo>OLOu.to

toUJo:

o

UJUJ

CQ<

in

O

"?

g

C/lCO

f

i

— jQW•^S

CO

-j4jO

CO

o

_,QCO

O

<os

aen s

ra 0)5 C£

O00(71en =:

o:

o

>. f>n 01s o:

a

9 3? £< oi

o

S 35 S< K.

O__

T ro a>5 a:o

ta s

? £< K

o00 =

1 I< a:

-Ja>3

W

ro

3

3

o

3

.d

3

cod

3

^d

D<jd

3

coo

3

d

omethane

In

3

3

CM

3

T~

3

ind

^

G

r-

i-

Chloride

•?.cS

3

3

O

3

r-d

3

r~

3

^d

D,d

3

-

3

d

omethane

gm

3

3

CM

3

COd

C\J

in

3

CDd

CD

0n

fSn

3

3

3

CN

3

~

3

CM

3CM

3

*

3

CM

1

3

3

3

.d

3

COO

3

^O

Dj-d

3

CO

3

d

ichlofoethene

2

3

3

3

COd

3

CDO

3

cod

mood

a

en

O

d

ftene Ch

loride

«

3

3

-ro

3

00o

3

^d

Dj-d

3

oo

3

d

m Oisulfide

£

3 33 33333333333333333333

3333333333333333333333333

d d d d d d d o d d d d d d d d d d d d d d

3 333 333333333 33333

cot-r <o co co^coco ^co ^^.cotocoo d d o d d d d d d d d d d d d

O3Q3333O3O333333333Q33333

<0»a>eO CD ID < D « l D < D t N » < 0 «> CD(D(D*° '* *** d d c> d d d " d d d d ' - d d < 0 d odd

3 3333333333333333 33333

o,rrj.-<rcofO— -co co-rcoco TTCO Tt-r^cococot D ( N " o o d d d d d d < N d d d d l D d d < * > d d d d d

3 DDZ) 3333I33D O DZIDODTfc\if^-fOTTTtO^-^»-'Vtr)cNJCOTr«roc£ier>roo3^j-h.coc»3cr:"~ '~dddw d d d d d d d d d d d

Q3Q333D3OQ3333333Q3O33333

n_«-t> o o e o o o ' D _ | l i _ < D ^ ( O o o t o c O c M . n t o . o c o ^ ' D e o ( pOJ CO Q Q [3^ W o ^3 O CD O O *"" O O O O C

3 333 3333333 3 33333

c N r " c M d d d S M t D ' ° d t N d d d d < o i n d u : i d d d d d

^T c cS (D 9J » o no _. c ® ]R ^ A* ^ ^

s ¥ if s |1| | ii si 1!.! In i i II LI in JiHIiHiimMii!! lit «i£2m2z-;|§|_|Sili-§|^;z|ll£l|.i-

i

i

*h

. i

'• 'I

i

c21 «-> P(A .>»

fi CO

2 g Q11 «?2 .

"O S1 T3 2 fsj

o * ° 2« J E o 13 'is o i £

-j rs n co -J£ o T32 ^ . P n * B<a t. * | -| t3 • :5 £ * i •" p •fl) i_ "P B 'O — n_ OO l D W - l S S - r i ^ O .

UJ^^-JB g^OliH = c S « 0 - s 3T3a<iDce:^-gD t.-4"O " " » " " a IIm o 3 at o CD . .

j

- ^

flR000380

o>

O

LUCCO)3o

5O

op

O

CD2O

,O

UJo:

o

r-

O

up

O

to2O

O

2 reo

0) "3

< cc

o

at 33 *< CC

o

01 "3CO Q)

a

en 3

< £ao

O) ±:01 3

(U 012 CC

oco ±:01 3

3 1)< CC

O

to sOl 3

< a

oOl —CT) =

n u3 CC

O

00 =CT) 3

< K

3"&3

n>

3

3

-ro

3

O

3

-fo

3

O

3

3

O

3

O

3

O

3

O

3

O

[Chloromethane

3

o

3

m

°3

mo

3

o

O

3

3

mo

3

ino

3

mo

3

ino

]Vinyl

Chloride

3

3

r-O

3

O

3

O

3

o

3

3

O

3

N.O

3

O

3

O

3

N.O

[Brotnomethane

3

3

o

3

-ro

o

3

3

•cfO

3

O

3

O

3

o

[Chloroethane

3

3

3

3

3

3

3

3

3

3

3

[Acetone

3

3

-ro

3

-fo

3

o

3

O

3

3

o

3

O

3

— fo

3

o

3

—ro

|l.1-Dichloroethene

3

3

COO

3

coO

3

O

3

coo

3

3

coO

3

(OO

3

COo

CQ

coO

3

coo

[Methylene Ch

loride

3

3

Tf

O

3

O

3

-ro

3

TTO

3

3

rro

3

O

3

O

3

O

3

O

[Carbon

Disulfide

3333333333333333333333333

d d d d d d d d d d d d d d d d d d d d d d

33333333333333333313333333

c o v t o ^ t ^ t c o c o ^ e o c o T f c o c o - r c o c o - " r - ( O c O c od d d d d d d d d d d d d d d d d d d d d d

3333333333333333333333333

d ^ d d d d d d d d d d d d d ^ d d d d d d d d

33 3333333333333333333333

d r g c s ' d d d d d d d d f s l d d d d ' D d d d d d d d d

3 333 3 3333333333 33333

d t N " d d d ' ° d d d d ( S ' d d d d < D d d d d d d d d

33 333 333333333333333333

3333333333333333333333333

o o o o o o o o o o oooo o o o o o o o o

3333333333333333333333333

d ^ d d d d d d d d d ^ d d d d d d d d d d d d

3333333333333333333333333

d ^ d d d d d d d d d ^ d o d d ^ d d d d d d d d

3 333 333333333 33333

co-tf-r coco co— r c o c o ^ - v c o _ — r h - c o c o c of o c > ' ^ o o o 0 ^ ™ o o ™ o o o o u ' o o 'ooooo

I3U 333 333333333333333333

co f o i » - * c o ( o ^ c o c o ^ ' C O c o i v c o < o ^ ' f ^ ( O ( o t od d d d d d d d d d d d d d d o o d o o

. f Il» sill Ii J 1£ S £ ° 1 S l i S - g S S S S1 I 813 S||l| I| i 1 8 .=• 11 s !j_| ^ o S f v i a J g g | i = f 2y S .a "s i" S-- 8 6.yS£co c *f 17 s S ^ p S s e "5 *x039 g , •§ 9 =^9 E w ^ g g w, » 2o5">.S £ E

"cE3 .2i tnc co

si „*. o CD

•0 g1 B S CN

£ S -5 E ow .2 c g_j "5 £ "o 8

S ° e £ a> «« "S 2 § 5 1

*""" ^ TI "SO Q) W TI ® f^ — *» O^sg.1^^2"

•§ " ii M « ii :? iiCD o 3 LU o CD . ;

AR00038

>-

Oz<ooO)O)

u.O

ICODmUJx

o

Occozooo:ou.

DWUJ

zCD

CCf-

0.3

CO

S5

CM

<

^__

<UJ

^

UJ

Q.3nSo

sre2

2

Ol

i

Ol

ra2

2

en^<

_jo>_0)

"toc

O

-

0>a:

o

cc

o

so

tr

o

o:

o

tr

0

3ff,(£.

3

O

3

O

3

O

3

o

3

0

3

CJ

~>

Sra

O

3

O

3

O

o

3

0

3

O

-1

.o

(Vinyl Chloride

3

O

3

O

3

O

3

O

3

0

3

O

->

8CO4>

m

3

o

3

O

3

O

3

O

3

O

-)

o

tChtoroethane

3

3

3

3

3

3

~)

(Acetone

3

o

3

0

3

O

3

O

3

O

3

o

~)

ra

o

|1.1-Dichloroe(he

33333333333333333333333

d d d t N o o d d d d o d d t ' g d d o o < D d d d d

333333333 3333333333333

d d d ^ d d d d d d d d d ^ d d d d ^ d d d d

O)3 3333333333333333 333

d d d d d d d d d d d d d d d d d d d d

CD3 3 333 333333333 3

d d d d d d o d d d d d d d

33333333333333333333333

o d d d d d d d d d d d d d d d d d d d

33333333333333333333333

33333333333333333333333

co-rco -r<o-~-r-rcoco-*ro c o v c o c o vcoco-,d d d ^ d d d d d d d d d ^ d d d d d d d d

3 a) * $ a>o c ® ^~ ^ ^0 03 ID fO ~c 0> C £ Q O 9" ™ 0)

iilJPII| lllll I l g l l l i8*s8|i.ti^i.i|Si*.2j§lIIIt g f i i i i l s f i g i j B f A i T ^ S t l S aJ|9i5 s-. |9 g!9 i 1 7 5 g^-lsls^-^a^tp-E'-se'ii-g^.e? «€ S -. T » 2 sSo^'cM^-O'-O'-aSt-'-eD-voi-is^cNh-ooiiJ

3333

o o o o

3333

oooo

3333

o o o o

3333

O O O O

3333

o o o o

3333

3333

f. CO CO COO O O O

1

Ixylenes

(tota

l)Istyrene

jBromoform

|l.1.2.2-Tetrachl(

_;

i*5 «E T)

1 sf g Qll "?3

« C 2 CN(i ffi " Cv •"•- c ™ E o!|| ||

-e ^ g ™ "c O "O-P jl F m ^ ffi

"5 5 * £ -° 8 *;"g ~ £L gI 3 Q aoT O 5 ^<y L^ i£ (1

-g II Jl ^ M II l|m o D LLJ o CD J1 :

AR000382

(71u? 012 0 |

«$0

LO_J Ol4 >•T ta

O

Ten3

o

<? 32 >-O 4|

9?2 o>° <

w

5 2O

toC/> CO_l O>\l DI

Q

^ 512 2

Q^S

o

ISI(/) c>

TC

O

S2 <O

0

3

O

^

0

CU

O

1

o

1o

3

01

o

3

G

O

3

K

O

IU

o

1

jAnalyte (mg/L)

m D m n 3

g CM tO §

fM

=3 D D CO 3 D

tO -j CM CO O

*~

3 CD CD (D 13 3

O

CM

CO D D (D 3 D

°9 (0 CM to gg - <" ? o o 3

D D 3 CD 3 3

O

IM

«*^ w5 N« S5 "" T- d d S

D 13 13 CO D 3

^ .- CM * §

is D D m r> n

.Z» 3 3 £D 0 D

10 *- fM " N "^ §

* •-

m D Z) m m D

to * g W 0

m 3 D m m 3

19 - fM 3 N * So T- d ° S

E >- c EJJfiifS** ^t Q-1 ffl O O

^ 5 LU

* " «> ° §^ S <o to

3 Z) 13 3 CD

« g

D • 13 UJ

O O=0 O OS 1 CO o,

to •-

13 3

0 °CM o -fl- O

n o « ; asr-. •-

D * 3 3 UJ

O

•• .rt co 5~ »*- ln m to 0101 oCM

,- »a-.i^ to o

303 3

- S « § ~ Sfp rr 3>

-_> 5 D CD LU

<- ""

D U 3 3

s e

D • CD UJ

^: fo m J~

3 3

o*~ *~ r-

i - 1I « 8. -o 1.J .g a c « "

oCO

in

oOl(O

s(O

o10CM

OfMt-.(O

omCOCM

OOfM

i

fMCD

HManganese

=>

d

to

•Dao

m

od

CD

<od

->

o

CO

01d

W

3

T-O

CD

m

od

CD

d

3

D CD

in coCO

D m

*

D

O«8

CM

3

o« S

fM

_,

Om

••r

o« CM

CO

=>o«sOO

3 £D

CO

3 CO

m

10 CON Ol

CD

« COT- IDcu r-

! Nickel

Potassium

CM

3

(M

D

CM

3

CM

H)

CD

=>

CM

3

^

3

N

^

CM

IISfltenKjm

=

-

CD

COto

3

*

m

01

'

3

-

13

3

15

'

3

-

-)

gCOo

ooO)

ooIDrt

gg

120000

o

o

gCOca

oCO

o

oofOCM

gr-.mCM

HSodium

^

-

3

-

3

*-

?

O

-

3

-

D

3

3

-

3

-

Hrhallium

r.3

p, fM

D 3

« 2

D 3

CO £

31

CO tCM

3 3

co 2

3 3

*o £!

33

to 2

tD 3

CO fMCO *~

^ 3

3

Clto a>

3

Oto toCM

UVanadlum

izc

£ S3Ocr

woola

SI 8S? Q. C

E o 5

O :£

^S S 9€ »3 « .2 a 8 5>= OD D C ™ 1•2 < i » .2 • g

w«" -S S E ™

iilil» « ""3 I , 111 5 ."

flR000383

O)c?>'"i2OZcoO)O)

1-VJ3O3

_f_)u.O

!UJ

<X«3IDUJXt-

Occu.tf)UJ—1CLSCOccUJ1-<5GZ3OCCozC/)_l1-LU2CCou.(01-_J3WUJo:

oH_j<<CM

UJCQ

O

~. Ol *;9 01 35 >. £u 5 a

a

o? en 52 w £« <cc

o

^ 01 —

3 11O

m <*> s:<V O) 3

i! Mu < (C

o

tn _L ^

O

T w 3s »S^ 54

o

slio f £

o

•9 en H

5 IIj*

5,*— '

i<a^

D33CD33 3CD3 OlliJ 3CDffi33 §3=1

0 > O r ^ Srvj^f^Of^-o ^g--cM)>icicJ^^roing(Ng_>'-. (aOfN-'g^to^

«o o ) ' - c N ^ r ^ o n co

3(03C033 3CD3 CO (OfflffiD 33

* "cMtog 0) gcoS^rj^cOw ° -•SwfNI'*'ddo'<olft"~*"i:o'£'»-*iC^**^""t**')1- »• ** rt « M

CD33CD33 3^3 CDLU 33COCDCD 33

Q O Q o f-» ^

(M CM *" "~ CO *

(D3(D33 333 CD ED3 003 33

5^eM5™^i.,.-->l't'§8g1-CMW,t|T_(0£3, f ^oOin J J ^ c o c M d M* * co

333CD33 ^3^ L1J CD3CD33 D33

S — 5 S S | » 5 - 1 S 1 o g» s . , | , . .,

333C033 333 3 (D3CD33 3Z)D

§ ( - j

- d - r - i n m ^ g B ^ i f t S t M ^ S - t o ^.rt^^rM _ , S c M 0 i n £

C D C D 3 C D D 3 3 3 (DllJ CD CD ?33

S^cMS^^S^S-nl-liS^g.-i^co-co- «°°o o, o^cg^o ^ -

3CD3e033 3 3 CD CD3 33 333

•OtM.flg CJ> 8(0°g'- ° S

»ooo -- «^SSo S -

E E S e^ c E ^ D 'IAC?*. 3 £ c §J" | * 1 1 E s. s a i" « s l | =

S'C c*13Ji(CJj &c S m S'cSsiT!'0*'^5<5mfflcjUOOO^*223:zo.^cocSK>N

?i/iiIO«oinEgcoo"5ow

15c

CO

5u"«

g 2

IIIel* o Oc el) in•=0.^3•5 « ro

C OJ

S & S"V !/> -n .0 p «

Q — O E

5 a> E c _| n 5 £ -

•o ™ g « « 8S "^ rtf QJ C

1^ 1 1 « £"fjj aj n> *_ o S

y I A i * i f5 £ i ! » .a s gq> w Tj * ' u> " Sy s 51 • * .E* S sLU TO "5 t5 3 S

TE It II ^'1 "O

m 0 3 c , ii!i 5 ."^

i", ;

• i

" ii

't

"• f

. -»

. - i

.-:

' T

'i !•. *

r

, )

flR00038i*

to3O3^_f

[EQZ

rjUJ-J-J>XCO3COUJXh-sotcu.COUJ

CL

«tCOCCUJt—

1Oz3

CCozCO-JKLUSCCou.CO

o._ en =*£ >- «< ID ff

^

O

> *• *"UJ 2

O

£J 01 3•i TO SLJ 5 a:

oOl —a °?

3 >• ">° 5 cr£

O

0 =

^ =- "w ifr

_j"a.

Anafyle (m

333CDD3 ^b13 muj C03CD33 33

<— CM) ^ t - ^ ^ O 1 ^ ^j ONJ

ED^^Q^O^ ^^^D fDLU O CO CD ZH ^^^>

» n C M « > g 0 CO^gcT."^.,, g ^

^ ^00^ •- rvCM--,.;^^ ^ "~

m £ D 3 t O 3 3 3-3 CDUJ C D 3 C D £ n c O § 33

— ° S S ° « M e D °

-— 10 •— ^ *~ co

33DCD33 3D3 UJ 33CD33 333

t o - f M S t M l o S ^ 0 - . P o S g 2 L O S c N ^ S _ ( 0 C Nc*>OC>0i ^ 2 in^O "O to

CDCD 33 333 UJ DD COCO <333

° ° ° O rt O °j5{J!»SeMcogfl.f^ir,g--5o2ing":'-g^rtcNkn m IN r->

E *

llllllilllillllllillili

un, EV oC O o

co o 3t: = •££ o o^ v </>

°^Ss.i|ill0.-° S •*— o £-J o o m =

giill"2 q, o |g o

o J ? c "I Zcu Q a; -2 —•5 CD — g i2 o> - 6 c oO > « "J S c

O 3 m -2 "5. S .w^ i_ H 3 C CD >»« 5 co •= o a> co^ ' • *i "^ "3 CV ^ T3 * I/) Q. CD4) CL> el) I QJ ty i*- y oj cw co -5?UJ "S 16 p S -^ S" O rf Q) O C Q^"O ' jv Q. ™ 3

m03q uj5 ?£*

AR000385

Q

ooOJOJ

J-coO

LLQ

LU

XCODCD

COLU_JQ.

coa:UJ(_IQ SZ 01

w2UJXo

o:UJzUJooroI-COUJ

zcoLJJUJ

a

CM OJ ®1 C/J | "iS Q

^ CO >>-5 co-'i2 g• co

ai OO -~<^ co 9 3S CO 0) g0-* K.

O

o> <-<? C) <? 3

o-1!^O

00 *;^0935^3 g1®

a, -J Ol —

O

OJ *-•7 CO 9 3

o^fir

o' _J CO »-T Q 9 3^ ^ i/J O) >i\r f/} TI ~j<-> _i < 0-

O

T- S =+ W™ 32 CO O) g

<a:

(U

"coc<

^

0835": °">T- o" d d ~v

=>

0 0•f CM •*- ,. o ••" oinCsjtnpr^oo P TTCD O O *"" *" O O O

V V

=>

0 °^~ ^~ — O CO^ T o P *- in5 ° o ™ d d

=> Q

o- CO1 —

O UJ

o o(« r*~ ^ — ff, CM *~ o*** D C3 ^ CO C3 C3

V V

D Q

o .LO ^

• CO0

^ UJ

o^ T- T- _* O• ~ ° ^~ s10 d d dv

G" pCO §

8? il „O z 3" E .c =d 1* E g ry f1S^CD-~^"o)— J) Z .

"S§COytx"o)2tjc t ^% CJ rtj Cv C "^^ "^< < o K u- x £z co

ocoO>-^? o>

i •>. wLU -5 o;

oi CO ±;

s_3 °>g

o0> -

•t CO ? 32 w >• go -1 2 a:

O

• _J CO *-t Q 9 35 co 6) g

O

"T co 9 35^ rago-'^aO

i Ol *^CO 9 3

O 2

O

Ol *;*/ 9 35"i^ COjjT* £«f 1 fv*-* 2 °-

O

CO —

§1*2< K

1"ror~<

0 0 -,COCD»-OOI ^- =;,«^CMO^J^ 0 O1*?C M O O V C M O I;COV V 0

^ UJ

d

D Q

o n o[/) T— j, O — O

^fviP-fc'S ^ ^CM

V ^ V

D Q

o2-D UJ

sl» s~Oo- d-

D Q

CNI O «-\

••- d """

^ UJ

o ocOeyi'T~co*— *" ^ -!frt . c 5 ^ . ^ ^ *3iti ^^ ' ^ oo " ' CMCM { 5 ^ C3 ^

V V

o• r ,- ~ - " «,f^l T 0 CM 01CM W o «> 0

V

? Eco 5

§i~ |i a(J 01 — i t -c =rj -,^ P W . . i™ ^ f~ - -c P T rt ** coi>, (0 *""' O) — fl) ^ t

2 'o S £ 3 1 2- oS9 1 ro^ t x"o)2s=~* t ** CJ Q) QJ cr ^ ^3 < O K U- X SZ CO

"c0)

is1/3 "

"m c0 CO£ c>t— oo s•»i

"y 2 >=rti ._ TO• £ "O<D O c"O "5 O*- 2 u? en. _ UJ- ^ (0 ro3 O

f w io£ S«*— «*-•g 1rtj o „ QJ

1-^8?ro ro g o.

II II II IIO D ui a

<H

flR000386

QUJ

OoCOUJUJ_lCO<

OJ2O

eniO

OJiO

CO1

O

(D5O

COi

O

io

iniSO

io

in2O

O

c^S «™ 0) a,s £T

O

nTO w™ OJ S^ tro

Olco 5

<°>£o

rt roglQ O> <D5 tro

rtTg> w^ 01 m-= cr

O

|sl< Q:u

Q ™ S ims °> ®

o

Isl-* tro

r! ?<» 1g^^lo

?s «£ OJ fl>< Q:

<D*CO

<

D

OCMd^

,-v, D : ° ° : °^ f N P o ^ u S Po -0 0 V y 0 0

3

2 5 PO^ °co d o *~ d

D

Oind

Ij

^ W ?0^ | PO ®CM 0 «> 2 0 0

V ^ V

•D

^ fN 0 _ CM ^-S - 6°^ o

V

a

oOJd

S cp p0^ 5 Po °- 0 0 « 0) 0

Q

CM

••- °* ^ CO CMCVj v- O o • •^ d d « ™v

5 — ct*5 ^! P c c>.,9 -S « ^»— • ziS.gsi s ?! ^l^|i,gBj02^22t2iiJil^cjE.? "Jixo 11 £

Q

r*-

UJ

CO

N.

Q

(OCM

UJ

O)CM

m

O

<oCO

UJ

5

Q

^

UJ

•*r•*

S^3CO

1i-tI

AR000387

oLU

oo<° •- - - • «_?c roUJUJ-JCO<

u

v ;?roi «< 5 01 gLU 2 tr

uCO . -L "5-= ro S? «S Q OJ a)o s tr

u

s^laio -= cru

co , i "5•5 F £S> «-Z Q W;: 01 a?o ^ tr

uCO i —S ra°> «OS01!?

(J

OO i ^=5' m"01 «•2 OJ o>OS ^

U

CO . ^- OlcO 015 —i :£L CO

o^^SU

SD^!o * cru

I cVg"§^ OJ QJo s tru

00 , ^S 3*8 «o^01^

Analyte

OrCM

CMCM

COm"CO

COOJOJ

COr-CO

Alkalinity

(mgCaCo3/L)

_>

°> r: o rr *- oT P o ^ c O Po TO O V CM O O

13

OOCM

13

OO~

^

OindZ)

oT—

dD

^ SOCM g 50 od d - ^ d d

V ^ V

" 1°S 5v

13

Oind>

m tr '-r £ o!ft P o CM »n o ^00 CM d 0

Z)

2 §°2 5V

"~* c *-=^2 c c

CO 0)— 0) § ^

g?l T^SG-3l-r»3|ljro=ojOe || |BIJlcTJlg^S^S^iE

COTT

a

• rO)

UJ O

oo

uj a

oo~UJ

ooo*~

UJ

CO<t

T—

a

oCM

UJ

COCM

r«-d

OJ75t3CO

ro£ c•si0) -o

S >,

2? 8o <»c ~ «3 g co-o a> E

1» 8 g-3 c 3 <Da5ujtru n n uO D UJ Q

AR000388

oHI

ooCOiUJUJ_lCD<

CMr—

<iUJ

CMT—

<UJ

o1<

UJ

o1<

UJ

Q_•DD

*—aDQ

CLDQ

_lO

O)9>.ra

_iQ

OlOJ>*ro5

OJOJ>*ro5

_jG

CO9613<

OJ9>.ro

3COa>K

OJOJ>»CO5

3ena>tr

_3C/)0)(T

CO96)3<

_23</)0)cr

o

3V)0)tr

a

o

3UJVtra

o

o

3o0)tro

Q)">.rac<

CMf-

5t~

•-rCMCD

O

3"CO

nity (mgCaCO

ro.*<

ooCM

OCMCO

CN•*d

d

onia (mgN/L)

EE<

oodv

oodv

oodV

oodv

^iE,(U•o'cro>«O

OCOCM

Otoin

rT~

COCO

3""5)

OOH

OCOh-

Olin

T-

COCM

~-JJ

O

WJD

gOU_

Oodv

oodv

oodv

£_3

O^o"coro> Tco dX °>O Cx S

^

omd

D

OT—

d

3

oind

D

O

d

D

O*~d

Q

CM

Q

CMCM

G""5>E,zoroz

Q

OJ

UJ

CM

Q

OJCM

UJ

CMCO

inT-

d

O

5

LU

•sfr

j"&

OJro>*-3CO

CO S roo roS co-i

*?'S 2 f,2 c0) O c

2s Sils3 g ro-° o E£££

feil?i^l?ro ra o g-o5ujtrn n M na^uia

flR000389

00OJo>

oDCO j=5 3S ">"V ®"S tJLCJo

05S *s2 W<DO cc

O

~£ <a(O «C/} DC

O

CO *±

s! "— 1

OCOo _v *s*i 3

01 S> CL

OCM

*J ri> C

O

Q «--- 15d o>> o:

Oz

2 1a:H-

3"

I"5

,-,-O^T-0)00-^COi-000,000>0)0)<Di i i !• oj ^ ' • OJ CM ^ »• i ^ f'-

^-^0)^-j-0)00-r-»'-000000)00,(0

~ ~ O ~ Ol /*» ^ rt* *"* ^ ~ ^ ^ rt% ^ ^ * ^ ^ *** OJ

»"* T* h * C\l « " h. ~ LA ** *~ f* - ^ /*\ — f f ftl

Z>33Z»^23333Z)=)DD3Dr>30D

• ^ • u i r » ^ f _ . ^ ' C o ^ r o ^ 1 ^ ( O ^ 9 i ^ i ^ t i c o c o ^ p j _ ld d d d d d d d d o d d d d d d d

DZ)ODDZ»IDZ)DDOOD3I33=)=>DO

•^•u»h*-^(..-»4'in'J^tu>e..-J fl-^-4-^PltO-^-t'i..d d d d d d d d o d d o d d o d d

=)DODD3DDDDZ)DDDDD3DDD

^•uji>>^_.^'C'J*9'e'j_,^i'CO^^i^fOP>^co_.d d d d d d d d d d o d d d d d d

Z)Z)Z)Z)DZ) 3DDDDDD2D33ZI3

d d d d d d d d d 0 1 o'o'ddc_c>c>ddN

^J• < " (D

«• S • * * 1a* « a « 1 _ « E^icS.c c £Q C " a m<_ •= CD to a « - F « * S- P -® » j: £ S -c J= S-S-c ? 2 o c111! Illlilijll iliiE #; E 3 *-F« c"Sc-S£,^ c*S c £'S:5 ?*S-isSiSf|S|Ql£|Silolf2 > » S £ B D ' — - E ' 3 - £ - - f i « Ho" 5 2.E2S S'-« *"*?*-^». *w. *•£« 2^o>aiO<^-5O*-cM*-o^O^-(5f-'r-cDt

P ^ h - « J ^ . O h - C D O ) t n < D C B (Tl^ij r*- UJ tu ^ WJ P* wj

h-h.(DK0r^eocneoir)h.h-0

h- o in o

O J O J c o r * - ° c o a j » a > l ' ) h - r - . O J

D3DI.3D3DI30D3D

to v co co ^ to t'> ^ r^ w w ad d d d d d d d d d d d

DOD3ZI=)=)DDZ)=)r)^

CO ~t vO W ,_ T CO CO ^ - C"l CO (*Jd d d d d d d o' d d d d

DZ)Z)Z)DDDDDZ)Z)Z>D

to " co co „, co (o f o) co cod d d d d d d d d d d d

o'o*oo**Dooodddcio

» »A E cJ£ a> o Q2 8" ; « £8- B-S fflf sc- 1* * P 5O O • ® S m ~Cg Z£ £ g g s=- o•^ - U o a < D ^ ( D c ^ Sf 9-=*gJcIl. §"3

'T~ 3 ^ » ™ ^ O O ^^ A k. %* ,A TC — ^v i^ ** ^S ^S F «^ ^^ O ^_

a>m.0a.3O

^ sen Q.x «•5 .ss 5II „

§s> s

•o0

oT§

*•*o •?

Q =

Qualifier

U = Analyzed

for but n

VBLK

= Method

Blai

AR000390

00OJOJ

CO

u.o

XCOoCD

OccLLCOLU

CO

dXI-oo

DO

ccUJ

Io•z.oXoccou.CO

COLUCC

gtLUUJ-Jm

OCO _O *;« M\J tO

a

§ 1

oo ^5U <D

O

Q _2? 3UJ (Dcc cc

oCO «r

UJ §

i<DS.ffi

^ °>

CN OJ O CM

2 :: <o £

i- *- O •-1 J I .

»- »- O OJ

Chloromethane

Vinyl Chloride

Bromomethane

Chloroethane

(D >•. Ow en ,_

*— <- . oCM °>

^ (T. OOJ °> T-

N m OCM m -^

1 Acetone

1,1-Dtchloroethene

Methylene Chloride

o *-

» °

*•* OOJ ^

o *-* ^

O r-

I Carbon Disulfide

1,1 -D

ichloroethane

CDCM

mCM

CM

(OCM

COCM

|2-Butanone

CM ° ° °*

N 2 2 »

o o o oCM T- T-

OJ »- O OCM •- T-

i- *- O OCM »- i- »-

_,

1,1-Dichloroethene (t

olaChloroform

1 ,1 ,

1 -Trichloroethane

Carbon

Tetrachlorkle

«•* O « O «••OJ ^ OJ ~ O)

•Vh f ^ ^ ^O) Jl OJ Jl OJ

OJ ~ OJ OJ

S 2 o> 2 o>

o o w o 0

1 ,2-Dichloroethane

Benzene

Trichloroethene

1 ,2-Dichloropropane

Bromodichloromethane

»-

s

oCM

CM

CM

|4-Methyl-2-Pentanone

h- CO

OJ 0>

OJ OJ

OJ OJ

OJ h*

lcis-1 ,3-Dichloropropene

fToluene

(D N.

<O OJ JQ

CO tO (

* CM

<D r*» S

*

ltrans-1 ,3

-Dichloropropen

11.1 ,2-Trichloroethane

|2-Hexanone

h^<DOJO)rR0>^O)

r o c o o j c o ^ c o r ^ o j

h ^ c o o j o j ^ O J r ^ c o

a

Tetrachkxoethene

Chlorodibromomethane

Chlorobenzene

Ethybenzene

Xylenes (to

tal)

Styrene

Bromoform

1 ,1 ,

2,2-Tetrachloroethan

feo•o

Q = Quaff t

orU a A

nalyzed for b

ut not

VBLK

= Method Blank

I

flR00039l

TABLE E-5

Site: Bush Valley Analyst: Mark RostafinProject #: 61131.01 2C07 Analysis Date: 5/5/99-5/6/99Calculated By: Mark Rostafn Checked By: Sandy Staigerwald

AQUEOUS CONCENTRATION RESULTS

Sample identification

EA10GMI LSSGM9GM6GMSGMS

GM 2 LSDGM2DUPGM 4 LSSEA13EA12EA11

GM 2 LSS (Air)GM3GM7

TimeMethane(mg/L)0.02950.02920.00320.03910.05890.00170.01700.00110.11270.03230.03400.0200

Not Tested*0.02510.0002

*Air sample taken, but no water analysis was conducted due to high ambient air cone.

RR000392

TABLE E-5

Site: Bush Valley Analyst: Mark RostafinProject*: 61131.01.2007 Analysis Date: 5/5/99-5/6/99Calculated By: Mark Rostafin Checked By: Scott Dobson

AQUEOUS CONCENTRATION RESULTS

Sample Identification

EA10GMI LSSGM9GM6GMSGMS

GM 2 LSDGM 2 DUPGM 4 LSSEA13EA12EA11

GM 2 LSS (Air)GM3GM7

TimeHydrogen(nM)8.38340.000021.65765.11143.339427.716246.457116.010155.17926.574710.18132.3027

Not Tested*0.12760.4184

*Air sample taken, but no water analysis was conducted due to high ambient air cone.

Sfcjf

AR000393

TABLE E-5

Aqueous Concentrations of Hydrogen and Methane

Site: Bush Valley Projects 6113101Analysis Date: 26Aug98 Analyst SMS

Aqueous ConcentrationsSample Designation | Hydrogen nM (Sample DesignationDup-1GM-2 LSD

GM-2 LSSGM-3GM-4 LSSGM-5GM-6GM-7GM-8tedlar bag blank

0.6211

120.660.982.66.41.20.610.31

GM-2 LSDGM-2 LSD DupGM-2 LSSGM-3GM-4 LSSGM-5GM-6GM-7GM-8GM-9GM1-LSS

Methane mg/L

0.970.951.120.710.760.170.350.600.260.24 I1 10 J

GM-9 and GM1 -LSS nyarogen resets not avanaoie oecause aepth 10 ground wateruse of peristaltic pump

AR00039I*

EA LaboratoriesANALYTICAL NARRATIVE

Client: EA Eng., Sci. & Tech. Inc. Laboratory Project Manager: Natasha K. SullivanSite: Bush Valley Landfill EA Laboratories Report: 981407Project number: 60957.46__________Date: 8 October 1998________________

This report contains the results of the analysis of twelve water samples collected on 25 and 26 August1998 in support of the referenced project.

SAMPLE RECEIPT

The samples were received by Federal Express at EA Laboratories on 26 and 27 August 1998. Uponreceipt, the samples were inspected and compared with the chain-of-custody records. The sampleswere then logged into the laboratory computer system with assigned laboratory accession numbersand released for analysis.

Client Sample Pesienation EA Lab NumberGM-8 9810467GM-9 9810468GM-6 9810469

GM-l-LSS 9810470GM-7 9810516

GM-2-LSD 9810517GM-5 9810518

GM-4-LSS 9810519GM-2-LSS 9810520GM-3 9810521

GW-DUP1 9810522TRIP BLANK 9810523

Following this narrative section is glossary of data qualifiers (Table 1) and the original chain-of-custody records. Analytical results and quality control information are summarized in the appendeddata package which has been formatted to be consistent with the deliverable requirements of thisproject.

QUALITY CONTROL

The following sections are ordered as the data appears in this report. They contain observationsmade during sample analysis, summarize the results of quality control measurements, and address theimpact on data usability based upon project Data Quality Objectives. For each fractional analysis thenarrative includes:

• Sample chronology: This section summarizes the sample history by fraction including the samplepreparation method and date, analytical method, and analysis date. Anything unusual about the

AR0003950 \0b0v

EA Laboratories jANALYTICAL NARRATIVE

Client: EA Eng., Sci. & Tech. Inc. Laboratory Project Manager: Natasba K. Sullivan ISite: Bush Valley Landfill EA Laboratories Report: 981407Project number: 60957.46_____ ____Date: 8 October 1998______ \

samples, digestates, or extracts is identified. Holding time compliance is evaluated in this section.

• Laboratory method performance: All quality control criteria for method performance must be met Jfor all target analytes for data to be reported. These criteria generally apply to instrument tune,calibration, method blanks, and Laboratory Control Samples (LCS). In some instances where jmethod criteria fail, useable data can be obtained and are reported with client approval. The *narrative will then include a thorough discussion of the impact on data quality.

• Sample performance: Quality control field samples are analyzed to determine any measurementbias due to the sample matrix based on evaluation of matrix spikes (MS), matrix spike duplicates(MSD), and laboratory duplicates (D). If acceptance criteria are not met, matrix interferences are Iconfirmed either by reanarysis or by inspection of the LCS results to verify that laboratory methodperformance is in control. Data are reported with appropriate qualifiers or discussion. ,

VOLATBLES by GC/MS - WATER (EA9810467 - EA9810470, EA9810516 - EA9810523)

Sample Chronology: Twelve aqueous samples and associated quality control were analyzed on 27,28, and 31 August 1998 for the client-specified list of anaiytes by USEPA SW-846, Methods5030A/8260B, using a 25mL purge volume. All holding times were met. - ?

• Samples GM-9, GM-7, and GM-2-LSD were reanalyzed to confirm matrix effects on surrogaterecoveries. "

• Samples GM-4-LSS, GM-2-LSS, and GM-3 were reanalyzed at two times dilutions in order tobring the concentrations of volatile compounds within calibration range.

• Daily matrix spike/matrix spike duplicates (MS/MSD) were analyzed with each analyticalsequence. :-

, i

Laboratory Method Performance: All laboratory method performance criteria were met for thereported sample with the following exception: *

• The continuing calibration verification (CCV) standard for the 27 August 1998 analyticalsequence had the relative response factor (RRF) for the System Performance Check Compound(SPCC) 1,1,2,2-tetrachloroethane below the method acceptance criteria of 0.300. This is acommon problem associated with analyses using a 25 ml purge volume (the method does notdifferentiate acceptance criterias between a 5 ml purge and a 25 ml purge volume). The . ,laboratory's standard procedure is to reference the CLP low concentration volatile methodOLC02 (which is a 25 ml purge volume method) which has an acceptance criteria for this SPCCat 0.100, The response in the CCV is well above that criteria. Data usability should not be : ,impacted.

Sample Performance: All quality control criteria were met for the reported samples with the following *Jexceptions:

AR000396

EA LaboratoriesANALYTICAL NARRATIVE

Client: EA Eng., Sci. & Tech. Inc. Laboratory Project Manager: Natasha K. SullivanSite: Bush Valley Landfill EA Laboratories Report: 981407Project number: 60957.46__________Date: 8 October 1998_________________

• Recoveries were below the lower QC limit of 88% for the surrogate toluene-d8 in samples GM-9(79%), GM-l-LSS (79%), GM-7 (77%), GM-2-LSD (78%), GM-5 (81%), and GM-3 (83%).Recoveries of toluene-d8 in the reanalyses or dilution analyses of the samples (or the MS/MSDperformed on sample GM-5) were similar, confirming the matrix effects. These low surrogaterecoveries may indicate a low bias for some compounds in the samples.

• The MS/MSD performed on sample GM-5 had the recoveries of toluene (71%, 71%) below thelower QC limit of 77%. The MS performed on GM-7RE also had a low (72%) toluene recovery(the MSD recovery was within limits); and the RPD between the recovered concentrations oftoluene in the MD and MSD was above the QC limit of 13% at 25%.

ANIONS - WATER (EA9810467- EA9810470, EA9810516- EA9810522)

Sample Chronology: Eleven aqueous samples and associated quality control were analyzed on 26 and27 August 1998 by USEPA Method 300.0 for nitrate and sulfete anions. All holding times were met.

• Samples GM-l-LSS, GM-5, and GW-DUP1 were re-analyzed at 5X dilutions and sample GM-4-LSS was re-analyzed at a 2X dilution in order to bring the concentrations of target anions withincalibration range.

Laboratory Method Performance: All laboratory method performance criteria were met for thereported samples.

Sample Performance: AD quality control criteria were met for the reported samples with the followingexceptions:

• The MS/MSD performed on sample GM-l-LSS had recoveries for the sulfate anion (38%/41%)below the lower QC limit of 90%. These recoveries are due to a high native concentration in thesample.

• The relative percent difference between sample GM-7 and GM-7 DUP was 18% which is outsidethe QC limit of 15%. Q-,

COMETALS - WATER (EA98010467-EA9810470,EA9810516-EA9810522) CD

CDSample Chronology: Eleven samples were prepared (SW846 methods 3010/3020/7470M*) on 18-24 orSeptember 1998 and analyzed for TAL metals by SW846 methods 6010/7841/7470 on 19-30 «xSeptember 1998.

* modification includes the use of an autoclave in place of a waterbath.

Laboratory Method Performance: All laboratory method performance criteria were met for thereported samples.

Sample Performance: All quality control criteria were met for the reported samples with the following

EA Laboratories iANALYTICAL NARRATIVE

• i>Client: EA Eng., Sci. & Tech. Inc. Laboratory Project Manager: Natasha K. Sullivan > 1Site: Bush Valley Landfill EA Laboratories Report: 981407Project number: 60957.46__________Date: 8 October 1998________________ ']

. 2exception:

'1• The RPD of the aluminum duplicates (25.1%) is above the upper control limit (20%). i

GENERAL CHEMISTRY - WATER (EA9810467-EA9810470, EA9810516-EA9810522) T

Sample Chronology: Eleven samples were analyzed for the following SW846/USEPA methods. Allholding times were met. j

• c

Parameter_______Methodfl_______Prep Date_______Analysis Date ~—————————,-- T.iT.——————————————— f. ———————_—————____——————.___. _-——————- • -f

Alkalinity 310.1 N/A 3 September 1998 "*Ammonia 350.1 4 September 1998 4 September 1998 *Cyanide 9012 3 September 1998 3 September 1998Ferrous Iron SM3500DFe N/A 26,27 August 1998Hexachrome ASTM 7196 N/A 26,27 August 1998TOC 415.1 N/A 15 September 1998

Laboratory Method Performance: All laboratory method performance criteria were met.

Sample Performance: All quality control criteria were met with the following exceptions: -

• The ammonia MS/MSD recoveries (66%, 66%) were below the 75-125% control limits. Thismay bais the sample results low.

• The 27 August hexachrome MS/MSD recoveries (57%, 56%) were below the 75-125%control limits. This may bias the results low for samples analyzed on 27 August 1998.

CERTIFICATION OF RESULTS

The Laboratory certifies that this report meets the project requirements for analytical data as statedin the Analytical Task Order (ATO) and the chain-of-custody. In addition, the Laboratory certifiesthat the data as reported meet the Data Quality Objectives for precision, accuracy, and completenessspecified for this project or as stated in EA Laboratories Quality Assurance program for other thanthe conditions detailed above. It is recommended by the Laboratory that this analytical report shouldonly be reproduced in its entirety. EA Laboratories is not responsible for any assumptions of dataquality if partial packages are used to interpret data. Release of the data contained in this report hasbeen authorised by the appropriate Laboratory Manager as verified by the following signature.

8 October 1998Natasha K. Sullivan/Laboratory Project Manager

HR000398Ol

Severn Trent LaboratoriesANALYTICAL NARRATIVE

Client: EA Eng., Set & Tech. Inc. Laboratory Project Manager: Natasha K. SullivanSite: Bush Valley Landfill ST Laboratories Report: 990521Project number: 61131.01__________Date: 1 June 1999__________________

This report contains the results of the analysis of 15 water samples collected on 6 and 7 May 1999in support of the referenced project.

SAMPLE RECEIPT

The samples and one trip blank were received by hand at Severn Trent Laboratories on 6 and 7 May1999. Upon receipt, the samples and blank were inspected and compared with the chain-of-custodyrecords. The samples and blank were then logged into the laboratory computer system with assignedlaboratory accession numbers and released for analysis.

Client Sample Designation ST Lab NumberEA10 9904267GM9 9904268

GM1-LSS 9904269GM6 9904270GMS 9904271

GM2-LSS 9904272GM2-LSD 9904273GM4-LSS 9904274GMS 9904275

TRIP BLANK 9904276DUP 9904277EA-11 9904341EA-13 9904342EA-12 9904343

GM-3-LSS 9904344GM-7 9904345

Following this narrative section is a table of analytical methods (Table 1), glossaries of data qualifiers(Tables 2 and 3) and the original chain-of-custody records. Analytical results and quality controlinformation are summarized in the appended data package which has been formatted to be consistentwith the deliverable requirements of this project.

QUALITY CONTROL

The following sections are ordered as the data appears in this report. They contain observationsmade during sample analysis, summarize the results of quality control measurements, and address theimpact on data usability based upon project Data Quality Objectives. For each fractional analysis the

AR000399

Severn Trent LaboratoriesANALYTICAL NARRATIVE

Client: EA Eng., Set & Tech. Inc. Laboratory Project Manager: Natasha K. Sullivan • <Site: Bush Valley Landfill ST Laboratories Report: 990521 >Project number: 61131.01__________Date: 1 June 1999_________________

Mnarrative includes: \

• Sample chronology: This section summarizes the sample history by fraction including the sample ' 'preparation method and date, analytical method, and analysis date. Anything unusual about the isamples, digestates, or extracts is identified. Holding time compliance is evaluated in this section.

• Laboratory method performance: All quality control criteria for method performance must be met •Jfor all target analytes for data to be reported. These criteria generally apply to instrument tune,calibration, method blanks, and Laboratory Control Samples (LCS). In some instances where 1method criteria fail, useable data can be obtained and are reported with client approval. The ;»narrative will then include a thorough discussion of the impact on data quality.

• Sample performance: Quality control field samples are analyzed to determine any measurementbias due to the sample matrix based on evaluation of matrix spikes (MS), matrix spike duplicates(MSD), and laboratory duplicates (D). If acceptance criteria are not met, matrix interferences areconfirmed either by reanalysis or by inspection of the LCS results to verify that laboratory methodperformance is in control. Data are reported with appropriate qualifiers or discussion.

VOLATILES by GC/MS - WATER (EA9904267 - EA9904277, EA9904341 - EA9904345)

Sample Chronology: Sixteen samples and associated quality control were analyzed on 10 -13 May1999 for the project specified list of analytes by USEPA SW-846, Methods 5030/8260B, using a 25mL purging volume. All holding times were met.

Laboratory Method Performance: All laboratory method performance criteria were met for thereported samples.

Sample Performance: All quality control criteria were met for the reported samples.

ANIONS by 1C- WATER (STL9904267-STL994271) (STL9904273-STL9904275)(STL9904277) (STL9904341-STL9904345)

Sample Chronology: The samples and associated quality control were analyzed on 07,12 and 17May 1999 by USEPA Method 300.0 for the nitrate and sulfate anions. All holding times weremet.

The batch Matrix Spikes and Matrix Spike Duplicates (MS/MSD1 s) were performed on sampleEA-12, GM-7, and on another client's sample. All data associated with these QC samples isincluded in this report.

Sample EA10, GM6, GM4-LSS, GMS, EA-12, GM-3-LSS, and GM-7, were reanalyzed at a five

O\

Severn Trent LaboratoriesANALYTICAL NARRATIVE

Client: EA Eng., Sci. & Tech. Inc. Laboratory Project Manager: Natasha K. SullivanSite: Bush Valley Landfill ST Laboratories Report: 990521Project number: 61131.01__________Date: 1 June 1999__________________

times (5X) dilution, sample GM9 at a two times (2X) dilution, sample GM1LSS at a ten times(10X) dilution, in order to bring the concentration of analytes within calibration range.

Sample GMS was reanalyzed at five times dilution (5X), at a ten times (10X) dilution, and at atwenty times (20X) dilution in order to bring the concentration of analytes within calibrationrange. Sample GMS was reanalyzed straight, in addition to its dilutions, because of inconsistentsulfate results due to precipitate in the sample.

Laboratory Method Performance: All laboratory method performance criteria were met for thereported sample.

Sample Performance: All sample performance criteria were met for the reported sample.

METALS-WATER (ST9904267-ST9904271, ST9904273-ST9904275, ST9904277, ST9904341-ST9904345)

Sample Chronology: Sixteen samples were prepared (SW846 methods 3010/302CW470M*) on 19-21May 1999 and analyzed for TAL metals by SW846 methods 6010/7841/7470 on 22-28 May 1999.

'modification includes the use of an autoclave for digestion in place of a waterbath.

Laboratory Method Performance: All laboratory method performance criteria were met for the reportedsamples with the following exceptions:

The original run produced high water LCS recoveries and high matrix spike and matrix spike duplicaterecoveries. The standard (M05756) was checked and confirmed the high concentrations of metals found.The confirmed concentrations are the true values used in calculating the recoveries reported on Forms 5and 7. The summary data for the confirmation will be provided in the data package.

Sample Performance: All quality control criteria were met for the reported samples with the followingexception:

The RPD recovery of the cobalt duplicate (25%) is above the upper control limit (20%).

GENERAL CHEMISTRY - WATER (EA9904267-EA9904271, EA9904273-EA9904275,EA9904277, EA9904341-EA9904345)

Sample Chronology: Fourteen water samples were analyzed according to the following USEPA methods.

Parameter_______________Method#_______Prep Date Analysis Date/Time

RROOOUOICMoro?

Severn Trent LaboratoriesANALYTICAL NARRATIVE

Client: EA Eng., Set & Tech. Inc. Laboratory Project Manager: Natasha K. SullivanSite: Bush Valley Landfill ST Laboratories Report: 990521Project number: 61131.01__________Date: 1 June 1999__________________

Alkalinity 310.1 NA 19 May 99Ammonia 350.1 27 May 99 27 May 99Cyanide 9012A NA 14 May 99Hexavalent Chromium 7196 NA 07 May 99Ferrous Iron SM NA 07 May 99Total Organic Carton 9060 NA 26 May 99

All holding times were met for the reported samples.

Laboratory Method Performance: All laboratory method performance criteria were met for the reportedsamples.

Sample Performance: AH Quality Control criteria were met for the reported samples with the followingexceptions:

• The matrix spike and matrix spike duplicate analyzed on sample EA-12, reported the followingrecoveries; for Alkalinity (50%/50%), for Ammonia (16%/16%), and Hexavalent Chromium(87%/85%) below the respective lower control limits of (98%), (73%), and (92%). SampIinterference was a factor to the low recoveries.

CERTIFICATION OF RESULTS

The Laboratory certifies that this report meets the project requirements for analytical data as stated in theAnalytical Task Order (ATO) and the chain-of-custody. In addition, the Laboratory certifies that the dataas reported meet the Data Quality Objectives for precision, accuracy, and completeness specified for thisproject or as stated in Sevan Trent Laboratories Quality Assurance program for other than the conditionsdetailed above. It is recommended by the Laboratory that thb analytical report should only be reproducedin its entirety. Severn Trent Laboratories is not responsible for any assumptions of data quality if partialpackages are used to interpret data. Release of the data contained in this report has been authorized bythe appropriate Laboratory Manager as verified by the following signature.

1 June 1999

AR000402

Otoo

Sampling Event One(August 1998)

AROOOU03

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID &M-- i-SS SAMPLE NO.WELL/SITE DESCRIPTION

DATE & t 2* 1 73 TIME '!S55Z> AIR TEMP. -7 *

WELL DEPTH &amf XObfeff ftWATER DEPTH ' !• <i */7« ftWATER COL HEIGHT ftEQUIVALENT VOLUME OF STANDING WATERPUMP RATEPUMP TIMEWELL WENT DRY? ( )Yes p^NoVOL REMOVED (dall IL1PURGE AGAIN? ( ) Yes fyJNo

CASING HEIGHT 2 •<=>WELL DIAMETER V-^SANDPACK DIAM.

PUMP TIMERECOVERY TIMETOTAL VOL. REMOVED

ftinin(aall (L)(qpm) (Ipm)minminmin

(galHU

Date8/2*'«s*

Time

/J5?/5*>J5VIISM

&%,

VolumeRemoved

.? o?.c?

«/.«>

£.£>6-0

PH

437V.57

43?4</oi/.MD

Cond

,;??.201.2c2~

.ZoZ-

,2 3

Temp

/7.o

n.immni

ORP

22

2?3

253«/

Turb

*$.z).<*£>,&

&. f

£>. 1

DO

V2o

3.75-

41o5 10

$.0*

Depth toWater fromTOC

y..is327S&.3S1

32. lJS.TS*

Pump Rate

£>.J /pn\

/i

> j

it

COMMENTS

SIGNATURE

SOP: 016. Revision 2 A R 0 0 0 1* 0 U

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID £f 7> L5S___________________ SAMPLE NO. G-M -LSSWELUSITE DESCRIPTION g U UrL\Va.M

DATE P / l€ / *?** TIME 'SwtfteAgj- \ A*? AIR TEMP. Hj^— —— —————————. i-

WELL DEPTH <-'-t>____________ ft CASING HEIGHT _________________ ftWATER DEPTH T>*m__________ ft WELL DIAMETER H*_____________ inWATER COL HEIGHT ______________ ft SANDPACK DlAM. _________________ inEQUIVALENT VOLUME OF STANDING WATER _________...______________________ (gall (PUMP RATE .c.frs-W; **PUMP TIME _____________________________________________________ miiHWELL WENT DRY? ( ) Yes ( ) No PUMP TIME.____________________minVOL REMOVED _____________ (gal) (L) RECOVERY TIME _________________ mir ?PURGE AGAIN? ( ) Yes ( ) No TOTAL VOL REMOVED _________ (gal) (L)

Date TimeVolumeRemoved PH Cond Temp ORP Turb • Depth to

Water fromTOC Pump .<;

rv.oj, 0,01

5.C 5.7S

16.71 .65-7

K S.66 O.o .*>M ;.s n

II .S/as-? .i .7-32L (.4 K.it

IsC.O

' S

COMMENTS KA-rt-coqj_______^&|AU- tf. a i. h ^

&f ^ ^

SIGNATURE (7

SOP: 016, Revision 2 AROOQl+OS

15 Loveton CircleSparks, Maryland 21 152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID <arftV£-l$b SAMPLE NO. Z-LStWELL/SITE DESCRIPTION &*KOotti2u LftiAK.'K

DATE *5 / "Z£ / 1 TIME >**A&»A (f) W&)*

WELL DEPTH "£*? 5 ft CASING HEIGHTWATER DEPTH

AIR TEMP. S5°

ftZH -S'5 ft WELL DIAMETER A" in

WATER COL HEIGHT ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATEPPUMP RATE ,A£-(KvK

t (aall IUtaDm» Horn

PUMP TIME <n^- iBHo minWELL WENT DRVOL REMOVEDPURGE AGAIN?

Date

R-ff-Kn**,

/i< tuu'v

ll

u

.x

,v

COMME

Time

f(5|l,m

WitS<{usqI T\~to

mn(7.

VWH(IZ

Y? ( )Yes fc*)No(aalHl

( JYes MNo

VolumeRemoved<—

l/B3.06.0

<?,oll.o

\s.oi^.o7.1.0

Zk o

•zn.o30.-%33-e

PH

Wi

5. ^5.q>

5-1*g-SU5.93S.175,

5.11Sf?.o7.S. n

Condi f/yj

r>*.(7*16n2.\rx*.vP3.«H3.->r«-t(71.6

01. V

nzA\T5.Sm^

>PUMP TIME CZ\ min

.) RECOVERY TIMETOTAL VOL REN

Temp

16. l\

!£>-<?%

45.15.9.IS-*??Ifi.oTIW16, u>IG-I

I6«IC. 1iC--?<

ORP

-n.-<«-t S-7-m.o-*irt

-HIV-S-M1.1-Mfcfi-36 -&-§1A- zMV.

WTuTurb

\SU

t .3/I0.q

(<W.O

ZS\£

Nl.6

(J IlU2t.stl.7

a^.s

I £>minSOVED 7Z-6 (c

»jg|cDO

ft.??

aWo.fi\a<M0.6-,o.feo.36£>--n0.\6o,v

6,rz-O.Z-3

Depth toWater from

TOC

TH.S3za,£6ia.6xrn.7o7,M..7\

Z4.-75?M "7u

?U 7 4

"2;(L ,Ttt

7.1*\

T.A.7M7..-7t*A^ H

al><Lj

Pump Rate

• fl/ SA.

^

h

hk**H

K

l-

a

lv

MTS >4k* S -" °'*:5 S=« AAiAoA &AU ?ah\ (T f> - i"54o ——————————1

NeMk UT <^M

.fiMATURrl ^ l7

SOP: 016, Revision 2 AR000^06

1 5 Loveton CircleSparks, Maryland 21 1 52

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

'• \

WELL ID £**-Z-LSO SAMPLE NO. 6-M.-Z-LS/\WELL/SITE DESCRIPTION Bt*U, IA,* U*te_V;\.

DATE S / Z£ / S3" TIME Snow-Hod O i"U*£«

WELL DEPTH H *=> ft CASING HEIGHTWATER DEPTH

AIR TEMP. 6Si0i

ft i" -C, ft WELL DIAMETER <( " in

WATER COL HEIGHT ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE »C L|*u-v\

(nan IH(onmi fini* I

PUMP TIME im - flU* min jWELL WENT DRY? ( )Yes (>)NoVOL REMOVED lo ah (1PURGE AGAIN?

Date

3*Time

m*

( )Yes ( )No

VolumeRemoved

3C.oPH

5.«WCond

n?.i

PUMP TIME 1ZA min.) RECOVE

TOTAL V

Temp'

I IS

ORP

-MZ.S

RYTIME . minOL. REMOVED '£.C k

Turb

-7.

DO

o.t-A

Depth toWater fromTOC

Z .icv

>DU :

nPump Rate „

' 6 t,l>-*A<N '

;

COMMENTS

SIGNATURE^ft G-«a*-*i

sof:0"' "-1""2 SROOOI407

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID ^A* $ SAMPLE NO.WELJJSrTE DESCRIPTION

DATE ,5 / Zt* 1 <=?<$ TIME HSO

WELL DEPTH /? V ft CASING HEIGHTWATER DEPTH

AIR TEMP. lyF

2-2.+ ft<?&>?-_ ft WELL DIAMETER ^ in

WATER COL HEIGHT 7. 6 S ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE

(aah (L,(aom» (lorn

PUMP TIME minWELL WENT DRY? ( )Yes (xfNoVOL REMOVED foal) (IPURGE AGAIN?

Date

8 fa

COMME

Time

mz.724/73o/?_?*///7%-

/7 6;7fe

( )Yes No

VolumeRemoved

/--> i.

J. uJ.TO..7^^7.£>Ln.o13.&&.£>-

pH

5-.ZZ

5,5

3:_;35..16i-_5**7/. >

Cond

^M/.8.L36.U3.tfl,70*,7/2-

ntf

)

PUMP TIME min.) RECOVE

TOTAL V

Temp

KA

£.3ft. *

fc.l

Ito.O

/r.1s*.?&8

ORP

;**/4*75o3Wj

y<Jc_so.r5V. */

5 >

RY TIME minOL REMOVED (c

Turb

to*

0.0

£>.£?

&.*>

*.£>

O.O

6.3

O.O

DO

>.<n1

A75"

/?>J338:77.dV5257

Depth toWater fromTOC

1.1L9.73

3 "73?.7J

?73?73f.7

73

|al)(U

Pump Rate

4.5 Vp,,/f

"

'

<

*

MTS ,fe < >A /3.*te/ •rtu-f W4 - *?2 • £>&*}?-£W«3*Vr hutb 5&mpA_ -M7 =n S*iB t'P /'

SIGNATURE ( /S$4t*t&5&

SOP: 016, Revision 2 RRQOOUOB Julyl

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID <£M *y LSSt

SAMPLE NO.WELL/SITE DESCRIPTION ?

i

DATE y / 2d» / *M TIME /*>2£>

WELL DEPTH *& 9o r7*3*> ft CASING HEIGHTWATER DEPTH

AIR TEMP. 9 * .

^5» ft WELL DIAMETER * in ;WATER COL HEIGHT /A .7 * ft SANDPACK DIAM. In *EQUIVALENT VOLUME OF STANDING WATERPUMP RATE *• S

laal\ 11.1/anrrt

PUMP TIME min >WELL WENT DRY? ( )Yes WNoVOL REMOVED (aah fLPURGE AGAIN?

Date

efa

COMME

Time

/***1000

/0/1

/Oft*

( )Yes £X)No

VolumeRemoved

2-0 L

<Ao . ,-y. t

PH

. 5-.00

.,>7<;.o7

Cond

.03*f tJ ' *• V J

^V7•fe

PUMP TIME min.) RECOVE

TOTAL V

Temp

/1.22it.art-1rt.7

ORP

-SJ.7-S7-4

-**£>-£2.3

RYTIME min „OL REMOVED (c

Turb

7.6tf £/

fj. £

w

DO

SJI*v.ve,3.75.<*>

Depth toWater fromTOC

1.TS

?.*0

7.F/?.?/

»al)(L)

Pump ft *

.f / H.

*

" ,

•1

: .;

NTS JThJUW . pM. /*'*R^^i^* 'HA*n'CX*93

C 1

SIGNATURE &£&&&+ &*&&c/'4

SOP: 016, Rtvision 2 flROOO^OS

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID <S*M 5" SAMPLE NO.WELL/SITE DESCRIPTION

DATE ? / 26 , % TIME 60 if

WELL DEPTH Z0r*- /?,/</ ft CASING HEIGHTWATER DEPTH

AIR TEMP. 0S*?

*~* ft9.913 ft WELL DIAMETER < « in

WATER COL HEIGHT ,£-*-*- S.tfo ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE

• foal, IL1(cmmi (Inm

PUMP TIME minWELL WENT DRVOL REMOVEDPURGE AGAIN?

Date

COMME

Time

07V?07.S'<G

P7jp/

07580£->ZSfi-

p«fe

Y? ( )Yes KfNo(aalHL

( )Yes (xfNo

VolumeRemoved

l.o L

2 •& LQ.0L,

&.**,

X.OL.jt>.£> U

I*ML.

NTS iCwkfc* <J«

PH

5.4 /S.ISS.L&5.703.-n.7«/C76

Cond

.3SS.3fe3.37J.3.37;-37S-.lfD2-

)PUMP TIME min

.) RECOVETOTAL V

Temp

n-7/d.V/J.7

//.?/.?/?.-?

/*7

ORP

;te/?5-

/97y nt o

2 ^ /

2 2.

**3

RY TIME minOL REMOVED k

Turb

S37.0

Wr** '

>J. U9

.-s*3.71£

DO

//./I

//.J7

//A¥^ f://..?/ ./*#/

Depth toWater from

TOClo.it*

ie.ilS0.ZZ

/*.z*<*.zs10. ZS'

fo.ZS

al)(L)

Pump Rate

fl.-T /pm

«"*"'1

s

euo h - /•_*.-»'rWiutf V // -*72.- OO/JS~ _ _ ._ _ _ —————————————————Dtw»?i£*>e -ftfJtcn &&* t>uP /

/*\ fSIGNATURE ( Uf/Z ^ jQM zt"

SOP: 016. Revision 2 n o n n n • , J"'V19

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORM : !GROUNDWATER SAMPLES

' i

WELL ID £/M Iff SAMPLE NO.WELL/SFTE DESCRIPTION J

•J

DATE & 1 2* I 18 TIME HO^

WELL DEPTH J*'& ft CASING HEIGHTWATER DEPTH

AIR TEMP. ?6C :']-;j

10 ft ,<2 -«5 ft WELL DIAMETER S^o in . 1

WATER COL HEIGHT Y-f-9 ft SANDPACK DIAM. in "EQUIVALENT VOLUME OF STANDING WATERPUMP RATE

(oah IL(onnf?

PUMP TIME mini!WELL WENT DRY? ( JYes M NoVOL REMOVED (aal) (IPURGE AGAIN?

Date

xfe

COMME

Time

l&l

K>£*

)<*$<<>

ib5&no&noz

( )Yes (MNo

VolumeRemoved/.Oi.

^->L

3.O

V.ot5-. ^te.O L*

PH

,572

*7?-— » O ~

y f Q- }

£$1f O^™>. Uo

Cond

.tfl• 3&1

•&?• 3tf&<=>.3fo

PUMP TIME min.) RECOVE

TOTAL V

Temp

/?3-2al20.12o. 32*3203

ORP

-7-7-ni-23.0-33.1-*6.6-503

RYTIME min.*OL REMOVED (c

Turb

A?

y.o0.2.

0. 1

O.O

o.o

DO

**•

557

?•??

?.7Z-V^2.5V

Depth toWater from

TOC

/,?.%

/2- J^ ^?

/ J 5

/ 3 ^

/Z.-93

I»I)(U ;_]

Pump K«

,7. /pf?

-1 v.

Jl

''/\ ' *

•. ;

- ' ^

:•!

*•n / * *

NTS Tr\ V«x fas, d&p+l\ 1 / ' Jf%rtn\4- t '*A *?2. ocffta • r

; -;"• *

SIGNATURE Qj/p# &KJ&f ] •

SOP: 016, Revision 2 A R 0 0 0 | |

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID <S-fW"J SAMPLE NO. 6 ,1WELL/SITE DESCRIPTION K UoXW.u Cxx/ VXr

DATE ^ / Z£ 1 *& TIME 5«K D\eA6) O "

WELL DEPTH t**WATER DEPTH ?.»eWATER COL HEIGHT

^

ft CASING HEIGHT

AIR TEMP. °

ftft WELL DIAMETER <V' inft SANDPACK DIAM. in

EQUIVALENT VOLUME OF STANDING WATEFPUMP RATE . £ Ul»w*.PUMP TIMEWELL WENT DVOL REMOVEPURGE AGAIN

Date

S-76w

K

U

.,K

k

tl

COMME

0B«« - ta»»RY? ( )Yes t-ONoD (a7

Time

Wi

*>%5o0s s0 00

0<b<i

o<UoC^lS

oVto

NTS__

«* df>A

( JYes ( )No

VolumeRemoved

-—

4,09.ft*Vt.o

IS.*

l*.oT\-o

t«\.o

PH

s-wi6.6w *\ *»

• OCh

5 ^C-oa

«.o|

(WCo

(aal. in(aomi Hnmmin

)PUMP TIME -7S min

•1) (L) RECOVETOTAL V

id

Mjp,W^Z\3,\Zl%v-7

ZT7.9

TZ%,-)

Z%,5

T«(?

A _..«*_* -7 r/rti .-

/?/J K Jt* y« ft ? ~

Temp

fi.T.

\5.S-7iG. H

•S.O

tS.6t

»S. 7

rAUORP

-fr,l

-Tt^-ttx-to.t

-1-).0

9.

-t*z.e

RY TIME ^minOL REMOVED U ft laah IO)

(JTuTurb

).to.sjj £l

Z .l

CtA.-1O.o

*|LDO

<uzOMO

o ->A •! |

J . y ~J

OM1

a. 5

Depth toWater fromTOC

£ la

8.47

?.TSS^O

?.S1

9.o*.•i,*t

Pump Rate

.?

.<<

.&J

*

^ t^

.*

,6

.C

4 r w jawU* r Ok ,/, IS a.' 1

/O«o

-~~~T77s- rt\SIGNATURE t/"-— s/Tl

SOP: 016. Revision 2 fl R 0 0 0 4 I 2

1 5 Loveton CircleSparks, Maryland 21 1 52

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID CJ»A,*\___________________L^_ SAMPLE NO.WELL/SITE DESCRIPTION

DATE ^ /^» n^ TIME WttPteAbA WO AIR TEMP.

WELL DEPTH 1V.S____________ ft CASING HEIGHT _________________ ftWATER DEPTH U.Tt-___________ft WELL DIAMETER 4"______________ jnWATER COL HEIGHT int_________ft SANDPACK DIAM. ________________ inEQUIVALENT VOLUME OF STANDING WATER g-*_____________________________PUMP RATE -TtlPUMP TIME JUS_________________________________________________ min IWELL WENT DRY? ( )Yes ( ) No PUMP TIME ____________________ minVOL REMOVED _____________ (gal) (L) RECOVERY TIME _________________ minPURGE AGAIN? ( ) Yes ( ) No TOTAL VOL REMOVED ________ (gal)(L) *

Date TimeVolumeRemoved PH Cond Temp ORP Turb DO

Depth toWater from

TOC Pump

O.Z7

0.55 (I

(1

iiqo n .5 -ran 7J,M 0-H1

-J.Zl

e.\\ VU.T

5,7x3 ll-

ait tv

COMMENTS ;v * i (Vp oy iuT tF

SIGNATUREE /

SOP:016,R.vision2 fl ROOD I* I 3

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID AM-* SAMPLE NO. &*\-'%WELL/SITE DESCRIPTION ZLfiUO veM Uxr\*V;v\

DATE S / "^ / V TIME £ =»\s <£V V5V<»\

WELL DEPTH V - > ft CASING HEIGHTWATER DEPTH

AIRTEMFV-S^^l0

ft4.TZ- ft WELL DIAMETER ^ " in

WATER COL HEIGHT -7.7*4 ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATER £.<*>PUMP RATE ,-)L—— '^'

laah IHlaom^ llDtn

PUMP TIME IM^> minWELL WENT DRY? ( )Yes ( )NoVQL REMOVED (aal) (IPURGE AGAIN?

Date

fo.-'HIt

A

i *

U

l(t.< >vl

OMME

Time

|Tto

IT&

rt*-

»Wt|Z*>aw<_IZ-So

t-Lt ^

( )Yes ( )No

VolumeRemoved

qs.A .o5Z,SS6.os-ss^«

TO o

-)ls

PH

C.066.

6.**fi.ce

feiV

fi.ufeu6.\o.r.u

Cond

4o>.416.7.

qa.1

H,\

MW-.n-1TMW.6

u .->

)PUMP TIME min

.) RECOVETOTAL V

Temp

(<{&.

ss. sI9.--V!9.»?I9.TSi9.-z.Srw.-n(9.ZT19-T?

ORP

-151A-I«A-Ifio.S-\ «-166,1

-16T<?

H .O

"ITo.i

RY TIME minOL REMOVED (o

Turb

•ZSA

t*-Htf.€n.-jI5.M

m,»12. -S

11.0

9.*

DO

<M7ft.\-.

o.izo,l\

oa\oav,ilOAl

o,a

Depth toWater fromTOC

S.T.O

S.zo5 <»S o5!Zo5.7,0

S.-Zo

S.Z*S.To

al) (L)

Pump Rate

, 1 Ll'XM A

LX

'\

«

')

"

^

IV

^

MTS -.[\ I \U£~A < .I5 K l*t.?6i

SIGNATURE OPU-CU

Julyv

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID &M 1 SAMPLE NO.WELL/SITE DESCRIPTION \

i

DATE & I** !**& TIME F-12 " AIR TEMP. 7 /r .'

WELL DEPTH **&* ftWATER DEPTH Z &>*l ftWATER COL HEIGHT «M*' )V37 ftEQUIVALENT VOLUME OF STANDING WATERPUMP RATE 4.-TPUMP TIMEWELL WENT DRY? ( )Yes fes)NoVOL REMOVED <aal> (L)PURGE AGAIN? ( ) Yes fcsfNo

CASING HEIGHT 2.e>WELL DIAMETER +.0SANDPACK DIAM.

PUMP TIMERECOVERY TIMETOTAL VOL REMOVED

ftinin

. (gai)(imin sminmin t

(galHL)

Date

01**'

Time

i3)t>

13 iZ

/3/*/

'3J{,

lift

&20

VolumeRemoved/* i-2.o

3o1.0

S.o

b,Q

PH

U33S3o_>.77

A*V

.«?

$S(,

Cond

. loo

JO'2.

.en

.of?

.&n

.0%

Temp

/6-7n.*17. 6./

>tlft I

ORP

73

73757J

•737/

Turb

y3.££.t3-11,3c.s-O.I

DO

?5X

S-7i

f^O

z-ir?.5o5-V7

Depth toWater from

TOC

20. &&H

It

*•!

11

n

Pump .MI£>.£• if ,

> i

,1

)l

COMMENTS

SIGNATURE ^SOP: 016, Revision 2 AROOOM5

'OCQt?

- £

RECORC

Gauged

Location:

e>zoDOf-oDOOccQ.0=3UJ $

I! »Q 5 viZ e ADl *O B

of 1\J CL. O

o> o>Eo>-3R5

DC

•S v*= £"S-Ss.«^

e^ ow=«2c

2sS

w.o•a raS>

Q9

£"0

**£

0)0

'55 5

UJ

«

s|

(S

^5!

C

^ \ft

^

c ^f ^

A

-oCO

0

>3

^

prs.

Ort

xS

If)

2^

CV

CO

s

s*

0.

0-

CO

m*i

§XCT

N

15N

- c\ er ^— *

t.111 III III 9ROOOM6

Sampling Event Two(May 1999)

AROOOM7

15 Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELLID 6M 1 ~ U$5 SAMPLE NO.WELL/SITE DESCRIPTION

DATE £ 1 £ / ?^ TIME f * 5& AIR TEMP. C?5"

WELL DEPTH ft CASING HEIGHTWATER DEPTH ?/. 75 ft WELL DIAMETFPWATER COL HEIGHT ft SANDPACK DIAM.EQUIVALENT VOLUME OF STANDING WATERPUMP RATEPUMP TIMEWELL WENT DRY? { )Yes ( ) NoVOL REMOVED (nail tlPURGE AGAIN?

Date

/??

COMME

Time

l°50\*F)//ooUO^

1(1°(i'5III*

11^5

( )Ye« ( )NO

VolumeRemoved

D

/C

ZLILVL5LbL7L.

PH

5./0

*M&•VpM2?L//.O4'?i«f.VJ

Cond

&C>Xt8ZG2,Z8iIfcon*v.Z18

PUMP TIME.) RECOVE

TOTAL V

Temp(7,&/£fc/5 d(t-3/(r.S

|G.5

/fr'fc

ORP

f(t&

fi°lz*nZ20&iHI- ^

IYTIMEOL REMOVED

Turfa

y<i-iY^4^

DO

•"h.70•K

• 11

.2x>^"2-

«ininfaah (Ll(aoml (lomlminminmin

«

Depth toWater from

TOCJ2,yyjz.yyll. *.cW-*.1/?l.VVli.^V22- y

MTS

HD(L)

Pump Rat*

Zoo«l/--c

1

i

|

i

X

_

siG.MTURE_JrQtLL J *9 "

SOP: 016, Revision 2 A R 0001* I 8 Jul»1

15 Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL 10/512-" L£ J SAMPLE NO.WELL/SITE DESCRIPTION ? 1

DA-re T ,*<> ,W TIME /630

WELL DEPTHWATERWATEREQUIVAPUMPRPUMPTWELLVVOL REPURGE

Date

f, Ift,vffi

COMME&h

DEPTH 7.4 .71COL HELENTVCATE

1GHTLUME OF STANDING WATER

,iAW TEMP. &2_ -j

ft CASING HEIGHT ftft WELL DIAMETER inft SANDPACK DIAM. in '

IME/ENTDR:MOVEDAGAIN?

Time

!(,#?\^Q*>iCic|(P|<(t?;<.Ifc-rf*i 7o

Y? ( JYes ( )No(aalHL

( JYes ( )No

VolumeRemoved

OL.IL7u1uq^^Gu

pH

r?jf-7•"7|^ •

Cond

770TSo?12— - — •

faalt (L(9Pn T|min ?

PUMP TIME min) RECOVE1

TOTAL W

Temp

tf-L/t «T|t,1

ORP

-

— 1"*"|0

v>7 />"T1

C'a~e yl_kMU/4U,.r£e/ ArAycgrt?9*«A«P<

5 Y TIME min ,3L REMOVED (o

Turb

vt?5y$*/~G~t*' l

DO

-17.It>

-16^ JT ———

Depth toWater fromTOC

Z<.£>*f~ 0*4

f^L do^^e-o

»D(L) !

Pump 1 *l2c ./(

'-T

Aj1 —— i.'".i

^?^• •: ,

wJ? ct<rc<Jt rttefaf 4> Sf'9tAAoff' s a« /* && -As- -MC/Va^p -i-A <'iHfaAMMt f fednof fCflA /t " V * 1

_ ——— 1 ——————— -«.irMATtlRP Vffij l/l&£T~~

SOP: 016, Revision 2 A R 0 0 0 If I 9

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL.D 6-M1-LSP SAMPLE NO.WELL/SITE DESCRIPTION

DATE C / k / ?? TIME /B09

WELL DEPTH ft CASING HEIGHT

AIR TEMP. /05

ftTX.feS ft WELL DIAMETER in

WATER CQL HEIGHT ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE

faalULi(anmi (lornl

PUMP TIME minWELL WENT DRY? ( ) Yes ( ) NoVOL REMOVED laalHLPURGE AGAIN?

Date

^

H MH

COMME

Time

I7)omrllHoIWmoI7ffI8oa

I MMMH

NTS__ ______ ——————————————————————————————————————————

( )Yes ( )No

VolumeRemoved

0^IU

ILIt-<ttSL(?L

^ mmmmm

pH

b.K_./<?t.yc6.%WL.K6Yy

Cond

1%/fB/?yif//teitt.!&(,

PUMP TIME min.) RECOVEI

TOTAL V

Temp

yy.2.if./1*7if,t/M/*.?/ 3

ORP

'2g-Yi~x-te\-tr-.-w

RY TIME minOL. REMOVED (g

Turb

^

7f5"tf$

DO

-2J*/(,,0.11*/<?-V./t>

Depth toWater from

TOC

7-Vbszy:ZY, 7ev.67Ztf.b8?-i.f,tz.i-t>8

al)(L)

Pump RateZ0o- 1/+,

*s

'/

//

////

/

^ ^ ^ • ^

SIGNATURE . "ffi L//W \ ~~

SOP: 016, Revision 2 AROOO^ZO

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

—0WELLID G-\(\-~l- ISS______j________ SAMPLE NO.WELL/SITE DESCRIPTION _____________________________

PATE > / i* / "»n TIME .Cr»«--_________ AIR TEMP.

WELL DEPTH _______ _________ n CASING HEIGHT _________________ ftWATER DEPTH MJ f <•* ft WELL DIAMETER _________________ inWATER COL HEIGHT ______________ ft SANDPACK DIAM. ________________ inEQUIVALENT VOLUME OF STANDING WATER ________________________________ (gal) (LPUMP RATE ________________________________________________PUMP TIME ___________________________________________________ mm wWELL WENT DRY? ( ) Yes ( )No PUMP TIME ____________________ minVOL REMOVED _____________ (gal) (L) RECOVERY TIME _________________ min .,,PURGE AGAIN? ( ) Yes ( ) No TOTAL VOL REMOVED ________ (gal)(L) ?

Date TimeVolumeRemoved PH Cond Temp ORP Turb DO

Depth toWater from

TOC Pump R-o

o IX H. QfflKtt - ,

f.n\tr.i

lo.f-I2.-V

J3ZS .,41

Ifc.H-is-,4 .K

1.1

^ ^ .

SIGNATURE C

SOP: 016, Revision 2 flROOOl*2l

1.7

'.1

AROOOU22

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELLID fi-f\-* ' t« SAMPLE NO.WELL/SITE DESCRIPTION

DATE < / L 1 t-* TIME > f* VS A1RTEMP. (00 *F

WELL DEPTH ft CASING HEIGHTWATER DEPTH •).*TT ft WELLDIAMETER ^WATER COL HEIGHT ft SANDPACK DIAM.EQUIVALENT VOLUME OF STANDING WATERPUMP RATEPUMP TIMEWELL WENT DRY? { JYes < ) NoVOL REMOVED (call (LPURGE AGAIN?

Date

5/ffr»

COMME

Time

f ttz1 o 3 '2l T.

tcii- 1* V i \

f*fli

'If 41r»<r?I*S>

uo»It or

IA |7_

n/fr

( )Yes ( )No

VolumeRemoved

c

y.2,t3 6f.s6.0T-l-

*1 w

)0<git oI3.T.i .'t

PH

5"CWT«r.wf.1(r

6,0!

6 of^ oc

6 »oCr.M

-6.I3

Cond

6*3t-ir671?o<"?!-?>i-uTt*H^Tl>>»>^>»^>n

PUMP TIME.) RECOVE1

TOTAL V

Temp

m\T>.t*13.1if.?.I4-.1n.»*t.IjL -

t|» |L

»tM-

1 tl- tt

'.SIt-1*

ORP

-3 t-tlT-K>•M.I-m~*Vf-Co.o-(,, -63r-t4..J-6tJ

-fc%o- (A*

RYT1MEOL REMOVED

Turb'

1 rt- d1 ^T T

I .S1f.oK-3

&.*Ht.l3^z3 -o1o.1zr^t>*-.3i*.-i«.s-

DO"

T

(

l.ld

i.-irlu1.00

o«ii(3.V5?0

£>. K

»-?«^W0.1

ftinin(Q(qm

al) (L)pm) (Ipm)in

minmin

it

Depth toWater fromj

TOC ^

-|

I.

ff

S?-

?. ri

T63i / *1 . V a

*t 6<VT-o1 ^

MTS t f /v *- / /€ at*" 4» ' i->~**-r- *— »-*l *£- o* W/-5 t'

SIGNATURE W** 2

al)(L)

Pump Rate

..3 L/«;

————

-1-T:

*-*L s*

SOP: 016,Revision2 RROOOU23- Jul»19

1S Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID GlM~*t~l^5 f v»*\ *»*j& SAMPLE NO.WELL/SITE DESCRIPTION ^

t i

DATE <C/ C- / TIME

WELL DEPTH ft CASING HEIGHTWATER DEPTH

AIR TEMP. T

ft .ft WELL DIAMETER in i

WATER COL HEIGHT ft SANDPACK DIAM. in •••?EQUIVALENT VOLUME OF STANDING WATERPUMP RATE

foall II(aon"'

PUMP TIME min :WELL WENT DRY? ( JYes ( )NoVQL REMOVED (nail (LPURGE AGAIN?

Date

L /i Utf^ F ** ^1

COM1ME

Time

M**Mzfn«I13Z

( )Yes ( JNo

VolumeRemoved

K.&I6.T|Y,o

M.Z.

PH

Oif6-/C

£.lfr

t,n

Cond

710>ZO?Zc>

>W

PUMP TIME mm.) RECOVE

TOTAL V

Temp

K*'4.4/*.</

f*f.t

ORP

-*M-H7-%fr-?tjO

RYTIME min .OL REMOVED fc

Turb

"'1/•K7.

lt.4'*

DO

*lfcC

aw.C3Ofyo

Depth toWater fromTOC

*?.?/•7.7;«| 71.7t

r.i)(D -

Pum k i

a* i'-.»

| .,\ •'

v

;

j j, .:

MTS ^«JWJ C-y -k*--U<i; K « *p 4-* \O &*** t - t U— ,-± laAf*~ yt-V j uJ« (i v. <-. .s *ak-. . _ULo~ -C J«c.* *C< * *~~/5f ' ..___! ——— 1_- -* '

<J*MAUdJ 0 H4^

SIGNATURE fa'tffaJr

SOP: 016, Revision 2

1S Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL1D -r ' SAMPLE NO.WELL/SITE DESCRIPTION

DATE 5" / C, / "I-V TIME 1^14 AIR TEMP. feO-P

WELL DEPTH ft CASING HEIGHT ftWATER DEPTH 1. S Z- ft WELL DIAMETER -4 inWATER COL HEIGHT ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE

(aall (Ll(apml (lomt

PUMP TIME minWELL WENT DRY? ( ) Yes ( ) NoVOL REMOVED (aall (LPURGE AGAIN?

Date

<• 'hi

—M Mi

COMME_f ——

Time

IC1(

iczrItZ-l

It33

it-stICH• / U *?

1 I* 4 T

|&fl

yrr

M,

I?o3=s=»-• ^•M"TS ^ ——— ___ —————————————————————————————————— ——————————

( )Yes ( )No

VolumeRemoved

0

H Ls»z1416(Z

ez2t2C-

Z

PH

CifjSz\$7*

<?.-r<%. o

<<r\<t»>en.?c<^<r*

Cond

3»r-5,0

33Z3447l«>3 (

HO45?•K?t|S74<fS4»

PUMP TIME min) RECOVEI

TOTAL V

Temp

IZ.I

\\*

I? 1

12.7»Z,-I

IZ.4

urp.«O.Ilitn o

If-?

ORP

r?101

\ZZn\inin1*n>i63

ctto

RY TIME minQL REMOVED (a

Turb

|1.S

^T5-7.<?

t.rItp.Z

P?,C|IZ.Z

1.1"i,3*.?

DO

1.

*,l

7*>^

TV*T°rviaos-,}irf

Depth toWater from

TOC

-1.?

-1.1 »V£• J J*

( p J

f^.o<

fO.£>*

/o.ofo o

/0ofo o(o.olo.o(0 0

al)(L)

Pump Rate

I L/ ^

AC «-/-.V

• — »™^——

T -4.fi rtr -*• i> *? _ "^ __ < r« H'< t^l* 0> /"? 1C

SIGNATURE S/ • T-J&*Aj — *

SOP: 016t Revision 2 flROOO^ZS

15 Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID »• &*i f SAMPLE NO.WELL/SITE DESCRIPTION I

DATE > / 7 / 77 TIME ltt!0 AIR TEMP.

WELL DEPTH ft CASING HEIGHTWATER DEPTH t*~21 ft WELL DIAMETER */WATER COL HEIGHT ft SANDPACK DIAM.EQUIVALENT VOLUME OF STANDING WATERPUMP RATEPUMP TIMEWELL WENT DRY? ( ) Yes ( ) NoVOL REMOVED f aall (LPURGE AGAIN?

Date

fin

COMME

Time

\\tQ'0

fioflilt

It>I?((,&

IM$jtfoIMSMoll,tf

( )Yes ( )No

VolumeRemovedCL.ILl-L.JLVLJM_

(fL7<-IL,IL"

PH

5T7jT62ft i/S -V r

J^^

X^?57V^ft?

K 14

J Id

Cond

./ 0

./3c

./J2.-W•t}9Jio.Ho•WL.in•im

PUMP TIME.) RECOVE

TOTAL V

Temp

/R1ll,z.f/.Z1(1i/-ZI/.LILLli.oM».«

ORP

J20

3/6J<?6>E812 5*7zyz.^ Blo211$1*1

*YTIMEOL REMOVED

Turto

7&6/fi

y?io17?%3|1?lo

DO

/2jU<f•tf.26.77Az•n.to<5>3\

^70 r,*

« ^in '*

/gprf min Ii.min

M min - *(f

Depth toWater from

TOC

£.85~7./2-7./J7.*F7<l$7*/r7/iT-utl'l£1'lf

NTS

pal)(L)

Pump RdftiZoo*L/H '

\

'

• •

SIGNATURE >Wf L^\ —

SOP: 016, Revision 2 AROQ0426

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID <•/*!•?___________;________ SAMPLE NO.WELL/SITE DESCRIPTION ____________________

DATE 5 I C» / T^ TIME '4 :°-T_______ AIR TEMP.

WELL DEPTH ___________________ ft CASING HEIGHT _________________ ftWATER DEPTH __________________ ft WELL DIAMETER ________________ inWATER COL HEIGHT ______________ ft SANDPACK DIAM. ________________ inEQUIVALENT VOLUME OF STANDING WATER _____________________________PUMP RATE ___________________________________________________ (gpm) (Ipm)PUMP TIME ___________________________________________________ minWELL WENT DRY? ( JYes ( )No PUMP TIME____________________minVOL REMOVED _____________ (gal) (L) RECOVERY TIME _________________ minPURGE AGAIN? ( ) Yes ( ) No TOTAL VOL REMOVED ________ (gal)(L)

Date Time

LVolumeRemoved PH Cond Temp ORP Turb DO

Depth toWater from

TOC

II. 4.U1s/z-t

If "5 ft.1*- -szi . '5 It,Z.41

II.It.f -zn.414.4 11.3

36 (, ll.l

•stc- 11.1 -ft.* 10.1

Ko? 74.4

!£!£.

U* -.~l;

SIGNATURE

SOP: 016, Revision 2 A R 0 0 0 U 2 7

• 15 Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES i

WELL ID &ri-1____________;________ SAMPLE NO.WELL/SITE DESCRIPTION _____________________________

DATE $ I <f t " TIME 1* >_______ AIR TEMP.

WELL DEPTH ___________________ n CASING HEIGHTWATER DEPTH M, *•___________ ft WELL DIAMETER »____________ in JWATER COL HEIGHT ______________ ft SANDPACK DIAM. ________________ in ^EQUIVALENT VOLUME OF STANDING WATER ________________________________ (gal) (L)PUMP RATE ____________________________________________________PUMP TIME ___________________________________________________ min jjWELL WENT DRY? ( )Yes ( ) No PUMP TIME ____________________ minVOL REMOVED _____________ (gal) (L) RECOVERY TIME _________________ min ,,PURGE AGAIN? ( ) Yes ( ) No TOTAL VOL REMOVED________(gal)<L) f

Date TimeVolumeRemoved PH Cond Temp ORP Turb DO

DepthtoWater from

TOC Pump

.W

LZcrt- •WT.I

3.C- 13.4% , 1 fcn.z

-i-.s-i 6.0141 ilc*

13?rn I3.fr ??

JLLl: VI o.z

n.* 33.1-COMMENTS -k.rUiX-K. nr.fcx *vi * b»* _ _ T J _f M«r e. |0" T

to :3

SIGNATURE

SOP: 016, Revision 2 AROOOU28

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WCII ID Car - *\ f t*v% *vw a-J ) SAMPLE NO.WELL/SITE DESCRIPTION f

DATE < 1 (, / n*\ TIME

WELL DEPTHWATER DEPTHWATER COL HEIGHT

ft CASING HBGHT

AIR TEMP.

ftft WELL DIAMETER inft SANDPACK DIAM. in

EQUIVALENT VOLUME OF STANDING WATERPUMP RATE

(aall (Llfanml Ho ml

PUMP TIME mmWELL WENT DRY? ( ) Yes ( ) NoVOL REMOVED (nail (LPURGE AGAIN?

Date

COMMEHt

Time

IO-.MT-w-.oIO-..Tr^II -.03II -mt,;M

M--K-

MTS ,« _______

( )Yes ( )No

VolumeRemoved

ICC.1C.?ITo11.*ZO *>

zi c.ZI«27,4-0-r^ L

pH

C<r<TC*"UV-%f.O

<T,«for*|rtfc^

Cond

1?\7*|Z(,-L

111

111-IIT-111

PUMP TIME min) RECOVE1

TOTAL V

Temp

171n*\17.1?f3<j

119HTirt^»351^^

ORP

3Z.L

7o. |

Z1.Z

Z15

12.C

34.134.fr*5z,?^ ^

RY TIME minOL REMOVED (c

Turb

Kt*.(C C

I u T"j

I / t f

w\{/ iLiLlu T "^

»G4<|t<K* I/ % S

DO

tn*f 7-

7. Ifr

4.13

mzw1.T.O

1.x

Depth toWater from

TOC

2-<*.}fzs.>r ^ ^ " ' L ^^ff K ^fi

Z<?.K2<S.

M.Xl .K

al)(L)

Pump Rat*

.1 1/ ^

1 . ... A L s l »\

L.U. JJ- LUUT /»lt*w*t Uv-,V. *d*o*» 2*> «:*. >» »«I f J 'L f M « ir*so

SIGNATURE \ A+~t«v ~~ ———————— _

SOP: 016, Revision 2 ARQQtil*29 ^^

'115 Loveton Circle ISparks, Maryland 21152

PURGING LOGBOOK FORM jGROUNDWATER SAMPLES

WELL 1CWELUS

, &#/0ITEDESC:RIPTION

SAMPLE NO.'< ^

j

DATE _^ f 6 / *?y TIME /0<?«

WELLDWATERWATEREQUIVAPUMPRPUMPTWELLWVOL REPURGE

Date

k

COMME

EPTH__DEPTHCOL HELENTVCATE

~7- 6"7IGHTLUME OF STANDING WATER

ft CASING HEIGHTft WELL DIAMETER

AIR TEMP. ^ 5

in •ft SANDPACK DIAM. in

faalHL(amr ^

IME min *rENTDRMOVEDAGAIN?

Time

Izs)30*J?5To

at/r

9T/01ST

Y? ( )Y«s ( )No(aalML

( )Ye« ( )No

VolumeRemovedO

IL-tuIL

H^

(*L

gadk

pH

w«.&L/D• *\Q

(p.tO\ff v j

t.ttt-70

Cond

830&&£"b«G>#0(,ftto&7t/

PUMP TIME min) RECOVEI

TOTAL VI

TempiL $i\<bif-**fl-C^[1-5I'-S

ORP

-83-«B-YoU~io$

-/'I'III

?Y TIME minDL REMOVED

Turfa

W7?

Jo1*

"2-1zg>

DO

-V7-27.Z4-Zc?.ItJ7

(a

Depth toWater fromTOC

7.757-75"7.77-7S-7.7.7. -7 5"

Pump K .1I0o*cjf

If

H

* X x !

SIGNATURE //#T f ff J/J

SOP:016,R.vision2

15 Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL1D t'*'l SAMPLE NO.WELL/SITE DESCRIPTION

....

DATE 5/1 f 1 • TIME 12*60 AIR TEMP

WELL DEPTH ftWATER DEPTH <? ftWATER COL HEIGHT ftEQUIVALENT VOLUME OF STANDING WATERPUMP RATEPUMP TIMEWELLWENTDRY? ( )Yes ( ) NoVOL REMOVED (oall (LlPURGE AGAIN? ( ) Yes ( ) No

CASING HEIGHTWELL DIAMETERSANDPACK DIAM.

PUMP TIMERECOVERY TIMETOTAL VOL REMOVED

ftininfgalUL)(apmUlorminmmmm

(gal)(L)

Date

$kTime

mfMl'HJf//VollffliftI'X

VolumeRemoved

OL.;LZLIL

IfcfL<oL-

PH

fft

W&1f76mf.nw

Cond

99t*ofz*.o?o.ofoDSo.off•oft

Temp

/z.ili.iILLILLH-LIt.Lli.i

ORP

,772,Wo1/8?*</W11 0Z&&

Turfa

ftoM£7friZ-z\1\

DO

.98,1L.31.33.12,.$0Jo

Depth toWater fromTOC

0Pump Rat*Zao+d,/** .

COMMENTS

SIGNATURE

SOP: 016, Revision 2 ft R 0 0 0 U 3 I

15 Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORM \GROUNDWATER SAMPLES

WELL1D Cfr' SAMPLE NO.WPLtVSrrE DESCRIPTION

DATE C" / T- 1 W TIME *!•/«

WELL DEPTHWATER DEPTH 1. 04WATER COL HEIGHT

.ft CASING HEIGHT

AIR TEMP.

ft WELL DIAMETER *''ft SANDPACK DIAM.

POUWALEMT VOLUME OF STANDING WATERPUMP RATEPUMP TIMEWELL WENT DRY? ( ) Yes ( )NoVOL REMOVED (aall (LPURGE AGAIN?

Date

*/?ln

.

COMME

Time

1:3*'

^ ; ?^f\ ' T°

L f

1'<Z

T ,\0- CO

|r?-.o4rt-rtio-.a(0 * 1 0

( )Yes ( )No

VolumeRemoved

OrIffr^/o

K(6

o'

PH

t 0£ ><;<*C*i<r

6.rb.iofr.«3

fr,!3C IU6 r?* z*.z/

Cond

Pfrxfrt;US

tizLZC?

/ 7 iLW &)

(,Z\

(*n6nCo | I

PUMP TIME) RECOVEI

TOTAL Vi

Temp

/7,Ci*.?U.c/* <?

K.IIH.-514.H.I(if 0

1*.o

•to

»*?*?

ORP

-*r*

-*_./-CM

-61*1

-m-Cr*

-W*-HI

-W

-9--?T»

IYTIMEDL REMOVED

Turb

/IT.t

l+f.oZ<7.?

7-fffr

T*tli-IW»?1lfrZ,$

lit?Ion^Tl

tin

DO

*-t>

?1°l.z>0.13

W

O.J1

<)<,<

fi<ft

a,<1DCS

0<fc.<T<-

M. ]

ftinin(aalHL(aoir «min •mmmin .

, ,(gDepthto

Water fromTOC

1 . "f

I.O'rl.n1.1

T 12.

i.n^.i-V^.i^V"1.13.!TS i**».la

SIGNATURE C lA- t/l*~A

r

al)(L).j.

Pump F, Jt

v ^ L •*•••

-'

-'i

• !

-

*

J-. i

1^1 •

Xrx*/* ^

SOP: 016, Revision 2

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

pfl-rtWELLID Unl-> SAMPLE NO.WELL/SITE DESCRIPTION f/i JLiOWjkJri* O/VQ «,., A*l IL ilef-t «•£- UP1'

DATE 5/7 / °7 TIME <O00

WELL DEPTH / 7 ft CASING HEIGHTWATER DEPTH

AIR TEMP. 65"

A* ftD ' ft WELL DIAMETER 0. 5* in

WATER COL HEIGHT n ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE

(aall (Ll(opinl Iloml

PUMP TIME mmWELL WENT DRY? ( ) Yes ( ) NoVOL REMOVED (nail (LPURGE AGAIN?

Date

4

\|

r

/

COMME

Time

?$*<>775"to>YS'9f«i(00.

( )Yes ( )No

VolumeRemoved

OLILIL7L

<-H-fL6L

PH

f-Wf-zvZlVten?•£$.11f.il

Cond

.#-.off.0%

.0*

.o$t

.0%,

.09.

PUMP TIME min.) RECOVE

TOTAL V

Temp

U**II&11.1*t/.l*//•6y/.frii-ii

ORP

W5ZO-Linno/zoIII*in

RY TIME minDL REMOVED faah (Ll

Turb

y* vQQ

36zz~zonn

DO

/•0/

At/luUJM/54/<57

Depth toWater fromTOC

0Pump Rate

Zoo*Ll~«

^

c/../*.;t9 jx4/?>« ———————————— ——— — • _/ / */ iX

M* r-j/Q^ — -^SIGNATURE Al& ^ TOX \N

SOP: 016, Revision 2 JulyAROOOU33

15 Loveton CircleSparks. Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID t-ft* It- ( C*v»H »_***-/ J SAMPLE NO.WELL/SITE DESCRIPTION '

DATE r / * / T*> TIME

WELL DEPTH ft CASINO HEIGHTWATER DEPTH

AIR TEMP.

»ft WELL DIAMETER in

WATER COL HEIGHT ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE

foamfan \

PUMP TIME mirWELL WENT DRY? ( ) Yes { ) NoVOL REMOVED (aah (IPURGE AGAIN?

Date

sfrlf

COMME

Time

,OZ~

(OTf

/0Z*

(0VZ-

/0M,

104°rOlr*

lot*

(051

NTS C . _________________ . ______ , ___________ ,__

( )Yes ( )No

VolumeRemoved

2*Z6

7 >lo

32-3416,1-B

<+o

PH

6 t6.H

fir.Zf-

^ >6-730.2Z

L.v**(r.2f6.?t

Cond

6fT

60 1

6«><,605-

(,&<?

(,0+

i*«<

LM(.0*

PUMP TIME minJ RECOVERY TIME min .

TOTAL VOL REMOVED d

Temp

«.<*

1*5.7il^f?.1'7-1»t.OK.o

;«>oIH.O

ORP /

-K.1-7»ho-76.-UA-?t.i-76.1-?-7 .7-?cc

^1 ,4.<?1 .116.1."7,I7-T?. i6,uT-.

>00

o.*<O.S+

o.<&m0.&

OAT,

OX\

«l„,

Depth toWater from

TOC

1-I/

1.0-1

f.01

IJOft

*..!/

1.M

1.171.1"?.-T.I-?

la'MU

Pump a

\ ^

j/ W *./W* v/4^c -.*U. l.U < *U ._./ r\- -u* 4V-r:i--*. c p J

•to-w UWt *p. ///?OT .. -

SIGNATURE S// JLf ^

SOP:016,R.vi,ion2 RROOOU3U

15 Loveton CircleSparks, Maryland 21152

PURGING LOGBOOK FORMGROUNDWATER SAMPLES

WELL ID C^Mly SAMPLE NO.WELL/SITE DESCRIPTION

DATE ^ / (0 111 TIME 1 SOO

WELL DEPTH ft CASING HEIGHTWATER DEPTH

AIR TEMP. -5"

fti Z-to5 ft WELL DIAMETER in

WATER COL HEIGHT ft SANDPACK DIAM. inEQUIVALENT VOLUME OF STANDING WATERPUMP RATE

(oall (Ll(anml MDml

PUMP TIME mmWELL WENT DRY? ( )Yes ( )NoVOL REMOVED (aall (LPURGE AGAIN?

Date

$i\n

COMME

Time

HISWol*»1?[W>tftfMoit/ff

MTS

( )Yes ( )No

VolumeRemoved

0fLILILL5ufal~

PH<-!</

6JoG-W0-Zt&.13C.1315

Cond,7ey, 2-,77o.bl1/.m,t_t°.(p L

PUMP TIME min.) RECOVE

TOTAL V

Temp

U )/2-aII -o(Z.&tf.1II.*

\l*o

ORP

7-?7-47-55-5"8-tL-6

RY TIME minOL REMOVED (c

Turb

3V7

at.zyzvZl/s

DO

.7/

./I./6>./8*/5.17./6

Depth toWater from

TOC

/Z-7T/z.7//Z-7/

tl-ll11.11/Z-7/ll.K

|al)(L)

Pump Rat*Zoo~eJ»

it

it

t<

t(

If

''

SIGNATURE

SOP: 016, Revision 2 July 1S

AR000435

Appendix F

Closure Cap Calculations

AROQQ**36

DRAINAGE LAYER CALCULATIONS

Hmax = L* [SQRT(e/K + (tanBA2)) - tanB]

e = Intensity x {% drainage collected through drainage layer)

tanB = Slope (%)

L (ft, in, m) =tanB =% collected * =Intensity {in/hr) =K (cm/sec) ** =e (cm/sec) =

Hmax =Hmax (from HELP) =

L {ft, in, m) =tanB =% collected * =Intensity (in/hr) =K (cm/sec) ** =e (cm/sec) =

Hmax =Hmax (from HELP) =

TOP-NET100 1200 30.480.04

0.4114.0428.23

0.00117

ft in cm0.05 0.62 1.570.00 | 0.053 | 0.13

SIDE SLOPE-NET150 1800 45.72

0.3330.4534.0410.58

0.00129

ft in cm0.03 0.33 0.840.00 | 0.046 | 0.12

L {ft, In, m) =tanB =% collected * =Intensity (in/hr) =K (cm/sec) =e (cm/sec) =

Hmax =Hmax (from HELP) =

L (ft, in, m) =tanB =% collected * =Intensity {in/hr) =K (cm/sec) =e (cm/sec) =

Hmax =Hmax (from HELP) =

TOP-SAND100 1200 30.480.040.2454.040.01

0.0007

ft in cm22.73 272.73 692.731.08 | 13.00 | 33.02

SIDE SLOPE-SAND150 1800 45.72

0.3330.2474.040.01

0.0007

ft in cm13.92 167.02 424.220.47 | 5.58 | 14.17

* % collected is determined based on the HELP model.•* Permeability calculations are for Tenax Tendrain 70-2 and include factors of safety for field loading and

reduction factors for creep, biological clogging, and chemical clogging.

AROOOU37

BUSH VALLEY LANDFILLLANDFILL CAP DRAINAGE LAYER DESIGN - (Geocomposite Layer)

CONSIDERING ONLY TOP SLOPE OF LANDFILL

Rainfall Intensity, I = 4.04 in/hr k h= 2.9E-03 cm/sec (cm/sec) (in)

Infiltration to Drainage Layer = 41.1% 1.0E-03 1251.7Supply Rate, e = 1.2E-03 cm/sec 2.0E-03 871.7Slope Length = 100ft 3.0E-03 703.4

Slope = 4% 4.0E-03 603.2Drainage Layer Thickness = 0.053 in 5.0E-03 534.8

f ACCORDING TO HELP MODEL) 6 OE-03 484.47.0E-03 445.3

Minimum Permeability of Drainage Layer = 3.3E+02 cm/sec 8.0E-03 413.79.0E-03 387.61.0E-02 365.52.0E-02 246.43.0E-02 193.94.0E-02 162.95.0E-02 141.96.0E-02 126.47.0E-02 114.58.0E-02 104.99.0E-02 97.11.0E-01 90.51.0E+00 15.2

> indicates acceptable permeability < 2.0E+00 8.13.0E+00 5.54.0E+00 4.25.0E+00 3.41.0E+01 1.71.5E+01 1.22.0E+01 0.92.5E+01 0.71 .OE+02 0.21.5E+02 0.122.0E+02 0.093.0E+02 0.063.3E+02 0.05

Geonet > 3.32E+02 0.053 <> 3.4E+02 0.05 <> 3.5E+02 0.05 <

flROOOUS

BUSH VALLEY LANDFILLLANDFILL CAP DRAINAGE LAYER DESIGN - (Sand Layer)

CONSIDERING ONLY TOP SLOPE OF LANDFILL

Rainfall Intensity, I = 4.04 in/hr k h= 2.9E-03 cm/sec (cm/sec) (in)

Infiltration to Drainage Layer = 24.5% 1.0E-03 956.0Supply Rate, e = 7.0E-04 cm/sec 2.0E-03 662.7Slope Length = 100 ft 3.0E-03 533.0

Slope = 4% 4.0E-03 455.75.0E-03 403.06.0E-03 364.27.0E-03 334.1

Minimum Permeability of Drainage Layer = 8.0E-01 cm/sec 8.0E-03 309.8Minimum Drainage Layer Thickness = 11.67 in 9.0E-03 289.7

1.0E-02 272.72.0E-02 181.33.0E-02 141.3

Drainage Layer Thickness = 13.0 in 4.0E-02 1177(ACCORDING TO HELP MODEL) 5.0E-02 101 7

6.0E-02 90.17.0E-02 81.18.0E-02 74.09.0E-02 68.11.0E-01 63.22.0E-01 37.63.0E-01 27.24.0E-01 21.45.0E-01 17.76.0E-01 15.17.0E-01 13.2

SAND > 8.0E-01 11.7 <> 9.0E-01 10.5 <> 1.0E+00 9.5 <> 2.0E+00 5.0 <> 3.0E+00 3.4 <> 4.0E+00 2.6 <

> indicates acceptable permeability < > 5.0E+00 2.1 <> 1.0E+01 1.0<> 1.5E+01 0.7 <> 2.0E+01 0.5 <> 2.5E+01 0.4 <> 3.0E+01 0.3 <> 3.5E+01 0.3 <> 4.0E+01 0.3 <

fiROOOi+39

BUSH VALLEY LANDFILL 4LANDFILL CAP DRAINAGE LAYER DESIGN - (Geocomposite Layer) •,

CONSIDERING ONLY SIDE SLOPE OF LANDFILL j

Rainfall Intensity, I = 4.04 in/hr k h '1= 2.9E-03 cm/sec (cm/sec) (in) •]

Infiltration to Drainage Layer = 45.3% 1 .OE-03 1532.0Supply Rate, e = 1.3E-03 cm/sec 2.0E-03 966.2 ^Slope Length = 150 ft 3.0E-03 724.9 ' 1

Slope = 33.3% 4.0E-03 586.05.0E-03 494.26.OE-03 428.5 17.0E-03 378.8 *

Minimum Permeability of Drainage Layer = 7.6E+01 cm/sec 8.0E-03 339.9Minimum Drainage Layer Thickness = 0.046 in 9.OE-03 308.4 "\

1.0E-02 282.4 J2.0E-02 154.63.0E-02 106.8 -\

Drainage Layer Thickness = 0.046 in 4.0E-02 81.7(ACCORDING TO HELP MODEL) 5.0E-02 66 1

6.0E-02 55.67.0E-02 47.98.0E-02 42.19.0E-02 37.6

> indicates acceptable permeability < 1.0E+00 3.55.0E+01 0.077.0E+01 0.05 -7.5E+01 0.047

GEONET > 7.6E+01 0.046 < ,> 8.0E+01 0.04 <> 9.0E+01 0.04 <> 1.0E+02 0.03 <> 2.0E+02 0.02 <> 3.0E+02 0.01 <> 4.0E+02 0.01 < i> 5.0E+02 0.01 < ]> 6.0E+02 0.01 <

BUSH VALLEY LANDFILLLANDFILL CAP DRAINAGE LAYER DESIGN - (Sand Layer)

CONSIDERING ONLY SIDE SLOPE OF LANDFILL

Rainfall Intensity, I = 4.04 in/hr k h= 2.9E-03 cm/sec (cm/sec) (in)

Infiltration to Drainage Layer = 24.7% 1 .OE-03 1025.5Supply Rate, e = 7.0E-04 cm/sec 2.0E-03 625.3Slope Length = 150 ft 3.0E-03 458.7

Slope = 33.3% 4.0E-03 364.75.0E-03 303.76.0E-03 260.57.0E-03 228.3

Minimum Permeability of Drainage Layer = 4.0E-01 cm/sec 8.0E-03 203.4Minimum Drainage Layer Thickness = 4.738 in 9.0E-03 183.4

1.0E-02 167.02.0E-02 88.63.0E-02 60.4

Drainage Layer Thickness = 5.58 in 4.0E-02 45.8(ACCORDING TO HELP MODEL) 5.0E-02 369

6.0E-02 30.97.0E-02 26.68.0E-02 23.39.0E-02 20.81.0E-01 18.72.0E-01 9.43.0E-01 6.3

SAND > 4.0E-01 4.7 <> 5.0E-01 3.8 <> 6.0E-01 3.2 <> 7.0E-01 2.7 <> 8.0E-01 2.4 <> 9.0E-01 2.1 <> 1.0E+00 1.9 <> 2.0E+00 1.0 <> 3.0E+00 0.6 <> 4.0E+00 0.5 <

> indicates acceptable permeability < > 5.0E+00 0.4 <> 1.0E+01 0.2 <> 1.5E+01 0.1 <> 2.0E+01 0.1 <> 2.5E+01 0.1 <> 3.0E+01 0.1 <> 3.5E+01 0.1 <> 4.0E+01 0.0 <

<AOOQ>_>"«55rao>i_0)+rfra3UrauO**TJ0)to3£»COQ)0)S•ocre0)+*raE'xoaQ.ra0)rac5o.c(A(A.£*3SCra3O"

»st Comparison

*(The

uO

(A0)_>"Jraci»0)+*<1_0)>,ra_iOJO)ra£*raQ*-Q

onomic Comparison

i

wUJ

,-*.u0)w£u

rsiOT<II>*XoQ.Q.10

•ocntf)H-oCM

5O_>"cocb.o*J5

</)c2COr-r-01CO,_

Volume

required =21,852 c)

ooc0)««•-ot£*woo

"5*-o1-

woo'£13

Quantity

*••'E3

09**

k_OT3CQ>>

OO01inr"0101V)

in00CD

rf\\fj

oof-N;

CM"CO

co

Sand

- ma

terial cost

*-

oo•*•d-COotNIk_

O CM^ OJC oQ)> 2

is<° t2 to^ t ftw *»

O Olo r-to i-1

m e^\tr* V#

CO Olr- in*""•. °°.CM" -"CO Ol

5 >•o o

M;ro> ~"K -TO ID^ .c'Q.-O8*2 wnifO> (DS o>3 ora roX Q.CM CO

V0 X Xc ro CD« c c*K 0) OJW L_ 1—"*• c.O "*

o a o o-O *i "O T3c w c c(U O 03 0)> 0 > >

ooin1*-"•<rtft

inOld

jy-htry

oooo"O5If)

CO

P-

'EoinCMc"

Geotextile Layer (non-wove

•<r

oootoo(D4*

"n*-O

aS|O •* is.H«sr r* *&ftTT

'M in ooo m oOdd^

^ _ -. * JK^ w> f*

2»o oS o oc o oeo o" o"3 OJ O>O m in

*j'? •*— *-^ w tn

IOinCO,.3?

>* 'xf Q)"> 0s §,Ift

o S S.__ I4_ 'W (/> CDSo -5OU o *E o -oo o »0 OJ 5o m »5 " £ «U T3 -Q O•; Q> 30£M .C o * 3 S £<b D- - o>> S ® E-S C<D18 S Pooc o> g oj ro^ 5 £00.§

ooo041CO4A

"n*c

»xoL-caa.oO

cO)"«a>5pCO

CD

S3 o o 9 ..p o S o -?-?O C TT C CO COg, P «T 9> C C

J>'SJS£0)*-_ra3_Oraoo+*•o0)w3_>»CO£0)

! *<D 0)*•* SKra .>E * -«>< E

I *S <ra v. —g Si *S « -a" - I EI I i« S 5S ? i f••• / \ * o*- O ^ -=** tii .coC S K I-w rn 8 *"-^ 2 I aJ e t "§ § 1 sr- » 5 ».c w "S 01o a .° 11.<£ E £ •§£ 0 * ^ . £S « r &E -a * 2o E 1 g2 i i I» S i sO O 3 >o LU 3

O 0015 OW CMKl- 1_ *•' L_o o 01 o*; -o -o (M -a« c c o cO 0) 0) _ 0)O > > 5 >

00 |s- in O— 01 ID g O« in to g inO "fr (O Kj N-"•-s^a?to to *** w

U in o oi inO oo o r- 01O ID CO -r^ O*J

.•£* co oo oi S** r^ h_ m oC h- f*. CO °-g oT 01 T-- gg CO CO 01 g

^oo 0s w

1« S4- in!= 01_g . -

'« -7- a>5 *° S*-E 1O.-D i

§111a*!*£ c ™ «B E o>-iCO P -o Q)E c s. O) CO X

^ -D -i <» SP ? 3 o p§ ra J JS $±- w x a. o

T- CM cr> rr

Ooo•Ktooto

4*

"ra**o

m W V5 K Hfl) x""' " ^ft* - "—it o o"S "° "°2 c cO Q) 0)0 > >

«§§5 "-S£S£« s(/> *«

t5 m coo m oOdd•**3 (A &9w ** *

**2 2300c o on o" d3 o> a>Q m m

**•p 1*- -4—^ (O tf)

IoinCO

i'aT

^ '"5w S10 0« S« 0)lO

S r °W (0 COi s ' *E o -o00 ®O 0) ^O Ift M

S " -2 «U p J3 0S I 8S* 3 T3 C• o- ~ £.g £ "55 E13 ro PooE 2 | OB roo ^ s O o.**3

ooocih*COw

To«o

AROOOUU3

BARRIER LAYER COMPARISONAND

SLOPE STABILITY ANALYSIS OF CLOSURE CAP

BROODS

*-*(AOo0)"•Sra0)i_(D**_ra3_Orauo•*->•o0)(A3>»CO0)0)5•QCra034_<raE"xO (Afe <1>Q. 5a £ra ro0 Ci_ k_ra CD**

I .5 S.(A ro(A -Ja> i-•- a)? "£s a3 DOCT *-

» 2iS §r- .g= So a(A Efe °ra 0c oo E0 0— c(A OO 0o uj

a> o oo -5- -c 3- co0) rt ift0) CO CD*£ C- CMW (M Oliv i_ i_ va 0 0 CN CMtS CM CM8 S §°°o > > s s

^ ° i- r-« £ 2 £JS T. ~. co coo r*- CM • ,.-:1- " 5 coCN i — . j* . o/f% / yv v \r fvr vr

^« o o a) CMO o r o ooO ^r oi oi d**^ fjA tf\ tf\ if\3>«*_ -t •««• r *«•*- in in o oC CO CO N. t -.2 Oi O> CO CO*g m m -s- TT

j_.•= c c >, >,.50000

"o" oV O* ^— sE « ? g-,° K § 1° S^ ^^ SB 5V « g -28ii. **— tn> S ->, -2 — «^ § o «caS S'S S Tr: m -"= c „O H co •>, 4=^ " •* „ 5 ro =.° » " g 2 o £oit ' "° CJ o ® •"*CM E « _ S -o co

CT .1= CO -° CO v15 ^ "^ F ™ r-"*- CT 03 S O1 5

. 1 2 l^ll> > <D b 01 co co= _ E _. ' S a) an COD E^3°E£ oo o - 5 r o ™ o» h- > s:OXQ.O3 i- CM CO «T

^ ^

Ooor-~otn«>

"ra*-OH

-C ,Co o0 031- Kk_ i_03 03

0) C CO _J _JS UJ UJE w co£ O OQ) ~ — ' ~ — 'r* *- •—o: o o*- -o -Dw c cO Q) 0>0 > >

_ g»« 2*- - T}-° W rn•- «g

r \ trytr#

jW O OO •** coOdd*rf'c^ f /\ J/\j VJ try

i1 co in••= £ ™c °l -n •*- oo3 O> O>O co r-

"o"*-5 -E * ~ * ^ - * ^ ^c (/) tn0 Dp>OXr-CM —* tf) — .A o «i (JO,3 — 0It ro _

'C (0UJ 0> •=Q. -- 75 -2D ^ P ro_l w fc cj ift • cin a) '— ift CO)

E S IsS " E -g^ tf> 0) C— o Eg28 g |J3 S £SE m ® -cS " SoE "° "5 0o 2? o5 E0-5 i- co° 2" uj uj« £ Q. Q.% ro q q• a? dd_> < ^ 73 16 g E EE 3 o o <i0 h- S "**j<

ooo(D

CMtf>

"ra*•*O1-

LINER COMPARISON (PVC -vs.- LLDPE)

Interface Fricti

Liner Material**

PVC (30 mil)LLDPE (40 mil)

* Wet interface cor** Information for F

Relative Cost <

Liner Material**

PVC (30 mil)LLDPE (40 mil)

** Information for F

on Angle Between Liner and Geotextile*

FinishSmooth24 deg.

15-23deg.

Textured26 deg.

25-35 deg.

idition at the critical slope (3:1, H:V).(VC and LLDPE obtained from Watersaver and GSE Lining, respectively.

Material and Installation) for Liners

FinishSmoothS0.28/SFS0.30/SF

TexturedS0.28/SFS0.40/SF

»VC and LLDPE obtained from Watersaver and GSE Lining, respectively.

t-t

1•;iHJ

'- 1' i

n• i

1'• >."T

LINERS.xls

BUSH VALLEY LANDFILL - HARFORD CTY, MDLANDFILL CAP SLOPE STABILITY ANALYSIS

TRIAL FAILURE PLANE: SMOOTH LLDPE LINER VW GEOCOMPOSITE_______ ___ (Wet Geotextile Condition)

interface cohesion, c = 0 psfinterface friction angle \ $ = 17 ° (Range = 15° - 23°)

slope(max)= 5 H:1Vslope, p= 11.3 °

length of slope, L = 150.00 ft NOTE: USE SMOOTH LLDPE ON SLOPESunit weight of soil, y = 120 pcf 5:1 AND FLATTER

depth of soil, d = 2 ftpore pressure ', n = 0.33 in. water

1.716 psftoe soil cohesion, cs = 0.00 psf

toe soil friction angle, <j>s = 26.00 ° (assuming silty-sand soils from representative borrow pit)weight of toe. WT = 1200.00 Ib/ft

INFINITE SLOPE FACTOR OF SAFETY:

(yZcos p -(i)tanyZsin p

F.S.= 1.(O.K)

Reference: Stability of Lined Slopes at Landfills and Surface Impoundments, August 1990 (Equation 5):

FINITE SLOPE FACTOR OF SAFETY:

\ r ^_J^WOAX >~4

Fc.0.— ———————————

\v)L tan^ + cL H ——

CO

/ZLsin/?

rT tan (f> +c Ls/?-sin>5tan^ F.S.-1.6

<0-K)

Reference: Stability of Lined Slopes at Landfills and Surface Impoundments, August 1990 (Equation 9):

-j d2 (slope)y

FINAL GRADE

————————————— LINERNOTES:Friction angle and range provided are based on manufacturer supplied data.

1 Pore pressure based on HELP model (calculations are attached.)1A Factor of Safety (FS) greater than or equal to 1.5 is considered adequate for landfill closure (EPA.

RROOOUU7

BUSH VALLEY LANDFILL - HARFORD CTY, MDLANDFILL CAP SLOPE STABILITY ANALYSIS

TRIAL FAILURE PLANE: TEXTURED LLDPE LINER W/ GEOCOMPOSITE_______{Wet Geotextile Condition)

interface cohesion, c = 0 psfinterface friction angle \ 4> = 26 * (Range = 25° - 35°)

slope(max)= 3 H:1Vslope, p= 18.4 °

length of slope, L = 150.00 ft NOTE: USE TEXTURED LLDPE ON SLOPESunit weight of soil, y = 120 pcf STEEPER THAN 5:1.

depth of soil, d = 2 ft MAXIMUM SLOPE ENCOUNTERED WITHINpore pressure J, M = 0.33 in. water AREA OF LANDFILL CAP IS 3:1

1.716 psftoe soil cohesion, cs = 0.00 psf

toe soil friction angle, <J>S = 26.00 ° (assuming silty-sand soils from representative borrow pit)weight of toe, WT = 720.00 Ib/ft

INFINITE SLOPE FACTOR OF SAFETY:

(yZcos p -yZsin p

F.S.= 1.5(O.K)

Reference: Stability of Lined Slopes at Landfills and Surface Impoundments, August 1990 (Equation 5):

FINITE SLOPE FACTOR OF SAFETY:

\S t^^v^fj f iFo.0.— ————————————

CO

/ZL sin^

^T tan^5 +cs Ls^-sin>9tan^ F.S, = 1.5

(O.K)

Reference: Stability of Lined Slopes at Landfills and Surface Impoundments, August 1990 (Equation 9):

- \d2 (slope)y

FINAL GRADE

NOTES: ———————————— UNERFriction angle and range provided are based on manufacturer supplied data.

1 Pore pressure based on HELP model (calculations are attached.)3 A Factor of Safety (FS) greater than or equal to 1.5 is considered adequate for landfill closure (EPA.)

AROOOi»i*8

BUSH VALLEY LANDFILL - HARFORD CTY, MDLANDFILL CAP SLOPE STABILITY ANALYSIS

TRIAL FAILURE PLANE: (WET GEOTEXTILE WITH SOIL) OR (SOIL WITH WET GEOTEXTILE)____________ (Wet Geotextile Condition)

interface cohesion, c = 0 psfinterface friction angle V d> = 26 ° (Range = 25° - 30°)

slope(max) = 3 H:1Vslope, p= 18.4 °

length of slope, L = 150.00 ft NOTE: MAXIMUM SLOPE ENCOUNTERED WITHINunit weight of soil, y = 120 pcf AREA OF LANDFILL CAP IS 3:1

depth of soil, d = 2 ftpore pressure2, n = 0.33 in. water

1.716 psftoe soil cohesion, cs = 0.00 psf

toe soil friction angle, 4>s = 26.00 ° (assuming silty-sand soils from representative borrow pit)weight of toe, WT = 720.00 Ib/ft

INFINITE SLOPE FACTOR OF SAFETY:

(y Z cos p - n) tan $ + cyZsin p

F.S. = 1.5(O.K)

Reference: Stability of Lined Slopes at Landfills and Surface Impoundments, August 1990 (Equation 5):

FINITE SLOPE FACTOR OF SAFETY:

F.SV/ t-- 'Uz>p p.

WTtan^ -t-c Lcos^-sin/?tan^

^ZL sin/?

F.S.= 1.5(O.K)

Reference: Stability of Lined Slopes at Landfills and Surface Impoundments, August 1990 (Equation 9):

- \d2 (slope)y

FINAL GRADE

————————————— LINERNOTES:Friction angle and range provided are based on manufacturer supplied data.' Pore pressure based on HELP model (calculations are attached.)1A Factor of Safety (FS) greater than or equal to 1.5 is considered adequate for landfill closure (EPA.)

flROOOUl»9

so

o

<o

geQ.2U

il -»g -£ §£ y .C^ c.c

oUJo

oo

RROOOU50

Appendix G

Surface Water Drainage Calculations

flROQOl*52

SUMMARY OF TR-55 RESULTS (EXISTING & PROPOSED CONDITIONS) ""(Input Values for TR-20)

D.A. NO. 1D.A. NO. 2D.A. NO. 3D.A. NO. 4D.A. NO. 5

Totals:

D.A. NO. 1DA NO. 2D.A. NO. 3D.A. NO. 4D.A. NO. 5

ORIGINAL / EXISTING CONDITIONS IN 1986 - DRAINAGE AREASAREA (Ac) RON Tc (hr) 2-yr Q (cfs) 10-yr Q (cfs) 100-yr Q (cfs)

4.62.73.43.11.0

8282828282

0.0300.0470.0430.0370.031

14.167.659.809.223.05

28.9115.8520.2418.966.24

46.7625.6332.7430.6610.10

14.8 43.88 90.20 145,89

PROPOSED CONDITIONS - DRAINAGE AREAS

AREA (Ac) RCN Tc (hr) 2-yr Q (cfs) 10-yr Q (cfs) 100-yr Q (cfs)3.33.93.72.81.1

7474747474

0.2020.2120.1780.1980.230

3.994.614.713.411.26

9.8911.4511.648.453.12

17.4520.2120.5114.915.52

Totals: 14.8 17.98 44.55 78.60

SUMMARY OF TR-20 FLOW ROUTING RESULTS (EXISTING & PROPOSED CONDITIONS)

D.A. NO. 1D.A. NO. 2D.A. NO. 3D.A. NO. 4D.A. NO. 5

Totals:

D.A. NO. 1D.A. NO. 2D.A. NO. 3D.A. NO. 4D.A. NO. 5

ORIGINAL / EXISTING CONDITIONS IN 1986 - DRAINAGE AREASAREA (Sq. Mi.) RCN Tc (hr) 1 2-yr Q (cfs) 10-yr Q (cfs) 100-yr Q (cfs)

0.00720.00420.00530.00480.0016

8282828282

0.100.100.100.100.10

10.556.167.777.042.35

21.1712.3515.5814.114.70

32.6119.0224.0121.747.25

0.0231 33.87 67.91 104.63

PROPOSED CONDITIONS - DRAINAGE AREAS

AREA (Sq. Mi.) RCN Tc (hr) 2-yr Q (cfs) 10-yr Q (cfs) 100-yr Q (cfs)0.00520.00610.00580.00440.0017

7474747474

0.200.210.180.200.23

4.124.744.773.491.30

10.0011.5011.538.463.11

16.8319.3619.3714.245.24

Totals: 0.0232 1 8.42 44.60 75.04

1 Tc values assumed as 0.10 hr for minimum time of concentration path modeled in TR-20.

TR55-TR20-SUMMARY.xls „„„, r-« 5/19/99UROOOl»53

COUJCO>-<<oy= 0)h- cD 0O 5K -o3 §0 0-1 T5

HYDROLOGIC

F.- Post Developet

O 0)01 >

p: wh- c

Mi15£ §co uS g=> -xCO toUJ 'xo: £u.O>-o:<ssZ>CO

coMra_3ra>UJ

"c"

Percent Change

ital Existing

to Total

•Developed

Conditio

(%)

iZ —t- W1 ' oQ.

<TJ

5 ig.2 .2 0 LL O y* "to

« £ 1 S-o9 o"- « oo

Q.

8' •O O) C __,u. .£ .2 «« .2 i S** *5 So ** cH UJ 5

0

**C0>>UJEi_o*—(O

*. -p cC £ CDo S >^ ^ n\0 «> ®E e i= 0 00 - «"S «m . l-•- tn ™s s «^^6* r^ *— 'CN ° o^^^— £ .c•E = c<» 0)S M ®TO S «9> S «>u =? Q)Q) " bQS^

CDCO

. O)« •*-0) C

Is^ JCo toSP p p •=, *&-• o- 5- D) (olO CO CO 5 .cin TT co P S-^ CO (N ^ S

1 1 > . D )i £o ow •£ofe-h- .2-a &C OJro cin o10 -n1 Wf sCN o TJ- •" ro

• (D 0 ® -°oo iri £ £*~ h* O> <D

.E S« «3 ci/> O

o « §0 °

55? ro g>c^£o g|

o **£ uj•o o0) £.9 (0•2 §-D S5t. ° ro

k. m « 3*- ra o 9> o« » >• ^15&^o ^0c??? ?!

AROOOIi5«t

TR-55 Worksheets and CalculationsTR-20 Hydrologic AnalysisFigure G-1 Existing Site ConditionsFigure G-2 Existing Conditions Drainage Area MapFigure G-3 Proposed Conditions Drainage Area Map

flROOOi*55

TR-55 WORKSHEETS AND CALCULATIONS

flROOOi»56

SUMMARY OF TR-55 CALCULATIONS (EXISTING & PROPOSED CONDITIONS)(Input Values for TR-20)

D.A. NO. 1D.A, NO. 2D.A. NO. 3D.A. NO. 4D.A. NO. 5

Totals:

D.A. NO. 1D.A. NO. 2D.A. NO. 3D.A. NO. 4D.A. NO. 5

ORIGINAL / EXISTING CONDITIONS IN 1986 - DRAINAGE AREASAREA (Ac) RCN Tc (hr) 2-yr Q (cfs) 1 0-yr Q (cfs) 1 00-yr Q (cfs)

4.62.73.43.11.0

8282828282

0.0300.0470.0430.0370.031

14.167.659.809.223.05

28.9115.8520.2418.966.24

46.7625.6332.7430.6610.10

14.8 43.88 90.20 145.89

PROPOSED CONDITIONS - DRAINAGE AREAS

AREA (Ac) RCN Tc (hr) 2-yr Q (cfs) 10-yr Q (cfs) 100-yr Q (cfs)3.33.93.72.81.1

7474747474

0.2020.2120.1780.1980.230

3.994.614.713.411.26

9.8911.4511.648,453.12

17.4520.2120.5114.915.52

Totals: 14.8 17.98 44.55 78.60

TR55-SUMMARY.xls 5/19/99AROOOU.57

••k *-'- Project:•k P , Project #:• F J V Task:. Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDM3*T-

Date:Date:

5/19/99£?/?/n

TR-55 Worksheet #2: Runoff Curve Number and Runoff

j of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO. 1aqe Area Description: DRAINAGE AREA NO. 1 - TO DRAINAGE BOUNDARY (Area = 4.6 Ac.)

Soil Name andHydrologic Group

Soil C

•ily Vegetated C

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Disturbed stripped earth(represents approx. 75% of site area)Brush - brush, weed, grass combo, (good condtn.)

CN

Table2-287

65

Fig.2-3

Fig.2-4

Totals

Use CN =

Area(acres)

3.45

1.15

4.60

CN'Area300

75

0

0

0

0

0

0

0

0

375

82

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1,Fig. 2-1 , or Eqn. 2-3 and 2-4)

Storm #123.21.50

Storm #254.22.33

Storm #3105.13.12

Storm #4255.53.48

Storm #51007.25.05

AR000458DA1-1986existing.XLS

——————————————————————_—————————————————————————_——————————————————————_————__——__jf.

Project: Bush Valley Landfill - Harford Cty^MD ' \Project». 61131.01 , I

Task: 3001_____EA Engineering, Science, and Technology Calculated: JDM Date:

__ Checked: &&T~ Date:Stage of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA Md.

Drainage Area Description: DRAINAGE AREA NO. 1 - TO DRAINAGE BOUNDARY (Ar

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

Sheet Flow1 Surface Description (Table 3-1)2 Manning's Roughness Coeff., n (Table 3-1 )3 Flow Length, L (total L <= 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6Tt

Segment

ftinft/fthr

A1B1bare soil

0.0111003.2

0.0200.020 0.000 o.ooo

^

-' *«

0.0:?•?

Shallow Concentrated Flow7 Surface Description (1=paved. 2=unpaved)8 Flow Length, L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr

B1C1260

0,0924.890,003

C1D1270

0.1436.100.003

D1E1280

0.2387.870.003

•\

0.0

Channel FlowBottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1 V)

12 Cross Sectional Flow Area, a1 3 Wetted Perimeter, pw14 Hydraulic Radius, r1 5 Channel Slope, s16 Manning's Roughness Coeff., n17 V1 8 Flow Length. L19 Tt

Segmentftft

sqftftftft/ft

ft/sfthr

none

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000Tc =

.1

.1

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (I, IA, II. Ill)Pond and Swamp Areas SpreadThroughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall, P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-II)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1 .0 for none)9 Peak Discharge, qp

^inin

csm/inin

cfs

0.00782

0.030II

0

• *

Storm #12

3.20.4540.1421310.41.50

1

14.16

Storm «5

4.20.4540.1081293.02.33

1

21.68

Storm #3105.1

0.4540.0891288.93.12

1

28.91

Storm #4255.5

0.4540.0831288.93.48

1

32.24

Storm #5

-. •0

' Ct

1

AROOOU59

•A 1 Project:•L F ^ Project #;•FVV Task:

Engineering, Science, and Technology Calculated:Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDMfi#r Date:

Date:5/19/99

5// /< c

TR-55 Worksheet #2: Runoff Curve Number and Runoff

= of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO. 2aqe Area Description: DRAINAGE AREA NO. 2 - TO DRAINAGE BOUNDARY (Area = 2.7 Ac.)

Soil Name andHydrologic Group

Soil C

ily Vegetated C

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Disturbed stripped earth(represents approx. 75% of site area)Brush - brush, weed, grass combo, (good condtn.)

CN

Table2-287

65

F-g.2-3

Fig-2-4

Totals

Use CN =

Area(acres)

2.03

0.68

2.70

CN'Area176

44

0

0

0

0

0

0

0

0

220

82

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.50

Storm #254.22.33

Storm #3105.13.12

Storm #4255.53.48

Storm #51007.25.05

AROOOU60DA2-1986existing.XLS

*-*• Project: Bush Valley Landfill - Harford Cty. MD ;Project #: 61131.01

Task: 3001 _____EA Engineering, Science, and Technology Calculated: JDM ___ Date: ____ 5/1 9,.

Checked: ClAT ___________ Date: ?jrf/£t<f ~~[Stage of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO.

Drainage Area Description: ____ DRAINAGE AREA NO. 2 • TO DRAINAGE BOUNDARY (Area =

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

Sheet Flow1 Surface Description (Table 3-1)2 Manning's Roughness Coeff.. n (Table 3-1)3 Flow Length, L {total L <- 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6Tt

Segment

ftinft/fthr

A2B2bare soil

0.0111003.2

0.0440.015 0.000 0.000

rJ

nuO.Q1E

Shallow Concentrated Flow7 Surface Description (1=paved, 2=unpaved)8 Flow Length, L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr

B2C22

2900.0583.89

0.021

C2D22

1250.1606.450.005

D2E2235

0.0714.300.002

• i

- i

•-10.02J• *

Channel FlowBottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

12 Cross Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s16 Manning's Roughness Coeff., n17 V18 Flow Length, L19 Tt

Segmentftft

sqftftftft/ft

ft/sfthr

E2F2215

7.0012.200.5740.0680.055.36680

0.004

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000Tc =

,j

' CU.iK

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (I, IA, II, III)Pond and Swamp Areas SpreadThroughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall, P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4*ll)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2. Fp = 1 .0 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00482

0.047II

0

Storm #12

3.20.4540.1421206.5

1.501

7.65

Storm #25

4.20.4540.1081204.0

2.331

11.85

Storm #3105.1

0.4540.0891203.4

3.121

15.85

Storm #4255.5

0.4540.0831203.4

3.481

17.67

Storm #51

.0.4.C

wO5

25

RROOOU6IDA2-1986existing.XLS

^ J v- Project:^ V ^ Project #:••vl V Task:L Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty. MD61131.013001JDMMT

Date:Date:

5/19/995//<;Aw

TR-55 Worksheet #2: Runoff Curve Number and Runoff

j of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO. 3iaqe Area Description: DRAINAGE AREA NO. 3 - TO DRAINAGE BOUNDARY (Area = 3.4 Ac.)

Soil Name andHydrologic Group

Soil C

'ily Vegetated C

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Disturbed stripped earth(represents approx. 75% of site area)Brush - brush, weed, grass combo, (good condtn.)

CN

Table2-287

65

Fig.2-3

Fig.2-4

Totals

Use CN =

Area(acres)

2.55

0.85

3.40

CN'Area222

55

0

0

0

0

0

0

0

0

277

82

Frequency (years)24 Hour Rainfall, P (in)Runoff. Q (in)(use P and CN with Table 2-1 .Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.50

Storm #254.22.33

Storm #3105.13.12

Storm #4255.53.48

Storm #51007.25.05

flROOOi*62DA3-1986existing.XLS

Project: Bush Valley Landfill - Harford Cry, MD :Project #: 61131.01

Task: 3001_____EA Engineering, Science, and Technology Calculated: JDM Date: ______ 5/1 g/gj"

._____________________________Checked: (fftf___________Date: £T// *jkfi iStage of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO. 3

Drainage Area Description: DRAINAGE AREA NO. 3 -TO DRAINAGE BOUNDARY (Area = 3. ;?—————

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

Sheet Flow1 Surface Description (Table 3-1 )2 Manning's Roughness Coeff., n (Table 3-1)3 Flow Length, L (total L <= 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6Tt

Segment

ftinft/fthr

A3B3bare soil

0.0111053.2

0.0440.015 0.000 0.000

————— - ———————— i

*r '

0.015w

Shallow Concentrated Flow7 Surface Description (1=paved, 2=unpaved)8 Flow Length. L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr

B3C3275

0.0674.180.005

C3D3280

0.1756.750.003

D3E3235

0.3439.45

0.001

i

0.009

Channel FlowBottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

12 Cross Sectional Flow Area, a1 3 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s16 Manning's Roughness Coeff., n17V18 Flow Length. L19 Tt

Segmentftft

sqftftftft/ft

ft/sfthr

E3F3215

7.0012.200.5740.0320.05

3.681250

0.019

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000Tc =

-

0.' 30.'. 3

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (1, IA. II, III)Pond and Swamp Areas SpreadThroughout Watershed

sqmi

hr

%Am

2 Frequency3 Rainfall. P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-II)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1 .0 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00582

0.043II

0 i

Storm #12

3.20.4540.1421226.9

1.501

9.80

Storm #25

4.20.4540.1081222.0

2.331

15.14

Storm #3105.1

0.4540.0891220.9

3.121

20.24

Storm #4255.5

0.4540.0831220.9

3.481

22.57

Storm #5 ;0'

. >0.45t .-1S.

5.C

&:

AR0001463DA3-1986existing.XLS

iH& A ' Project:_____^7^^ Project #:••rl P Task:Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDM&&T

Date:Date:

5/19/99fT//«W<

TR-55 Worksheet #2: Runoff Curve Number and Runoff

of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO. 4iqe Area Description: DRAINAGE AREA NO. 4 - TO DRAINAGE BOUNDARY (Area - 3.1 Ac.)

Soil Name andHydrologic Group

Soil C

ly Vegetated C

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Disturbed stripped earth(represents approx. 75% of site area)Brush - brush, weed, grass combo, (good condtn.)

CN

Table2-287

65

Fig-2-3

Fig.2-4

Totals

Use CN =

Area(acres)

2.33

0.78

3.10

CN'Area202

50

0

0

0

0

0

0

0

0

253

82

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1 ,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.50

Storm #254.22.33

Storm #3105.13.12

Storm #4255.53.48

Storm #51007.25.05

RROOOU6UDA4-1986existing.XLS

EA

•BL_fl ^ Project:•L P ^ Project #.• rV P Task:Engineering, Science, and Technology calculated:

Checked:

Bush Valley Landfill - Harford Cty. MD61131.013001JDMfatr

Date:Date:

—————— . ———— - j

5/1 9/<*flrtffi < \

Stage of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO* IDrainage Area Description: DRAINAGE AREA NO. 4 - TO DRAINAGE BOUNDARY (Area = ; 1

J —————— JTR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

• »Sheet Flow

123456

Surface Description (Table 3-1)Manning's Roughness Coeff., n (Table 3-1)Flow Length, L (total L <= 300 ft)Two year 24 hour Rainfall, P2Land Slope, sTt

Segment

ftinft/fthr

A4B4bare soil

0.0111003.2

0.0260.018 0.000 0.000

_ i1 i*-i

0.018t

Shallow Concentrated Flow7891011

Surface Description (1=paved, 2=unpaved)Flow Length, LWatercourse Slope, sAverage Velocity, V (Fig. 3-1)Tt

Segment

ftft/ftft/shr

B4C4 12j

1000.0202.280.012

C4D4270

0.0864.730.004

D4E4260

0.2337.790.002

i

*

. - *0.018

- jChannel Flow

Bottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

1213141516171819

Cross Sectional Flow Area, aWetted Perimeter, pwHydraulic Radius, rChannel Slope, sManning's Roughness Coeff,, nVFlow Length. LTt

Segmentftft

sqftftftft/ft

ft/sfthr

none

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000Tc =

i0 )(0:,a:

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (1, IA, II, III)Pond and Swamp Areas SpreadThroughout Watershed

sqmi

hr

%Am

2 Frequency3 Rainfall, P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-II)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1 .0 for none)9 Peak Discharge, qp

y1,inin

csm/inin

cfs

0.00582

0.037II

0 • >

Storm #12

3.20.4540.1421266.81.50

1

9.22

Storm #25

4.20.4540.1081256.62.33

1

14.20

Storm #3105.1

0.4540.0891254.23.12

1

18.96

Storm #4255.5

0.4540.0831254.23.48

1

21.14

Storm #5(

'70,4!" '0'1*3*5.

30.

AROOOl*65DA4-1986existing.XLS

••k.^ Project:___ F , Project #:•Fvv Task:Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDM6 r

Date:Date-

5/19/99J/fej/tft

TR-55 Worksheet #2: Runoff Curve Number and Runoff

: of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO. 5age Area Description: DRAINAGE AREA NO. 5 - TO DRAINAGE BOUNDARY (Area = 1 .0 Ac.)

Soil Name andHydrologic Group

Soil C

ily Vegetated C

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Disturbed stripped earth(represents approx. 75% of site area)Brush - brush, weed, grass combo, (good condtn.)

CN

Table2-287

65

Fig.2-3

Fig-2-4

Totals

Use CN =

Area(acres)

0.75

0.25

1.00

CN'Area65

16

0

0

0

0

0

0

0

0

82

82

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1,Fig. 2-1 . or Eqn. 2-3 and 2-4)

Storm #123.21.50

Storm #254.22.33

Storm #3105.13.12

Storm #4255.53.48

Storm #51007.25.05

DA5-1986existing.XLS

EA

BkJ&*L'- Project:Bk F ^ Project n^ r V Task:Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty. MD61131.013001JDMCrtW

Date:Date:

• 15/1 9/f

'&fi*l fa0} i-Stage of Development: Original / Existing Conditions in 1986 - DRAINAGE AREA NO. 5

Drainage Area Description: DRAINAGE AREA NO. 5 - TO DRAINAGE BOUNDARY (Area = &\

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt) : '

Sheet Flow123456

Surface Description (Table 3-1 )Manning's Roughness Coeff., n (Table 3-1)Flow Length, L (total L « 300 ft)Two year 24 hour Rainfall, P2Land Slope, sTt

Segment

ftinft/fthr

A5B5bare soil

0.0111003.2

0.0290.017 0.000 o.ooo

—— '. 1• ii i

0.017r-|

Shallow Concentrated Flow7891011

Surface Description (1=paved, 2=unpaved)Flow Length, LWatercourse Slope, sAverage Velocity, V (Fig. 3-1)Tt

Segment

ftft/ftft/shr

B5C52

1450.0975.030.008

0.000.000

0.000.000

; j

• 2

0.008

Channel FlowBottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

1213141516171819

Cross Sectional Flow Area, aWetted Perimeter, pwHydraulic Radius, rChannel Slope, sManning's Roughness Coeff., nVFlow Length, LTt

Segmentftft

sqftftftft/ft

ft/sfthr

C5D5215

7.0012.200.5740.0570.054.913105

0.006

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000Tc =

i

o ;>e0 J-

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (I, tA, II, HI)Pond and Swamp Areas SpreadThroughout Watershed

sqmi

hr

%Am

2 Frequency3 Rainfall, P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-II)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1 .0 for none)9 Peak Discharge, qp

Finin

csm/inin

cfs

0.00282

0.031II

0

.: j

... (

Storm #12

3.20.4540.1421299.31.50

1

3.05

Storm #25

4.20.4540.1081283.92.33

1

4.68

Storm #3105.1

0.4540.0891280.23.12

1

6.24

Storm #4255.5

0.4540.0831280.23.48

1

6.96

Storm #507.

0.45;. e1: .O

5.C

Yb/

AR000467

(

® Project pMM i/ft-UPl L.f_______ Project No.

Computed by: / Date Checked by * Date

too

toff

to =2*-'*

x ^>

EA 02S9B 10/95RROOOU68

Subject l).A. FjffSr/AJt S -r'* f &&*-*) Sheet No. _____/ of k£ -7—___ Drawing No. _________

7) /4-

Project No.Sheet No.

Drawing No.Date ^/» Checked by <7 Dale

go„

n

t ' '

EA 02B9B HV95

;**ili/c6

^ •L_fl& ' Project:^ LjV ^ Project n:^ ^ _ BC__ Bmiv v Task;\ Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cry, MD61131.013001JDM£fl0nr

Date:Date:

5/18/99*> \<>\W\

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Jtage of Development: Proposed / Developed Conditions - DRAINAGE AREA NO. 1lage Area Description: DRAINAGE AREA NO. 1 - TO DRAINAGE BOUNDARY (Area = 3.3 Ac.)

Soil Name andHydrologic Group

stated Topsoil - Cap C

/el

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Meadow- continuous grasses

Gravel Access Road and Turn-around

CN

Table2-274

89

Fig.2-3

Fig.2-4

Totals

Use CN =

Area(acres)

3.24

0.06

3.30

CN'Area240

5

0

0

0

0

0

0

0

0

245

74

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1 ,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.05

Storm #254.21.76

Storm #3105.12.47

Storm #4255.52.79

Storm #51007.24.24

AROOOU70DA1-proposed.XLS "

Project: Bush Valley Landfill_-_Harford Cty, MDProject #: 61131.01

Task: 3001_____EA Engineering, Science, and Technology calculated: JDM____ Date:

Checked: \Stage of Development: Proposed / Developed Conditions - DRAINAGE AREA N*~Drainage Area Description: DRAINAGE AREA NO. 1 • TO DRAINAGE BOUNDARY (/ ••' 1;

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

Sheet Flow1 Surface Description (Table 3-1)2 Manning's Roughness Coeff., n (Table 3-1)3 Flow Length, L (total L <~ 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6Tt

Segment

ftinft/fthr

A1B1dense grass

0.241003.2

0.0350.190 0.000 0.000

l

"1. j

Shallow Concentrated Flow7 Surface Description (1=paved, 2=unpaved)8 Flow Length, L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr .

B1C1235

0.1165.500.002

0.000.000

i

1>•

(Bench B-4) (Slope Drain 2) »• fChannel Flow

Bottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

1 2 Cross Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s16 Manning's Roughness Coeff.. n17 V18 Flow Length. L19 Tt

Segmentftft

sqftftftft/ft

ft/sfthr

C1D10.116

8.1016.220.4990.0300.0276.015200

0.009

D1E1613

9.0012.320.7300.2330.04

14.58130

0.001

o.oo0.000.000

0.000

0.000Tc*

•i

:

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration. Tc (worksheet #3)Rainfall Distribution Type (I. IA. II, III)Pond and Swamp Areas SpreadThroughout Watershed

sqmi

hr

%Am

2 Frequency3 Rainfall. P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-ll)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2. Fp = 1 .0 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00574

0.202II

0

Storm #12

3.20.6940.217735.71.05

1

3.99

Storm #25

4.20.6940.165762.31.76

1

6.93

Storm #3105.1

0.6940.136777.72.47

1

9.89

Storm #4255.5

0.6940.126783.12.79

1

11.27

Stor/ *

n41 ^ AROOOU7IDA1-proposed.XLS

•k L ' pr°)ect:HL F , Project tt.^ •Fl V Task:A Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDMfeflf

Date:Date:

5/18/995 \*\ *ft

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Stage of Development: Proposed / Developed Conditions - DRAINAGE AREA NO. 2linage Area Description: DRAINAGE AREA NO. 2 - TO DRAINAGE BOUNDARY (Area = 3.9 Ac.)

Soil Name andHydrologic Group

elated Topsoil - Cap C

vel

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Meadow- continuous grasses

Gravel Access Road and Turn-around

CN

Table2-274

89

Fig-2-3

Fig.2-4

Totals

Use CN =

Area(acres)

3.83

0.07

3.90

CN'Area284

6

0

0

0

0

0

0

0

0

290

74

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1 ,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.05

Storm #254.21.76

Storm #3105.12.47

Storm #4255.52.79

Storm #51007.24.24

DA2-proposed.XLS ft R Q Q

Project: Bush Valley Landfill - Hartord Cry. MDProject #: 61131.01

_____ __ Task: 3001_____EA Engineering, Science, and Technology calculated: JDM Date:

Checked: fffi Date:Stage of Development: Proposed / Developed Conditions - DRAINAGE AREA NC

Drainage Area Description: DRAINAGE AREA NO. 2 - TO DRAINAGE BOUNDARY (Ai

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

Sheet Flow1 Surface Description (Table 3-1)2 Manning's Roughness Coeff., n (Table 3-1)3 Flow Length. L (total L <= 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6Tt

Segment

ftmft/fthr

A2B2dense grass

0.241003.2

0.0350.190 0.000 0.000

;i

' \

Shallow Concentrated Flow7 Surface Description (1=paved, 2=unpaved)8 Flow Length, L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr

B2C2290

0.1225.640.004

0.000.000

• -

(Bench B-5) (Slope Drain 3)Channel Flow

Bottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

12 Cross Sectional Flow Area, a1 3 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s16 Manning's Roughness Coeff., n17V18 Flow Length, L19 Tt

Segmentftft

sqftftftft/ft

ft/sfthr

C2D20.118

8.1016.220.4990.0480.0277.609455

0.017

D2E2613

9.0012.320.7300.2540.04

15.22465

0.001

0.000.000.000

0.000

0.000Tc =

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (I, IA. II, III)Pond and Swamp Areas SpreadThroughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall, P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-II)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1 .0 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00674

0.212II

0

j

- 5

Storm #12

3.20.6940.217719.51.05

1

4.61

Storm #25

4.20.6940.165746.21.76

1

8.02

Storm #3105.1

0.6940.136761.72.47

1

11,45

Storm DM255.5

0.6940.126767.12.79

1

13.05

Ste""n

- -

AROOOU3DA2-proposed.XLS

^ •k. ^ Project:l__HLj|r k Project #:^ •FV-V Task:EA Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDMMX

Date:Date-

5/18/99i3rtl<ft

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Stage of Development: Proposed / Developed Conditions - DRAINAGE AREA NO. 3Drainage Area Description: DRAINAGE AREA NO. 3 - TO DRAINAGE BOUNDARY (Area = 3.7 Ac.)

Soil Name andHydrologic Group

igetated Topsoil - Cap C

avel

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Meadow- continuous grasses

Gravel Access Road and Turn-around

CN

Table2-274

39

Fig.2-3

Fig.2-4

Totals

Use CN =

Area(acres)

3.64

0.06

3.70

CN'Area269

6

0

0

0

0

0

0

0

0

275

74

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1 ,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.05

Storm #254.21.76

Storm #3105.12.47

Storm #4255.52.79

Storm #51007.24.24

nA, «,« AROOOUUDA3-proposed.XLS

Project: Bush Valley Landfill - Harford Cty. MDProject ft 61131.01

Task: 3001'r

EA Engineering, Science, and Technology Calculated: JDM Date:Checked: (efltf "___________Date:

Stage of Development: Proposed / Developed'Conditions - DRAINAGE AREA NO. "Drainage Area Description: DRAINAGE AREA NO. 3 - TO DRAINAGE BOUNDARY (Art

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

Sheet Flow1 Surface Description (Table 3-1)2 Manning's Roughness Coeff.. n (Table 3-1)3 Flow Length, L (total L <= 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6 Tt

Segment

ftinft/fthr

A3B3dense grass

0.241003.2

0.0550.159 o.ooo 0.000

• j

0."1

Shallow Concentrated Flow7 Surface Description (1=paved, 2-unpaved)8 Flow Length, L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr

B3C3265

0.0453.420.005

C3D3290

0.1786.810.004

D3E3255

0.2187.530.002

30.

Swale ,, „Channel Flow

Bottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

12 Cross Sectional Flow Area, a1 3 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s16 Manning's Roughness Coeff., n17 V18 Flow Length, L19 Tt

Segmentftft

sqftftftft/ft

ft/sfthr

E3F3215

7.0012.200.5740.0360.0277.231220

0.008

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000Tc =

0. c

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (1, IA. II, III)Pond and Swamp Areas SpreadThroughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall. P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-II)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1.0 for none)9 Peak Discharge, qp

Finin

csm/inin

cfs

0.00674

0.178II

0

1

Storm #12

3.20.6940.217775.41.05

1

4.71

Storm #25

4.20.6940.165801.51.76

1

8.17

Storm #3105.1

0.6940.13681 6.62.47

1

11.64

Storm #4255.5

0.6940.126821.82.79

1

13.27

Storm #5

„«. _, AROOOlt75DA3-proposed.

IHL ^ - Project:^ F k Project #:•FVV Task:

Engineering, Science, and Technology calculated:Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDMfcftf

Date:Date:

5/18/99

Kl!«ll<tfStage of Development: Proposed / Developed Conditions - DRAINAGE AREA NO. 4" ' ' '

Drainage Area Description: DRAINAGE AREA NO. 4 - TO DRAINAGE BOUNDARY (Area = 2 8 Ac

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

FlowSurface Description (Table 3-1)Manning's Roughness Coeff.. n (Table 3-1}Flow Length, L (total L <= 300 ft)Two year 24 hour Rainfall. P2Land Slope, sTt

Segment

ftinft/fthr

A4B4dense grass

0.241003.2

0.0350.190 0.000 0.000 0.190

N Concentrated FlowSurface Description (1=paved. 2=unpaved)Flow Length, LWatercourse Slope, sAverage Velocity, V (Fig. 3-1)Tt

Segment

ftft/ftft/shr

B4C4290

0.0894.810.005

C4D4270

0.2007.220.003

0.000.000 0.008

el FlowBottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)Cross Sectional Flow Area, aWetted Perimeter, pwHydraulic Radius, rChannel Slope, sManning's Roughness Coeff., nVFlow Length, LTt

Segmentftft

sqftftftft/ft

ft/sfthr

none

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000Tc =

0.0000.198

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration. Tc (worksheet #3)Rainfall Distribution Type (I. IA, II, III)Pond and Swamp Areas SpreadThroughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall. P (24 hour)4 Initial Abstraction, la (Table 4-1 )5 la/P6 Unit Peak Discharge, qu (Exhibit 4-II)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1.0 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00474

0.198II

0

Storm #12

3.20.6940.217741.51.05

1

3.41

Storm #25

4.20.6940.165768.11.76

1

5.92

Storm #3105.1

0.6940.136783.52.47

1

8.45

Storm #4255.5

0.6940.126788.82.79

1

9.64

Storm #51007.2

0.6940.096803.04.24

1

14.91

RROOOU76DA4-proposed.XLS

^ ••L ^ Project:^ | 7^ Project #:VBMrliv Task:EA Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cry, MD61131.013001JDM

tatfDate:Date:

•f5/1 i

Q rt». FTR-55 Worksheet #2: Runoff Curve Number and Runoff -

... . . . fStape of Development: Proposed / Developed Conditions - DRAINAGE AREA NO. 4

Drainaqe Area Description: DRAINAGE AREA NO. 4 - TO DRAINAGE BOUNDARY (Area = 2.8 Ac.)

Soil Name andHydrologic Group

Vegetated Topsoil - Cap C

Gravel

Cover Description(cover type, treatment, andhydrologic condition: percent

impervious; unconnected/connectedimpervious area ratio)

Meadow- continuous grasses

Gravel Access Road and Turn-around

CN

Table2-274

89

Fig-2-3

Fig.2-4

Totals

Use CN =

Area(acres)

2.75

0.05

2.80

Ti-. t' *

i

CN'Atoi2(* i

i

"1

'•• ^

t

74

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1 ,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.05

Storm #254.21.76

Storm #3105.12.47

Storm #4255.52.79

Storm *1 '/ '4.24

AR000477DA4-proposed.XLS

BBB ^ g Project:^ &jF ^ Project n.•• Fl V Task::A Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Cty, MD61131.013001JDMfattf

Date:Date

5/18/99ffiftVft

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Staqe of Development: Proposed / Developed Conditions - DRAINAGE AREA NO. 5Drainage Area Description: DRAINAGE AREA NO. 5 - TO DRAINAGE BOUNDARY (Area = 1.1 Ac.)

Soil Name andHydrologic Group

;getated Topsoil - Cap C

avel

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Meadow- continuous grasses

Gravel Access Road and Turn-around

CN

Table2-274

89

Fig.2-3

Fig.2-4

Totals

Use CN =

Area(acres)

1.08

0.02

1.10

CN'Area80

2

0

0

0

0

0

0

0

0

82

74

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1,Fig. 2-1 , or Eqn. 2-3 and 2-4)

Storm #123.21.05

Storm #254.21.76

Storm #3105.12.47

Storm #4255.52.79

Storm #51007.24.24

AROOOUSDA5-proposed.XLS

Project: Bush Valley Landfill - Harford Cty, MD ;Project #: 61131.01

Task: 3001_____EA Engineering, Science, and Technology calculated: JDM Date:___ 5/ }

____Checked: &ftn Date:__________________________. ._______________________ __________ • T^ I- -• ' "• —— •' -——— - ———————————————— ———fc^-M_»- f——— —————————— ——————— _.. ... _ _ ____________^^-_^.^^__U_L.

Stage of Development: Proposed / Developed Conditions - DRAINAGE AREA NO. 5Drainage Area Description: DRAINAGE AREA NO. 5 - TO DRAINAGE BOUNDARY (Are; / t

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel Time (Tt)

Sheet Flow1 Surface Description (Table 3-1 )2 Manning's Roughness Coeff.. n (Table 3-1)3 Flow Length, L (total L « 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6Tt

Segment

ftinft/fthr

A5B5dense qrass

0.241003.2

0.0250.218 0.000 0.000

——————— - >

• \Ii

0.

Shallow Concentrated Flow7 Surface Description (1=paved, 2=unpaved)8 Flow Length, L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr

B5C5240

0.0383.150.004

C5D5260

0.1335.880.003

0.000.000

\

0(Bench B-2) (Slope Drain 1)

Channel FlowBottom width of trapezoidal channelDepth of trapezoidal channelSide slopes of trapezoidal channel (?H:1V)

12 Cross Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s16 Manning's Roughness Coeff., n17 V18 Flow Length, L19 Tt

Segmentftft

sqftftftft/ft

ft/sfthr

C5D50.118

8.1016.220.4990.0550.0278.145110

0.004

D5E5613

9.0012.320.7300.0880.048.96180

0.002

0.000.000.000

0.000

0.000Tc =

r

. ;-C

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area. AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (1. IA, II, III)Pond and Swamp Areas SpreadThroughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall, P (24 hour)4 Initial Abstraction, la (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4-H)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp

(Table 4-2, Fp = 1 .0 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00274

0.230jII

0

• '

Storm #12

3.20.6940.217694.41.05

1

1.26

Storm #25

4.20.6940.165721.31.76

1

2.19

Storm #3105.1

0.6940.136736.92.47

1

3.12

Storm m255.5

0.6940.126742.32.79

1

3.56

Storm #5

AROOOI479DA5-proposed.XLS

<g, Project fXASV (/ft L I- £7 L . f'______ Project No.Subject £-4 .- ffafCSCD (~l?l& ftfttS Sheet No. J? of

____________________________________ Drawing No.Computed by: .jj) Date fa/ft Checked bv /ffif Date

D. Ei _0

f!-1*3 -

AROOOU80

Type- /t>F*>c

100

EA 0289B 10/95

<g> Project______ jj-V-*-___________ Project No.Subject p 4- - ofC X~t> - m K 3 Sheet No. of

' ______ Drawing No.by: UP* Date <y//1/9f Checked bv (ttfrf Date <11*114ft ; J——— y' "

/w - / ff '£?- <£%f 7&V - *- /e

^- 5-5 X

AR00048I ,EA02B9B 10/95

TR-20 HYDROLOGIC ANALYSIS

RROOOU82

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY*

.rf-20 SUMMARY NOPLOTS

; 001 BUSH VALLEY LANDFILL CLOSURE - AREA 1 EXISTING CONDITIONS

INOFF 1 01 1 0.0072 82. .10 1 1 1 1 1

JDATA

JCREM 6 0.10

1MPUT 7 01 01 0.0 3.2 1. 2 2 01 02

JDCMP 1

JMPUT 7 01 01 0.0 5.1 l. 2 2 01 10

JDCMP 1

JMPUT 7 01 01 0.0 7.1 1. 2 2 01 99

1DCMP 1

JDJOB 2

•END OF BO-80 LIST'

UTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT . .10 HOURS RECORD ID

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME . .00 RAIN DEPTH - 3.20 RAIN DURATION- 1-00 RAIN TABLE NO.. 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.. 2 MAIN TIME INCREMENT - .10 HOURS

•TION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION{FEET)

11.97 10.55 (RUNOFF)

(HRS1 FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA « .01 SQ.MI

.00 DISCHG .00 .00 .00 .00 .00 .00 .00 .00 .00 .01

.00 DISCHG -01 .01 .02 -02 .03 .03 -04 -04 .05 .OS

.00 DISCHG .06 .07 .08 .09 .10 .11 .14 -16 .18 .22

.00 DISCHG .24 .29 .32 .36 .44 .48 1.72 2.HI 4.09 8.54

.00 DISCHG 10.23 4.04 1.99 1.66 1-22 1-18 1.03 .99 .93 -79

.00 DISCHG .78 .69 .66 .63 .58 .57 .SI -49 .48 .45

.00 DISCHG .45 .41 -40 .39 -36 .36 .33 .32 -32 -32

..00 DISCHG .32 -32 .32 .31 -28 -27 -27 .27 .27 .27

, .00 DISCHG .27 .27 -27 .28 .28 .28 -24 -23 .23 .23

'.00 DISCHG .23 .23 .23 .23 .23 .23 .23 .23 -22 -19

i.OO DISCHG .19 -19 . .19 -19 -19 .19 .19 .19 .19 .19

i.00 DISCHG .19 .19 -19 -19 .19 .19 .19 .19 .18 .14

i.OO DISCHG -14 -14 .14 -14 -14 .14 .14 .14 .14 .14

. .00 DISCHG .14 -14 .14 .14 .14 .14 .14 .14 .14 -14

!.00 DISCHG .14 .14 .14 .14 -14 .14 .14 .14 -14 -14

(.00 DISCHG -14 .14 .14 .14 .14 .14 .14 .14 .13 .10

i. O O DISCHG -10 .02 .00

INOFF VOLUME ABOVE BASEFLOH - 1.53 WATERSHED INCHES, 7.05 CFS-HRS, -SB ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

rUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 - - . _ . * * . * * RECORD IDAROOOU83

EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.. 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.-10 MAIN TIME INCREMENT - .10 HOURS

AROOOl*8U

XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 1 EXISTING CONDITIONS JQB l PASS

REV PC 09/831 .2) PAGE

UVTION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.97 21.17 (RUNOFF)

;[HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .01 SQ.MI.

1,00 DISCHG .00 .00 .00 .00 .00 .01 .01 .01 .02 .02

'.00 DISCHG .03 .03 .03 .04 .04 .05 .05 .05 .06 .06

).00 DISCHG .06 .08 .09 .10 .11 .12 .13 .13 .14 .14

9.00 DISCHG ,15 -17 .18 .19 .20 .21 .23 .25 .26 .27

3.00 DISCHG .27 .31 .32 .35 .41 .42 .52 .56 .61 .72

1.00 DISCHG .75 -87 .93 1.02 1.21 1.29 4.40 5.79 9.23 17.94

2.00 DISCHG 20.30 7.82 3.80 3.14 2.31 2.23 1.93 1.85 1.74 1.48

1.00 DISCHG 1.45 1.27 1.22 1.17 1.07 1.06 .94 .90 .88 .82

4.00 DISCHG .82 .76 .74 .72 .66 .66 .60 .58 .58 .58

5.00 DISCHG .58 .58 .58 .56 .50 .50 .50 .50 .50 .50

6.00 DISCHG ,50 -SO -SO .50 .50 .50 .44 .42 .42 .42

7.00 DISCHG .42 -42 .42 .42 .42 .42 .42 .42 .40 .34

8.00 DISCHG ,34 -34 .34 .34 .34 .34 .34 .34 .34 .34

9.00 DISCHG .34 .34 .34 .34 -34 .34 .34 .34 .31 .26

00 DISCHG ,25 -25 .25 .25 .25 .25 .25 .25 .25 .25

.00 DISCHG ,25 .25 -25 .25 .25 .25 .25 .25 .25 .25

2.00 DISCHG ,25 -25 .25 .25 -25 .25 .25 .25 .25 .25

3.00 DISCHG ,25 .25 .25 .25 .25 .25 .25 .25 .23 .18

4 .00 DISCHG ,17 .04 .00

VOLUME ABOVE BASEFLOW - 3-13 WATERSHED INCHES, 14.54 CFS-HRS, 1.20 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10. ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

CUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME • .00 RAIN DEPTH - 7.10 RAIN DURATION- 1,00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.-99 MAIN TIME INCREMENT - .10 HOURS

:RATION RUNOFF STRUCTURE i

PEAK TIME(HRS) PEAK DISCHARGEtCFS) PEAK ELEVATION(FEET)

11.96 32.61 (RUNOFF)

HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .01 SO.MI.

AR000485

TR20 XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA I EXISTING CONDITIONS JOB 1 PASS 3

REV PC 09/83(.2) PAG -, ,

fJ

5.00 DISCHG .00 .01 .01 .02 .02 .03 .03 .04 .04 .05

6.00 DISCHG .05 -07 .08 .09 .09 .10 .11 .11 .12 .13 ]

7.00 DISCHG .13 .14 ,14 .15 -16 .16 .17 .17 .18 .18 J

8.00 DISCHG .19 .22 .24 .26 .29 .31 .31 ,32 .33 .34

9.00 DISCHG .35 -40 .42 .43 .44 .45 ,50 .53 .54 .55 'r 1

10.00 DISCHG .56 .62 .65 .69 .80 ,82 1.00 1.07 1.16 1.33 • I

11.00 DISCHG 1.38 1.59 1.68 1.81 2-15 2.2S 7.55 9.67 15.00 28.23

12.00 DISCHG 31.10 11.84 5.71 4.70 3.45 3.33 2.88 2.75 2.59 2.20

13.00 DISCHG 2.16 1.89 1.81 1.7* 1.56 1.57 1.39 1.33 1.30 1.22 '.

14.00 DISCHG 1.21 1.12 1.09 1.06 .98 .97 .88 .85 .85 .85 *

15.00 DISCHG .85 .85 .85 .82 .74 .73 .73 .73 .73 .?J

16.00 DISCHG .73 -73 .73 .73 .73 .73 .64 .61 .61 .61 ?

17,00 DISCHG .61 .61 .61 .61 .61 .61 .61 .61 .58 -50 , jj

18 ,00 DISCHG .49 -49 .49 .43 .49 .49 .49 .49 .49 .49

19,00 DISCHG .49 -49 .49 .49 .49 .49 .49 .49 .46 .38

20.00 DISCHG .37 .37 .37 .37 .37 .37 .37 .37 .37 .37

21.00 DISCHG .37 .37 .37 .37 .37 .37 .37 .37 .37 .37

22.00 DISCHG .37 .37 .37 .37 .37 .37 .37 .37 .37 .37

23.00 DISCHG .37 .37 .37 .37 ,37 .37 .37 .37 .34 .26

24.00 DISCHG .25 -06 .01 .00

RUNOFF VOLUME ABOVE BASEFLOW - 4.95 WATERSHED INCHES, 23.00 CFS-HRS, 1.90 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AROOOi»86

XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 1 EXISTING CONDITIONS JOB 1 SUMMARY

3V PC 09/83(.2) PAGE 3

\RY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STAR!*) AFTER THE PEAK DISCHARGE TIME AND RATE ICFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

CTURE CONTROL DRAINAGE TABLE MOIST TIME ---.-.,---.,------------- RUNOFF - - - - - - - - - - - - - - - - - - - - - - - - . - , - . . - - _ - - _ - .

D OPERATION AREA H COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

LTERNATE ._ 1 STORM _ 2

CTURE 1 RUNOFF .01 2 2 .10 .0 3.20 24.00 1.52 --- 11.97 10.55 1465.7

-LTERNATE 1 STORM 10

'CTURE 1 RUNOFF -01 2 2 .10 .0 5.10 24.00 3.13 --- 11.97 21.17 2939.8

.LTERHATE 1 STORM 9 9

iCTURE 1 RUNOFF .01 2 2 -10 .0 7.10 24.00 4.95 --- 11.96 32.61 4529.7

RROOOU87

AROOOU88

TR20 XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 1 EXISTING CONDITIONS JOB 1 SUMMARY

REV PC 09/831.2) PAG-

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES J!

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS. ......... '- 1

ID (SQ MI) 2 10 99 ; :

STRUCTURE _1__________.01

ALTERNATE 1 10.55 21.17 32.61

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY'

i'R - 2 0 SUMMARY NOPLOTS

.E ooi BUSH VALLEY LANDFILL CLOSURE - AREA 2 EXISTING CONDITIONSUNOFF 1 Ol 1 0.0042 82. .10 1 1 1 I 1

;NDATANCREM 6 0.10

XDMPUT 7 01 01 0.0 3-2 1. 2 2 01 02

MDCMP 1

XJMPUT 7 01 01 0.0 5.1 1. 2 2 01 10

INDCMP 1

X>MPUT 7 01 01 0.0 7.1 1. 2 2 01 99

UDCMP 1

3JDJOB 2

•END OF 80-80 LIST*

:UTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT - .10 HOURS RECORD ID

7UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 3.20 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.. 2 MAIN TIME INCREMENT . .10 HOURS

•1TION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION I FEET)

11.97 6.16 (RUNOFF)

SIHRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .00 SQ.KI

3.00 DISCHG .01 .01 .01 .01 .02 .02 .02 .03 .03 .03

J.00 DISCHG .03 .04 .04 .05 .06, .07 .08 .09 .11 .13

1,00 DISCHG ,14 .17 .19 .21 .26 .28 1.01 1.40 2.39 4.98

2.00 DISCHG 5.97 2.35 1.16 .97 .71 .69 .60 .58 .54 .46

3.00 DISCHG .46 .40 .38 .37 .34 .33 .30 .29 .28 .26

4.00 DISCHG .26 .24 .24 .23 .21 .21 .19 .18 .18 .18

5.00 DISCHG -IB -18 .19 .18 .16 .16 .16 .16 .16 .16

6,00 DISCHG .16 .16 .16 .16 .16 .16 .14 .13 .13 .13

7.00 DISCHG .13 -13 -13 .13 .13 -14 .14 .14 .13 .11

8.00 DISCHG .11 -11 -11 .11 -H -11 -11 -11 -11 -11

9.00 DISCHG .11 .11 .11 -11 -11 -11 -11 -11 -10 .08

0.00 DISCHG .08 .08 .08 .08 .08 -08 .08 .08 .08 .08

1.00 DISCHG .08 .08 .08 .08 .08 .08 .08 .08 .08 .08

2.00 DISCHG .08 .08 .08 .08 .08 -08 .08 .08 .08 .08

3.00 DISCHG .08 .08 .08 .08 .06 -08 .08 .08 .08 .06

4.00 DISCHG .06 .01 .00

UNOFF VOLUME ABOVE BASEFLOW - 1.52 WATERSHED INCHES, 4.11 CFS-HRS, ,34 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

AROOOl*89

XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 2 EXISTING CONDITIONS JOB 1 PASS

REV PC 09/831.2) PAGE

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH « 5.10 RAIN DURATION- 1.00 RAIN TABLE NO. • 2 ANT. MOIST. COND- 2

ALTERNATE NO.« I STORM NO.-10 MAIN TIME INCREMENT • .10 HOURS

LAT10N RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.97 12.35 (RUNOFF)

:iHRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA . .00 SQ.MI

; .00 DISCHG .00 .00 .00 .00 .00 .00 .01 .01 .01 .01

'.00 DISCHG .02 -02 .02 .02 .02 .03 .03 .03 .03 .04

1.00 DISCHG .04 ,05 .05 .06 .06 .07 .07 .08 .08 .08

I.OO DISCHG .09 .10 .11 .11 .12 .12 .14 .15 .15 .16

).00 DISCHG .16 .18 .19 .20 ,24 .25 .30 .33 .36 .42

i.OO DISCHG .44 -51 .54 .60 .71 .75 2.57 3.38 5.38 10.47

i.OO DISCHG 11. 84 4.56 2.21 1,83 1.34 1.30 1.13 1.08 1.01 .86

t.OO DISCHG .85 .74 .71 .68 .62 .62 .55 .53 .51 .48

I.00 DISCHG .48 -44 .43 .42 .39 .38 .35 .34 .34 .34

-.00 DISCHG .34 .34 .34 .32 .29 .29 .29 .29 .29 .29

00 DISCHG .29 ,29 ,29 .29 .29 -29 .26 .24 .24 .24

7.00 DISCHG .24 .24 .24 .24 .24 .24 .24 ,24 .23 .20

3.00 DISCHG .20 .20 .20 .20 .20 .20 .20 .20 .20 .20

9,00 DISCHG .20 .20 .20 .20 .20 .20 .20 .20 .18 .15

3.00 DISCHG .15 .15 .15 .15 .15 .15 .15 .15 .15 .15

L.OO DISCHG .15 .15 .15 .15 .15 .15 .15 .15 .15 .15

2.00 DISCHG .15 -15 .15 .15 -IS -15 .15 .15 .15 .15

J.OO DISCHG .15 .15 .15 .15 .15 .15 .15 .15 .14 .10

I,00 DISCHG .10 .03 .00

JNOFF VOLUME ABOVE BASEFLOW . 3.13 WATERSHED INCHES, B.4B CFS-HRS, .70 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

rUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

niTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 7.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.-99 MAIN TIME INCREMENT - .10 HOURS

AROOOU90

TR20 XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 2 EXISTING CONDITIONS JOB 1 PASS

REV PC 09/83( .2) PAG.

OPERATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE<CFS) PEAK ELBVATION(FEET)

11.96 19.02 (RUNOFF)

T1MEIHRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA . .00 SQ.MI

5.00 DISCHG .00 .00 .01 -01 .01 .02 .02 .02 .03 .03

6.00 DISCHG -03 .04 -OS .05 .05 .06 .06 .07 .07 .07

7.00 DISCHG -08 .08 .08 -09 .09 .09 .10 .10 .10 .11

B.OO DISCHG .11 .13 .14 .15 .17 .18 ,18 .19 .19 .20

9.00 DISCHG .20 .23 .24 .25 .26 .26 .29 .31 .31 .3J

10.00 DISCHG .33 .36 .38 .41 .47 .48 .58 .62 .67 .78

11.00 DISCHG .80 .93 .98 1-07 1.25 1.31 4.40 5.64 8.75 16.47

12.00 DISCHG 18.14 6.91 3.33 2.74 2.01 1.94 1.68 1.60 1.51 1.28

13.00 DISCHG 1.26 1.10 1.05 1.01 .92 .91 .81 .78 .76 .71

14.00 DISCHG .71 .65 .64 .62 .57 .57 .51 .50 .50 .50

15.00 DISCHG .50 .50 .50 .48 .43 .43 .43 .43 .43 .43

16.00 DISCHG .43 .43 .43 .43 .43 .43 .37 .36 .36 .36

17.00 DISCHG -36 .36 .36 .36 .36 .36 .36 .36 .34 .29

18.00 DISCHG -29 .29 .29 .29 .29 .29 .29 .29 .29 ,29

19.00 DISCHG .29 .29 .29 -29 .29 -29 .29 .29 .27 .22

20.00 DISCHG .22 .22 .22 -22 .22 .22 .22 .22 .22 .22

21.00 DISCHG -22 .22 .22 .22 .22 -22 ,22 .22 .22 .22

22.00 DISCHG .22 .22 .22 .22 .22 .22 .22 .22 .22 .22

23.00 DISCHG .22 .22 .22 ,22 .22 -22 .22 .22 .20 .15

24.00 DISCHG ,14 .04 .00

RUNOFF VOLUME ABOVE BASEFLOW . 4.95 WATERSHED INCHES, 13,41 CFS-HRS, 1.11 ACRE-FEET; BASEFLOM . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AROOOU9I

XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 2 EXISTING CONDITIONS JOB 1 SUMMARY

1EV PC 09/831.2) PAGE 3

ARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STAR!*) AFTER THE PEAK DISCHARGE TIME AND RATE ICFS) VALUES INDICATES A PLAT TOP HYDROGRAPH

A QUESTION MARK(?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

•ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

'CTURE CONTROL DRAINAGE TABLE MOIST TIME - - - - - - - - - - - - - - - - - - - - - - - - - RUNOFF - - , - - - - - - - - - - - - - - - - - - - - - . . - . - - - - _ _ _ _ _ _

D OPERATION AREA tt COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

.LTERNATE,, 1 STORM 2

'CTURE 1 RUNOFF .00 2 2 - 10 .0 3 .20 24 .00 1.52 --- 11.97 6.16 1465.7

iLTERNATE .._ 1 STORM _lp

1CTURE 1 RUNOFF .00 2 2 -10 .0 5.10 24.00 3.13 --- 11.97 12.35 2939.8

ALTERNATE 1 STORM J>9

JCTURE 1 RUNOFF -00 2 2 .10 .0 7.10 24.00 4.95 --- 11.96 19.02 4529.7

AROOOI492

TR20 XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 2 EXISTING CONDITIONS JOB 1 SUMMARY

REV PC 09/83(.2t PAG

SUMMARY TABLE 3 - DISCHARGE (CFSJ AT XSBCTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES 1

i

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS.......... J-|

ID (SQ MI) 2 10 99 ' I

STRUCTURE 1__________.00

ALTERNATE 1 6.16 12.35 19.02

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY'

R-20 SUMMARY NOPLOTS

E 001 BUSH VALLEY LANDFILL CLOSURE - AREA 3 EXISTING CONDITIONS

UNOFF 1 01 1 0.0053 82. .10 1 1 1 1 1

NDATA

NCREM 6 0.10

OMPUT 7 01 01 0.0 3.2 1. 2 2 01 02

NDCMP 1

OMPUT 7 01 01 0.0 S.I 1, 2 2 01 10

NDCMP 1

OMPUT 7 01 01 0.0 7.1 1. 2 2 01 99

NDCMP 1

NDJOB 2

•END OF 80-80 LIST*

•UTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT - .10 HOURS RECORD ID

:UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH . 3-20 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT, MOIST. COND- 2

ALTERNATE NO.- I STORM NO.- 2 MAIN TIME INCREMENT - .10 HOURS

LATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.97 7.77 (RUNOFF)

i(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT . .10 HOURS DRAINAGE AREA • .01 SQ.MI

(.00 DISCHG .01 .01 .01 .02 .02 .02 .03 .03 .04 .04

1.00 DISCHG .04 .05 .06 .06 .08 .08 .11 .12 .14 .16

1.00 DISCHG .18 .21 .23 .27 .32 .35 1.27 1.77 3.01 6.29

'.00 DISCHG 7.53 2.97 1.46 1.22 .90 .87 .76 .73 .69 .58

1.00 DISCHG .58 -SO .48 .47 .43 .42 .37 .36 .35 .33

I .00 DISCHG .33 .30 .30 .29 .27 .26 .24 .23 .23 .23

i.OO DISCHG .23 .23 .23 .22 .20 .20 .20 .20 -20 .20

i.OO DISCHG .20 .20 .20 .20 .20 .20 .18 .17 .17 .17

7,00 DISCHG .17 .17 .17 .17 .17 .17 .17 .17 .16 .14

J.OO DISCHG .14 .14 .14 .14 .14 .14 .14 .14 .14 .14

J.OO DISCHG .14 .14 .14 .14 .14 .14 .14 .14 -13 .11

).00 DISCHG .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

1.00 DISCHG .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

J.00 DISCHG .10 .10 .10 .10 ,10 .10 .10 .10 .10 .11

1.00 DISCHG -11 -11 -11 .11 .11 -11 -11 -11 .10 -°7

1.00 DISCHG .07 .02 .00

JNOFF VOLUME ABOVE BASEFLOW - 1.52 WATERSHED INCHES. 5.19 CFS-HRS, .43 ACRE-FEET,- BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1. STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 • RECORD ID

RROOOU93

XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 3 EXISTING CONDITIONS JOB 1 PASS

REV PC 09/83 (.2) PAGE

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.-10 MAIN TIME INCREMENT - .10 HOURS

LATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.97 15.58 (RUNOFF)

;(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .01 SQ-MI.

,.00 DISCHG .00 .00 .00 .00 .00 .00 .01 .01 .01 .02

7.00 DISCHG .02 .02 .03 .03 .03 .03 .04 .04 .04 .04

1.00 DISCHG .05 -06 .06 .07 .08 .09 .09 .10 .10 .11

J.OO DISCHG .11 -13. .14 .14 .15 .15 .17 .18 .19 .20

J.OO DISCHG .20 .22 .24 .26 .30 .31 .38 .41 .45 .53

L.OO DISCHG ,55 -64 .68 .75 .89 .95 3.24 4.26 6.79 13.21

2.00 DISCHG 14.95 5.76 2.79 2.31 1.70 1.64 1.42 1.36 1.28 1.09

1.00 DISCHG 1-07 .94 .90 .86 .79 .78 .69 .66 .65 .61

I.00 DISCHG .60 .56 .54 .53 .49 .48 .44 .43 .42 .42

S.OO DISCHG .43 .43 .43 .41 .37 .37 .37 .37 .37 .37

0 DISCHG .37 .37 .37 .37 .37 .37 .32 .31 .31 .31

7.00 DISCHG .31 .31 .31 .31 .31 .31 .31 .31 .29 .25

8.00 DISCHG .25 -25 .25 .25 .25 .25 .25 .25 .25 .25

9.00 DISCHG .25 .25 .25 .25 .25 .25 .25 .25 .23 .19

0.00 DISCHG -19 .19 .19 .19 .19 .19 .19 .19 .19 .19

1.00 DISCHG -19 -19 .19 .19 .19 .19 .19 .19 .19 .19

2.00 DISCHG .19 .19 .19 .19 .19 .19 .19 .19 .19 .19

3.00 DISCHG .19 .19 .19 .19 .19 .19 .19 .19 .17 .13

4.00 DISCHG - 13 .03 .00

UNOFF VOLUME ABOVE BASEFLOW - 3.13 WATERSHED INCHES, 10.70 CFS-HRS, .88 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1. ALTERNATE 1, STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

CUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 7.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND. 2

ALTERNATE NO.- 1 STORM NO.-99 MAIN TIME INCREMENT - -10 HOURS

TR20 XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 3 EXISTING CONDITIONS JOB 1 PASS

REV PC 09/83 ( .2) . PAGE

OPERATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.96 24.01 (RUNOFF)

TIME(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - -01 SQ.MI.

5.00 DISCHG .00 -01 .01 .01 .02 .02 .03 .03 .03 .04

6.00 DISCHG .04 -05 .06 .06 -07 .07 .08 .08 .09 .09

7.00 DISCHG .10 -10 .11 .11 .11 .12 .12 .13 .13 .13

8.00 DISCHG -14 -16 .18 -19 .22 .22 .23 .24 .24 .25

9-00 DISCHG -26 .29 .31 .32 .32 .33 .37 .39 .40 .40

10.00 DISCHG -41 -46 .48 .51 ,59 .61 .74 .79 .85 .98

11.00 DISCHG 1.01 1.17 1.23 1-35 1,58 1.66 5.56 7.12 11.04 20.78

12.00 DISCHG 22.89 8-71 4.20 3.46 2-54 2.45 2.12 2.03 1.90 1-62

13.00 DISCHG 1.59 1-39 1-33 1-28 1,16 1.15 1.02 .98 .95 .90

14.00 DISCHG .89 .82 .80 .78 .72 .71 .65 .63 .63 -63

15.00 DISCHG -63 .63 .63 .60 .54 .54 .54 .54 .54 .S4

16.00 DISCHG .54 .54 .54 -54 .54 .54 .47 .45 .45 .45

17.00 DISCHG .45 .45 .45 -45 .45 .45 .45 .45 .43 .37

18.00 DISCHG .36 .36 .36 .36 .36 .36 .36 .36 .36 -36

19.00 DISCHG -36 -36 .36 .36 .36 .36 .36 .36 .34 .2B

20.00 DISCHG .27 .27 .27 .27 .27 .27 .27 .27 .27 .27

21.00 DISCHG .27 .27 .27 .27 .27 .27 .27 .27 .27 .27

22.00 DISCHG .27 .27 .27 -27 .27 .27 .27 .27 .27 .27

23.00 DISCHG .27 .27 .27 .27 .27 .27 .27 .27 .25 -19

24.00 DISCHG -18 -OS .00

RUNOFF VOLUME ABOVE BASEFLOW - 4.95 WATERSHED INCHES, 16.93 CFS-HRS. 1.40 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCHP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AROOOt*95

XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 3 EXISTING CONDITIONS JOB 1 SUMMARY

REV PC 09/83(.2) PAGE 3

WJY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STAR!-) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK(7) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

CTURE CONTROL DRAINAGE TABLE MOIST TIME -..,..------------------- RUNOFF - - - - - - - - - - - - - , - - - - - - - - - - - - - - - . , . _ _ _ _ _

D OPERATION AREA ft COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

ISO MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

.LTERNATE 1 STORM 2

ICTURE 1 RUNOFF .01 2 2 .10 .0 3.20 24.00 1.52 --- 11.97 7.77 1465.7

.LTERNATE 1 STORM 10

ICTURE 1 RUNOFF .01 2 2 .10 .0 5.10 24.00 3.13 --- 11.97 15.58 2939.8

VLTERNATE 1 STORM 99

ICTURE 1 RUNOFF .01 2 2 .10 .0 7.10 24.00 4.95 --- 11.96 24.01 4529.7

AROOOlt96

, ITR20 XEQ 05-19-99 09:26 BUSH VALLEY LANDFILL CLOSURE - AREA 3 EXISTING CONDITIONS JOB 1 SUMMARY

REV PC 09/831-2) FAC i ,

SUMMARY TABLE 3 - DISCHARGE (CPS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS..........

ID (SQ MI) 2 10 99

STRUCTURE 1__________-01

ALTERNATE 1 7.77 15.58 24.01

AROOOW

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY*

*-20 SUMMARY NOPLOTS

E 001 BUSH VALLEY LANDFILL CLOSURE - AREA 4 EXISTING CONDITIONS

UNOFF 1 01 1 0.0048 82. .10 1 1 1 1 1

NDATA

NCREM 6 0.10

OMPUT 7 01 01 0.0 3.2 1. 2 2 01 02

NDCMP 1

OMPUT 7 01 01 0.0 5.1 1. 2 2 01 10

NDCMP 1

-OMPUT 7 01 01 0.0 7.1 1. 2 2 01 99

NDCMP 1

IN D JOB 2

•END OF 30-80 LIST'

7UTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT . .10 HOURS RECORD ID

7UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 3.20 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.. 1 STORM NO.- 2 MAIN TIME INCREMENT - .10 HOURS

"VTION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11 .97 7.04 (RUNOFF)

SIHRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - -00 SQ.MI.

9,00 DISCHG .01 .01 .01 .02 .02 .02 .03 .03 .03 .04

D.OO DISCHG -04 ,05 .05 .06 -07 .08 .10 -11 .12 .15

1.00 DISCHG -16 .19 .21 .24 -29 .32 1.15 1-61 2.73 5.69

2.00 DISCHG 6.82 2.69 1.33 1.10 .81 .79 .69 .66 .62 .53

3.00 DISCHG .52 ,46 .44 .42 -38 .38 .34 .33 .32 .30

4.00 DISCHG -30 .28 .27 .26 .24 .24 .22 .21 .21 .21

5.00 DISCHG .21 .21 .21 .20 .18 -18 .18 .18 .18 .18

6.00 DISCHG .18 .18 .IB .18 .18 .18 .16 .15 .15 .15

7.00 DISCHG .15 .15 .15 .15 .15 .15 .15 .15 .15 .13

8.00 DISCHG -12 .12 .12 .12 .12 .12 .12 .12 .12 .12

9.00 DISCHG .12 .12 .12 .12 .12 .13 .13 -13 .12 .10

0.00 DISCHG .09 .09 .09 .09 .09 .09 .09 .09 .09 .09

1.00 DISCHG .09 ,09 .09 .09 .09 .09 -09 .09 .09 .09

2.00 DISCHG .09 .09 .09 .09 -09 .09 .10 .10 .10 .10

3.00 DISCHG .10 .10 .10 .10 -10 .10 .10 .10 .09 .07

4.00 DISCHG -06 ,02 .00

UNOFF VOLUME ABOVE BASEFLOW - 1.52 WATERSHED INCHES, 4.70 CFS-HRS. .39 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

:CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

AROOOl*98

XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 4 EXISTING CONDITIONS JOB 1 PASS 2

REV PC 09/83 (, 2, pftGE

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO,.10 MAIN TIME INCREMENT . .10 HOURS

ATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.97 14.11 (RUNOFF)

MHRS) FIRST HYDROGRAPH POINT . .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .00 SQ.Mt

..00 DISCHG .00 .00 .00 .00 .00 .00 .01 .01 .01 .01

'.00 DISCHG .02 .02 .02 .03 .03 .03 .03 .04 .04 .04

I.00 DISCHG .04 ,05 .06 .06 .07 .08 .08 .09 .09 .10

).00 DISCHG .10 .11 .12 .13 .13 .14 .16 .17 .17 .18

).00 DISCHG .18 .20 .21 .23 .27 .28 .35 .38 .41 .48

L.OO DISCHG .50 .58 .62 .68 .81 .86 2.94 3.86 6.15 11.96

>.00 DISCHG 13.54 5.21 2.53 2.09 1.54 1.49 1.29 1.23 1.16 .98

).00 DISCHG - 97 .85 .81 .78 .71 .70 .62 .60 .5B .55

I,00 DISCHG .55 .51 .49 .48 .44 .44 .40 .39 .38 .38

j.OO DISCHG .38 .39 .39 .37 .33 .33 .33 .33 .33 .33

00 DISCHG .33 .33 .33 .33 .33 .33 .29 .28 .28 .2B

7.00 DISCHG .28 .28 .28 .28 .28 -28 .28 .28 .26 .23

9.00 DISCHG .22 .22 .22 .22 .22 .22 .22 .22 .22 .22

9-00 DISCHG .22 .22 .22 .22 .22 .22 .22 .22 .21 .17

0.00 DISCHG .17 .17 .17 .17 .17 .17 .17 .17 .17 .17

1.00 DISCHG .17 .17 .17 .17 .17 .17 .17 .17 .17 .17

2.00 DISCHG .17 .17 .17 .17 .17 .17 .17 .17 .17 .17

3.00 DISCHG - 17 .17 .17 .17 .17 .17 .17 .17 .15 .12

4,00 DISCHG .11 .03 .00

UNOPF VOLUME ABOVE BASEFLOW - 3.13 WATERSHED INCHES, 9.69 CFS-HRS, .80 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10. ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

CUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME • .00 RAIN DEPTH - 7.10 RAIN DURATION. 1.00 RAIN TABLE NO.« 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO,-99 MAIN TIME INCREMENT - .10 HOURS

AR000499

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 4 EXISTING CONDITIONS JOB 1 PASS

REV PC 09/B3I.2) PAC

OPERATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.96 21.74 (RUNOFF)

TIME(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA . .00 SQ.MI

5.00 DISCHG .00 .01 .01 -01 .02 .02 .02 .03 .03 .03

6,00 DISCHG .04 .05 .05 .06 .06 .07 .07 .08 .08 .08

7.00 DISCHG .09 .09 .10 .10 .10 .11 .11 .11 .12 .12

8.00 DISCHG .13 .15 .16 .17 .20 .20 .21 .22 .22 .23

9.00 DISCHG .23 .26 .28 .29 .29 .30 .33 .35 .36 .37

10.00 DISCHG .37 .41 .43 .46 .53 .55 .67 .71 .77 .89

11.00 DISCHG .92 1.06 1.12 1-22 1-43 1.50 5.03 6.45 10.00 18.»2

12.00 DISCHG 20.73 7.89 3,80 3.13 2.30 2.22 1.92 1.83 1.72 l.46

13.00 DISCHG 1.44 1.26 1.20 1.16 1.05 1.04 .92 .89 .86 .81

14.00 DISCHG .81 .75 .73 -70 .65 .65 .59 .57 .57 .57

15.00 DISCHG .57 .57 .57 .55 .49 .49 .49 .49 .45 .49

16-00 DISCHG .49 .49 .49 .49 .49 .49 .43 .41 .41 .41

17.00 DISCHG .41 .41 .41 .41 .41 .41 .41 .41 .39 .33

18.00 DISCHG .33 .33 .33 .33 .33 .33 .33 .33 .33 .33

19.00 DISCHG .33 .33 .33 .33 .33 .33 .33 .33 .31 ,25

20.00 DISCHG .25 .25 .25 .25 .25 .25 .25 .25 .25 .25

21.00 DISCHG .25 -25 .25 .25 .25 .25 .25 .25 .25 .25

22.00 DISCHG .25 .25 .25 .25 .25 .25 .25 .25 .25 .25

23.00 DISCHG .25 .25 .25 .25 .25 .25 .25 .25 .23 .17

24.00 DISCHG .17 .04 .00

RUNOFF VOLUME ABOVE BASEFLOW . 4.95 WATERSHED INCHES, 15.33 CFS-HRS, 1.27 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1. ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE -•-

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AR000500

XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 4 EXISTING CONDITIONS JOB 1 SUMMARY

REV PC 09/83(.2) PAGE 3

ARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STARC) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

CTURE CONTROL DRAINAGE TABLE MOIST TIME - - - - - - - - - - - - - - - - - - - - - - - - - RUNOFF - - - - - - - - - - - - - - - - - - - - - - . - - - - - - . . - - _ _ _ _ _

D OPERATION AREA » COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SO MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

.LTERNATE 1 STORM 2

ICTURE 1 RUNOFF .00 2 2 .10 .0 3.20 24.00 1.52 --- 11.97 7.04 1465.7

J..TERNATE 1 STORM 10

ICTURE 1 RUNOFF .00 2 2 .10 .0 5.10 24.00 3.13 --- 11.97 14.11 2939.8

J.TERHATE 1 JTTORM 99

ICTURE 1 RUNOFF .00 2 2 .10 .0 7.10 24.00 4.95 --- 11.96 21.74 4529.7

AR00050I

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 4 EXISTING CONDITIONS JOB 1 SUMMP"

REV PC 09/831 .2) pAGi

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS..........

ID (SQ MI) 2 10 99

STRUCTURE 1 .00

ALTERNATE 1 7.04 14.11 21.74

A(R,000502

•ao-ao LIST OF INPUT DATA FOR TR-20 HYDROLOGY-

--20 SUMMARY NOPLOTS

.E 001 BUSH VALLEY LANDFILL CLOSURE - AREA 5 EXISTING CONDITIONS

UNOFF 1 01 1 0.0016 82. .10 1 1 1 1 1

HDATA

NCREM 6 o.10OMPUT 7 01 01 0.0 3.2 1. 2 2 01 02

:NDCMP iOMPUT 7 01 01 0.0 5.1 1. 2 2 01 10

WDCMP 1

'OMPUT 7 01 01 0.0 7.1 1. 2 2 01 99

NDCMP 1

:NDJOB 2

'END OF 80-80 LIST-

•UTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT - .10 HOURS RECORD ID

-•UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME • .00 RAIN DEPTH • 3.20 RAIN DURATION" 1.00 RAIN TABLE NO.. 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.- 2 MAIN TIME INCREMENT « .10 HOURS

;ATION RUNOFF STRUCTURE i

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.97 2.35 (RUNOFF)

KHRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - -10 HOURS DRAINAGE AREA - .00 SQ.MI.

I.OO DISCHG .00 .00 .00 .01 .01 .01 .01 .01 .01 .01

I.OO DISCHG .01 - 02 .02 .02 .02 .03 .03 .04 .04 .05

..00 DISCHG .05 .06 .07 .08 .10 .11 .38 .54 .91 1.90

I.OO DISCHG 2.27 .90 .44 .37 .27 .26 .23 .22 .21 .18

l .00 DISCHG .17 .IS .15 .14 .13 .13 .11 .11 .11 .10

1 .00 DISCHG .10 .09 .09 -09 .08 .08 .07 .07 .07 .07

i .00 DISCHG .07 .07 .07 .07 .06 .06 .06 .06 .06 .06

,.00 DISCHG .06 .06 .06 .06 .06 .06 .05 -OS .05 .05

'.00 DISCHG .05 -05 .05 .05 .05 .05 .05 .05 .05 .04

I.OO DISCHG .04 .04 .04 .04 .04 .04 .04 .04 .04 .04

I .00 DISCHG .04 .04 .04 .04 .04 .04 .04 .04 .04 .03

1.00 DISCHG .03 -03 .03 .03 .03 .03 .03 .03 .03 .03

..00 DISCHG .03 .03 .03 .03 .03 .03 .03 .03 .OJ .03

! .00 DISCHG .03 ,03 .03 .03 .03 .03 .03 .03 ,03 .03

I.OO DISCHG .03 .03 .03 -03 .03 .03 .03 .03 .03 .02

..00 DISCHG .02 .01 .00

JNOFF VOLUME ABOVE BASEFLOW - 1.52 WATERSHED INCHES, 1-57 CFS-HRS, .13 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

rUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

AR000503

XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 5 EXISTING CONDITIONS JOB l PASS

REV PC 09/83(.2} pAGE

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND. 2

ALTERNATE NO.- 1 STORM NO.-10 MAIN TIME INCREMENT - .10 HOURS

ATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

11.97 4.70 (RUNOFF)

;(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .00 SQ.MI.

' . 00 DISCHG .01 .01 .01 .01 .01 .01 .01 .01 .01 .01

I.OO DISCHG .01 .02 .02 .02 .02 .03 .03 .03 ,03 .03

I.OO DISCHG .03 .04 .04 .04 .04 .05 .05 .06 .06 .06

).00 DISCHG .06 .07 .07 .08 .09 .09 .12 .13 .14 .16

1.00 DISCHG .17 .19 .21 .23 .27 .29 .98 1.29 2.05 3.99

J.OO DISCHG 4.51 1-74 .84 .70 .51 .50 .43 .41 .39 .33

J.OO DISCHG .32 .28 .27 .26 .24 .23 .21 .20 .19 .18

J.OO DISCHG .18 .17 .16 .16 .15 .15 .13 .13 .13 .13

i.OO DISCHG .13 -13 .13 ,12 .11 .11 .11 .11 .11 .n

' 00 DISCHG .11 .11 .11 .11 .11 -11 .10 .09 .09 .09

00 DISCHG -09 .09 .09 .09 .09 .09 .09 .09 .09 .08

3.00 DISCHG .07 .07 .07 .07 .07 .07 .07 .07 .07 .07

9.00 DISCHG -07 .07 .07 .07 .07 .07 .07 .07 .07 .06

0.00 DISCHG .06 .06 .06 .06 .06 .06 .06 .06 .06 ,06

1.00 DISCHG .06 .06 .06 .06 .06 .06 .06 .06 .06 .06

2.00 DISCHG .06 .06 .06 .06 .06 ,06 .06 .06 .06 .06

3.00 DISCHG .06 .06 .06 .06 .06 .06 .06 .06 .05 .04

4.00 DISCHG .04 .01 .00

UNOFF VOLUME ABOVE BASEFLOW - 3.13 WATERSHED INCHES, 3.23 CFS-HRS, .27 ACRE-FEET; BASEFLOW - ,00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

:CUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH . 7.10 RAIN DURATION- 1.00 RAIN TABLE NO.. 2 ANT. MOIST. COND. 2

ALTERNATE NO.- 1 STORM NO.-99 MAIN TIME INCREMENT - .10 HOURS

AR0005CH*

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 5 EXISTING CONDITIONS JOB 1 PASS

REV PC 09/831.2) PAGE

OPERATION RUNOFF STRUCTURE 1 L

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET) y

11.96 7.25 (RUNOFF) '•'

TIME(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .00 SQ.MI.

5.00 DISCHG .00 .00 .00 .00 .01 .01 .01 .01 .01 .01

6.00 DISCHG .01 .02 .02 .02 .02 .02 .02 .03 .03 .03

7.00 DISCHG -03 .03 .03 .03 .03 .04 .04 .04 .04 .04

8.00 DISCHG .04 .05 .05 .06 .07 .07 .07 .07 .07 .08 T|

9.00 DISCHG .08 -09 .09 .10 .10 .10 .11 .12 .12 12 i? s10.00 DISCHG .12 -14 .14 .15 .18 .IB .22 .24 .26 .30

11.00 DISCHG .31 .35 .37 .41 .48 ,50 1.68 2.15 3.33 6.27 -

12.00 DISCHG 6.91 2-63 1.27 1.04 .77 ,74 .64 .61 .57 .49 :

13.00 DISCHG -48 -42 .40 .39 .35 .35 .31 .30 ,29 .27 ;

14.00 DISCHG .27 .25 .24 .23 .22 .22 .20 .19 .19 .19

15.00 DISCHG .19 .19 .19 .18 .16 .16 .16 .16 .16 .16

16.00 DISCHG .15 -16 .16 .16 .16 .16 .14 .14 .14 .14

17.00 DISCHG .14 .14 .14 .14 .14 .14 .14 .14 .13 .11

18.00 DISCHG .11 -11 .11 .11 .11 .11 .11 .11 .11 .11 ?•

19.00 DISCHG .11 -11 .11 .11 -11 .11 .11 .11 .10 .08

20.00 DISCHG .08 -08 .OB .08 .08 .08 .08 .08 .08 .08

21.00 DISCHG .08 -08 .08 .08 .08 .08 .08 .08 .08 .08

22.00 DISCHG .OB -OB .08 .08 .08 .08 .08 .08 .08 .01

23.00 DISCHG .08 .08 .08 .08 .08 .08 .08 .08 .08 .06

24.00 DISCHG -06 -01 .00

RUNOFF VOLUME ABOVE BASEFLOW - 4.95 WATERSHED INCHES, s.n CFS-HRS, .42 ACRE-FEET,- BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE --- :

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AR000505

XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 5 EXISTING CONDITIONS JOB 1 SUMMARY

V PC 09/83(.2) PAGE 3

\RY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STARC) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

mjRE CONTROL DRAINAGE TABLE MOIST TIME - - - - - - - - - - - - - - - - - - - - - - - - - RUNOFF - - - - - - - - - - - - - - - - - - - - , - - - - - - . _ . . . . , . _ _ _

0 OPERATION AREA * COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

LTERNATE !.._ STORM 2

CTURE 1 RUNOFF .00 2 2 .10 .0 3.20 24.00 1.52 --- 11.97 2.35 1465.7

LTERNATE 1 _ STORM _10

CTURE 1 RUNOFF .00 2 2 .10 .0 5.10 24.00 3.13 --- 11.97 4.70 2939-8

LTERNATE 1 STORM 99

CTURE 1 RUNOFF .00 2 2 .10 .0 7.10 24.00 4.95 --- 11.96 7.25 4529.7

AR000506

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 5 EXISTING CONDITIONS JOB 1 SUMMARY

REV PC 09/831.2) PAC . i-»1

; J

rlSUMMARY TABLE 3 - DISCHARGE (CFS) AT XSBCTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES f

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS.......... :"|

ID (SQ MI) 2 10 99 f\

nSTRUCTURE 1__________,00 . I

ALTERNATE 1 2.35 4.70 7.25

A rtub 0507

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY'

TR-20 SUMMARY NOPLOTS

E 001 BUSH VALLEY LANDFILL CLOSURE - AREA 1 PROPOSED CONDITIONS

UNOFF 1 01 1 0.0052 74. .20 1 1 1 1 1

NDATA

NCREM 6 0.10

OMPUT 7 01 01 0.0 3.2 1. 2 2 01 02

NDCMP 1

OMPUT 7 01 01 0.0 5.1 1. 2 2 01 10

NDCMP 1

OMPUT 7 01 01 0.0 7.1 1. 2 2 01 99

MDCMP 1

;NDJOB 2

•END OF 80-80 LIST'

1TTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT - .10 HOURS RECORD ID

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 3.20 RAIN DURATION- 1.00 RAIN TABLE NO.. 2 ANT. MOIST. COND- 2

ALTERNATE NO-- 1 STORM NO.- 2 MAIN TIME INCREMENT - .10 HOURS

.'ION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE ICFS) PEAK ELEVATION(FEET)

12.04 4.12 (RUNOFF)

:(HRS) FIRST HYDROGRAPH POINT . .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA . .01 SQ.MI

L.OO DISCHG .01 .02 -03 .05 .07 -09 -22 .55 ,96 2.39

2.00 DISCHG 3.99 3.80 1.96 1,24 .87 .70 .63 .56 .54 .46

1.00 DISCHG .44 .42 .38 ,37 .34 .32 .31 ,28 ,27 .26

1.00 DISCHG ,25 -24 ,23 .23 .21 -21 .20 ,18 ,18 ,18

i.00 DISCHG ,18 ,18 ,18 .18 .17 .16 .16 .16 .16 ,16

S.OO DISCHG .16 ,16 .16 ,16 .16 .16 ,15 .14 .13 ,13

7.00 DISCHG .13 ,13 .13 ,13 ,13 -13 -13 ,13 .13 .12

a.00 DISCHG .11 -11 -11 .11 -11 -11 -11 -11 -11 -11

9,00 DISCHG .11 -11 .11 .11 -11 -11 .11 -11 -11 -10

D.OO DISCHG .09 .08 .08 .08 .08 .08 .08 .08 .08 .08

1.00 DISCHG .08 .08 .08 .08 .08 .08 .08 .08 .08 .08

2.00 DISCHG .08 .08 .08 .08 .08 .08 -OB .06 .08 .08

3.00 DISCHG .08 -08 .08 .08 .08 .08 .08 .08 .08 .07

4.00 DISCHG .06 .04 .01 .00

JNOFF VOLUME ABOVE BASEFLOW « 1.04 WATERSHED INCHES, 3.49 CFS-HRS, .29 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1. ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

AR000508

XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 1 PROPOSED CONDITIONS JOB 1 PASS

REV PC 09/83(.2) PAGE

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME . .00 RAIN DEPTH . 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.-10 MAIN TIME INCREMENT - .10 HOURS

lATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.03 10.00 (RUNOFF)

;(HRS> FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .01 SQ.Ml.

J.OO DISCHG .01 .01 .02 ,02 .03 .03 .04 .04 ,05 ,06

J.OO DISCHG ,06 -07 .08 .09 .10 .12 .14 .17 .19 .22

L.OO DISCHG .25 .29 .33 .37 .44 .51 1.03 2.10 3.14 6.62

2-00 DISCHG 9.86 8.83 4.44 2.73 1.89 1.51 1.33 1.19 1.14 1.01

}.00 DISCHG .93 .67 .79 .76 .70 .67 .64 .59 .56 .54

1.00 DISCHG .52 -SO .48 ,46 .44 .42 .40 .38 .37 .36

i.OO DISCHG -36 -36 .36 .36 .34 .32 .32 .31 .31 .31

5.00 DISCHG .31 .32 .32 .32 .32 .32 .30 .28 ,27 .27

7,00 DISCHG .27 .27 .27 .27 .27 .27 .27 .27 .26 .24

OQ DISCHG .22 .22 ,21 .21 .21 .21 .21 .21 .21 .21

,.00 DISCHG .21 -21 .22 .22 .22 .22 .22 .22 .21 .19

0.00 DISCHG .17 .16 .16 -16 -16 -16 .16 .16 .16 .16

1,00 DISCHG .16 .16 .16 .16 -16 .16 .16 .16 .16 .16

2.00 DISCHG .16 .16 ,16 .16 .16 -16 .16 ,16 .16 .16

3.00 DISCHG .16 .16 .16 .16 .16 .16 ,16 .16 .16 .14

4.00 DISCHG .12 .08 .03 .01 .00

UNOFF VOLUME ABOVE BASEFLOW • 2.45 WATERSHED INCHES, 8.22 CFS-HRS, ,68 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

CUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

CUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME . .00 RAIN DEPTH - 7.10 RAIN DURATION- 1.00 RAIN TABLE NO. • 2 ANT. MOIST. COND- 2

ALTERNATE N0.« 1 STORM NO..99 MAIN TIME INCREMENT - .10 HOURS

:RATION RUNOFF STRUCTURE i

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.02 16,83 (RUNOFF)

AR000509

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 1 PROPOSED CONDITIONS JOB l PASS

REV PC 09/83 ( .2)

TIME(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT • .10 HOURS DRAINAGE AREA - .01 SQ.MI

7.00 DISCHG ,00 -00 .00 .01 .01 .01 ,02 .02 ,03 ,03

8.00 DISCHG .03 .04 .05 .05 .06 .07 .08 .09 .09 ,10

9.00 DISCHG .10 .11 .13 .14 .15 .15 .17 .18 .20 ,21

10.00 DISCHG .21 .23 .25 .27 .30 .34 .38 .44 .46 ,55

11.00 DISCHG .61 .67 .76 .82 ,96 1.06 2.10 4.11 5.66 11,70

12.00 DISCHG 16.69 14.56 7.23 4,39 3.02 2.39 2,10 1,88 1.79 1.59

13.00 DISCHG 1.46 1.36 1.24 1.19 1.10 1.05 .99 .91 .88 .83

14.00 DISCHG .81 .78 .74 .72 .68 .65 .62 .58 .57 .56

15.00 DISCHG .56 .56 ,56 .56 ,52 .49 .49 .48 .48 .48

16.00 DISCHG -49 .49 .49 .49 .49 .49 ,47 .43 .41 .41

17.00 DISCHG .41 .41 ,41 .41 .41 .41 .41 .41 .40 .36

18,00 DISCHG .34 .33 .33 .33 .33 .33 .33 .33 ,33 .33

19,00 DISCHG .33 ,33 .33 .33 .33 .33 .33 .33 .32 .29

20.00 DISCHG .26 .25 .25 .25 .25 .25 .25 .25 .25 .25

21.00 DISCHG .25 .25 .25 .25 .25 .25 .25 ,25 .25 .25

22.00 DISCHG -25 .25 .25 .25 .25 .25 .25 .25 .25 .25

23.00 DISCHG .25 .25 .25 ,25 .25 .25 .25 .25 .24 .21

24.00 DISCHG .18 .13 .04 .01 .00

RUNOFF VOLUME ABOVE BASEFLOW - 4,14 WATERSHED INCHES, 13.90 CFS-HRS, 1.IS ACRE-FEET; BASEFLOH - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AR0005IO

'EQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 1 PROPOSED CONDITIONS JOB 1 SUMMARY

SV PC 09/83 ( .2) PAGE 3

\RY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STAR(-) AFTER THE PEAK DISCHARGE TIME AND RATE ICFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

CONTROL DRAINAGE TABLE MOIST TIME - - - - - - - - - - - - - - - - - - - - - - - - - RUNOFF - - - - - - - - - - - - - - - - - - - - . - , . - - - - - . . - - - _ _ . _

OPERATION AREA It COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

LTERNATE _ 1 STORM 2

CTURE 1 RUNOFF .01 2 2 .10 .0 3,20 24.00 1.04 --- 12.04 4.12 793.0

LTERHATE .__ 1 .._ STQRJ4 10

CTURE 1 RUNOFF .01 2 2 .10 .0 5.10 24.00 2.45 --- 12.03. 10.00 1923,4

LTERNATE _ 1 STORM 99

CTURE 1 RUNOFF .01 2 2 -10 .0 7.10 24,00 4.14 --- 12,02 16,83 3236.7

AR0005I1

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 1 PROPOSED CONDITIONS JOB 1 SUMM*°Y

REV PC 09/831-2) pftt (

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS..........

ID (SQ MI) 2 10 99

STRUCTURE _J__________,01

ALTERNATE 1 4.12 10.00 16.83

AR0005I2

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY-

TR-JO SUMMARY NOPLOTS

E 001 BUSH VALLEY LANDFILL CLOSURE - AREA 2 PROPOSED CONDITIONS

ONOFF 1 01 1 0.0061 74. .21 1 1 1 1 1

NDATA

NCREM 6 0.10

OMPUT 7 01 01 0.0 3.2 1. 2 2 01 02

NDCMP 1

OMPUT 7 01 01 0.0 5.1 1, 2 2 01 10

NDCMP 1

OMPUT 7 01 01 0.0 7.1 l. 2 2 01 99

NDCMP 1

KDJOB 2

•END OF BO-80 LIST*

TJTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT - .10 HOURS RECORD ID

-TJTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME . .00 RAIN DEPTH - 3.20 RAIN DURATION- 1.00 RAIN TABLE NO,- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.- 2 MAIN TIME INCREMENT - .10 HOURS

VTION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12 .OS 4.74 (RUNOFF)

;(HRS) FIRST HYDROGRAPH POINT . ,00 HOURS TIME INCREMENT • .10 HOURS DRAINAGE AREA . .01 SQ.MI

1.CO DISCHG .01 .02 ,04 .05 .08 .10 .25 .61 1.09 2.67

2.00 DISCHG 4.52 4.49 2.45 1.52 1.07 .64 .75 .67 .63 .57

3,00 DISCHG .52 .49 .45 .43 ,40 .36 -36 .34 ,32 .31

4,00 DISCHG .30 .29 .27 .27 .25 .24 .23 .22 ,21 .21

5.00 DISCHG .21 .21 .21 .21 .20 .19 .18 .16 ,18 .16

6.00 DISCHG .18 .18 .18 .18 .19 .19 .18 -16 .16 .16

7.00 DISCHG .16 ,16 .16 .16 .16 .16 .16 .16 .16 ,14

8,00 DISCHG .13 .13 .13 .13 .13 -13 .13 .13 .13 .13

9.00 DISCHG .13 .13 .13 .13 .13 -13 .13 .13 .13 .11

0.00 DISCHG .10 .10 ,10 .10 ,10 -10 .10 .10 .10 .10

1.00 DISCHG ,10 .10 .10 .10 .10 .10 .10 .10 .10 .10

2.00 DISCHG .10 .10 .10 .10 .10 .10 .10 .10 .10 .10

3-00 DISCHG .10 .10 .10 ,10 .10 -10 .10 .10 .10 .08

4.00 DISCHG -07 .05 .02 .01 .00

UNOFF VOLUME ABOVE BASEFLOW - 1.04 WATERSHED INCHES, 4.09 CFS-HRS, .34 ACRE-FEET; &ASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1. ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

JUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

AR0005I3

XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 2 PROPOSED CONDITIONS JOB 1 PASS

EV PC 09/83(.2) PAGE

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 5.10 RAIN DURATION. 1.00 RAIN TABLE NO.- 2 ANT. MOIST, COND- 2

ALTERNATE NO." 1 STORM NO..10 MAIN TIME INCREMENT - .10 HOURS

ATI ON RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.03 11.50 (RUNOFF)

(HRS) FIRST HYDROGRAPH POINT . ,00 HOURS TIME INCREMENT • .10 HOURS DRAINAGE AREA - ,01 SQ.MI

.00 DISCHG .01 ,01 .02 .02 .03 .04 .04 -OS .06 .07

.00 DISCHG .07 08 .09 .10 .12 .14 .16 ,19 .22 .26

.00 DISCHG .30 -34 .39 .43 .51 -59 1.15 2.36 3.58 7.44

.00 DISCHG 11.24 10.50 5,57 3.36 2.32 1.81 1.59 1.41 1.34 1.20

00 DISCHG 1.10 1.02 -93 .89 ,83 .79 ,75 .69 .66 .63

.00 DISCHG .61 -59 .56 .54 .51 .49 .47 .44 .43 .43

00 DISCHG .43 ,43 .43 .42 .40 .33 .37 .37 .37 .37

.00 DISCHG .37 -37 .37 .37 .37 .37 .36 .33 .32 ,31

.00 DISCHG .31 .31 .31 -31 .31 .31 .31 .31 ,31 .28

T DISCHG .26 -25 .25 .25 .25 .25 -25 .25 .25 ,25

jO DISCHG .25 -25 .25 .25 .25 -25 .25 .25 .25 .22

00 DISCHG .20 .19 .19 -19 .19 .19 .19 .19 .19 .19

00 DISCHG .19 -19 .19 .19 .19 .19 .19 -19 .19 .19

.00 DISCHG .19 .19 -19 .19 .19 .19 -19 .19 .19 .19

00 DISCHG ,19 .19 19 -19 .19 .19 -19 .19 .19 .16

00 DISCHG .14 -10 .04 .01 .00

rNOFF VOLUME ABOVE BASEFLOW = 2.45 WATERSHED INCHES, 9.65 CFS-HRS, .80 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

UTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

-UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME • .00 RAIN DEPTH - 7.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.-99 MAIN TIME INCREMENT - .10 HOURS

(ATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.03 19.36 (RUNOFF)

AR0005II*

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 2 PROPOSED CONDITIONS JOB 1 PASS

REV PC 09/83 (.2) PA[

TIMEIHRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .01 SQ.MI

7.00 DISCHG .00 .00 ,00 .01 .01 .02 .02 .03 .03 .03

8.00 DISCHG .04 .04 .05 .06 .07 .08 .09 .10 .11 .n

9.00 DISCHG .12 -13 .15 .16 .17 .16 .19 .21 .23 .24

10.00 DISCHG .25 -27 .29 .31 ,35 .39 .44 .51 .56 .64

11.00 DISCHG .71 -76 .88 .96 1.11 1.25 2.36 4.66 6.71 13.19

12.00 DISCHG 19.08 17.33 9.09 5.42 3.70 2,88 2.51 2.23 2.11 i.88

13.00 DISCHG 1.72 1-61 1.46 1.40 1.30 1.23 1.17 1.08 1.03 ,98

14,00 DISCHG .95 .91 .87 .84 .80 .76 .73 .68 .67 .fifi

IS.00 DISCHG .66 ,66 .66 .65 ,61 .58 .57 .57 .57 .57

16.00 DISCHG .57 .57 .57 .57 .57 .57 .55 .50 .48 .48

1-7.00 DISCHG .48 .48 .48 .48 .48 .48 .48 .48 .47 .43

18.00 DISCHG .40 .39 .39 .38 .38 .38 .38 .38 .38 .39

19.00 DISCHG .39 .39 .39 .39 .39 .39 .39 .39 .38 .34

20.00 DISCHG .31 -29 .29 .29 .29 .29 .29 .29 .29 .29

21,00 DISCHG .29 .29 .29 .29 .29 .29 .29 .29 .29 .29

22.00 DISCHG .29 .29 .29 .29 .29 .29 .29 .29 .29 .29

23.00 DISCHG .29 .29 .29 -29 .29 .29 .29 .29 .29 .24

24.00 DISCHG .21 -15 .06 .02 .01 .00

RUNOFF VOLUME ABOVE BASEFLOW . 4.14 WATERSHED INCHES, 16.30 CFS-HRS. 1.35 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AR0005I5

XEO 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 2 PROPOSED CONDITIONS JOB 1 SUMMARY

;EV PC 09/83 (.2) PAGE 3

ARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

1A STAR!*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

CTURE CONTROL DRAINAGE TABLE MOIST TIME - - - - - - - - - - - - - - - - - - - - - - - - - RUNOFF - - - - - - - - - - - - - - - - - - - - - - - . - - - _ _ _ _ - _ _ . - _ .

D OPERATION AREA II COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SO MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) 1CSM)

LTERNATE 1_ STORM. _ 2

CTURE 1 RUNOFF .01 2 2 .10 .0 3-20 24.00 1.04 --- 12.05 4.74 776.9

.LTERNATE 1 STORM 10

'CTURE 1 RUNOFF .01 2 2 .10 .0 5.10 24.00 2.45 --- 12,03 11.50 1884.8

.LTERNATE_ 1 STORM _ 99

ICTURE 1 RUNOFF -01 2 2 ,10 .0 7.10 24.00 4.14 --- 12.03 19-36 3173.5

AR000516

TR20 XEQ 05-19-99 09:27 BUSH VALLEY LANDFILL CLOSURE - AREA 2 PROPOSED CONDITIONS JOB 1 SUMMJ*'

REV PC 09/831-2) PAGE

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS..........

ID (SQ MI) 2 10 99

STRUCTURE 1 ______. 01

ALTERNATE 1 4.74 11.SO 19.36

AR0005I7

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY*

TR-20 SUMMARY NOPLOTS

,E 001 BUSH VALLEY LANDFILL CLOSURE - AREA 3 PROPOSED CONDITIONS

UNOFF 1 01 1 0.0058 74. .18 1 1 1 1 I

MDATA

NCREM 6 0.10

IOMPUT 7 01 01 o.o 3.2 i. 2 2 01 03:NDCMP itJMPUT 7 01 010.0 5.1 1. 2 2 0 1 1 0

MDCMP 1

X1MPUT 7 01 01 0.0 7.1 1. 2 2 01 99

:NDCMP ittDJOB 2

•END OF 80-80 LIST-

-TJTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT . .10 HOURS RECORD ID

rUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME . .00 RAIN DEPTH - 3.20 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.- 2 MAIN TIME INCREMENT - .10 HOURS

"ION RUNOFF STRUCTURE 1

PEAK TIME1HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.02 4.77 (RUNOFF)

El(HRS) FIRST HYDROGRAPH POINT . .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .01 SQ.MI

1.00 DISCHG .01 .02 .04 .05 .08 .10 .28 .66 1.15 2.95

2.00 DISCHG 4.70 4.09 1.93 1.27 .90 .75 .68 .62 .60 .53

3.00 DISCHG -49 .46 .42 .41 .37 .36 .34 .31 .30 .29

4.00 DISCHG -28 .27 .26 .25 .24 .23 .22 .20 .20 ,20

5.00 DISCHG .20 .20 .20 .20 .18 .18 .17 .17 .17 .17

6.00 DISCHG .17 ,18 .18 .18 .18 .18 .17 .15 .15 ,15

7.00 DISCHG .15 .15 .15 -15 .15 .15 .15 .15 .15 .13

6.00 DISCHG .12 -12 .12 .12 .12 .12 .12 .12 .12 .12

9.00 DISCHG -12 .12 .12 .12 .12 .12 .12 .12 .12 ,10

0.00 DISCHG -09 -09 .09 .09 .09 .09 .09 .09 .09 ,09

1,00 DISCHG .09 ,09 .09 .09 .09 .09 .09 .09 .09 .09

i.00 DISCHG .09 .09 .09 .09 .09 .09 .09 .09 .09 .09

3.00 DISCHG .09 .09 .09 .09 .09 .09 .09 .09 .09 .08

1.00 DISCHG -07 -04 .01 -00

UNOFF VOLUME ABOVE BASEFLOW - 1.04 WATERSHED INCHES, 3.89 CFS-HRS, .32 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDHOGRAPH FILE ---

TIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

AR0005I8

XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 3 PROPOSED CONDITIONS JOB 1 PASS 2

*EV PC 09/83(,2) PAGE 1

JTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME • .00 RAIN DEPTH - 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND. 2

ALTERNATE NO.- 1 STORM NO.-10 MAIN TIME INCREMENT - .10 HOURS

ATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.01 11.53 (RUNOFF)

(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT « .10 HOURS DRAINAGE AREA - .01 SQ.MI.

.00 DISCHG .01 .01 .02 .02 .03 .03 .04 .05 ,06 .06

.00 DISCHG .07 .08 .09 .10 .12 .14 .16 .19 .21 .26

.00 DISCHG .29 .33 .38 .42 .51 .58 1.28 2.51 3-70 8.06

.00 DISCHG 11.49 9.44 4.35 2.78 1.95 1.61 1.45 1.31 1.25 1.10

.00 DISCHG 1.02 ,95 .87 .84 .78 .74 .70 .65 .63 .59

.00 DISCHG .58 .55 .53 .51 .48 .47 .44 .42 .41 .41

. .00 DISCHG .41 -41 .41 .40 .37 .36 .35 .35 .35 .35

..00 DISCHG .35 .35 .35 .35 -35 .35 .33 .31 .30 .30

1 .00 DISCHG ,30 .30 .30 .30 .30 .30 .30 .30 .29 .26

00 DISCHG .24 .24 .24 .24 ,24 .24 .24 ,24 .24 .24

. .00 DISCHG .24 -24 .24 .24 ,24 .24 .24 .24 .24 .20

i.OO DISCHG .19 -18 .18 .18 .18 ,18 .18 .18 .16 .18

. ,00 DISCHG -IB .18 .18 .18 .18 .18 .18 .18 .18 .18

i.OO DISCHC .18 .18 .18 .18 .18 .18 .18 .18 .16 .18

I.OO DISCHG .18 .18 .18 ,18 .18 .18 .18 ,18 .18 .15

I .00 DISCHG - 13 -08 .02 .01 ,00

JNOFF VOLUME ABOVE BASEFLOW . 2.45 WATERSHED INCHES, 9,18 CFS-HRS, .76 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

rUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

CUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 7.10 RAIN DURATION- 1.00 RAIN TABLE NO.. 2 ANT. MOIST- COND- 2

ALTERNATE NO.- 1 STORM NO.-99 MAIN TIME INCREMENT - .10 HOURS

RATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.01 19.37 (RUNOFF)

AR0005I9

TR20 XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 3 PROPOSED CONDITIONS JQB 1 PASS

REV PC 09/83(-2) PAGE

TIME(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .01 SQ. MI

7.00 DISCHG .00 -00 .00 .01 .01 .02 .02 .03 .03 .03

8.00 DISCHG .04 -04 .05 -06 .07 .08 .09 ,10 .10 .11

9.00 DISCHG .12 .13 .15 .16 .16 .17 .19 .21 .22 .23

10.00 DISCHG -24 .26 .28 .30 .35 .38 .43 .50 .54 .63

11.00 DISCHG .69 -77 .86 .93 1.10 1.21 2.61 4.88 6.88 14.19

12.00 DISCHG 19.35 15-50 7.06 4.47 3.10 2.56 2.29 2.07 1.97 1.73

13.00 DISCHG 1.61 1-49 1.36 1.31 1.21 1.16 1.09 1.01 .97 ,92

14.00 DISCHG .89 .86 -82 -80 .75 .72 .69 ,64 .63 .63

15.00 DISCHG .63 -63 .63 .62 .57 .55 .54 .54 .54 .54

16.00 DISCHG .54 .54 .54 .54 .54 .54 .51 .47 .46 .45

17.00 DISCHG -45 -45 .45 .45 ,45 .45 -46 .46 .45 .40

18.00 DISCHG -37 .37 .37 .37 .37 .37 .37 .37 .37 .37

19.00 DISCHG .37 -37 .37 .37 .37 .37 .37 ,37 .36 .31

20.00 DISCHG -28 .28 .28 .28 .28 .28 .28 .28 .28 .28

21.00 DISCHG -26 -28 -28 .28 .28 ,28 .28 .28 .28 .28

22.00 DISCHG .28 -28 .28 .28 .28 .28 .28 .28 ,28 .28

23.00 DISCHG -28 -28 .26 .28 .28 .28 .28 .28 .27 ,22

24.00 DISCHG .19 -13 .04 .01 .00

RUNOFF VOLUME ABOVE BASEFLOW - 4.14 WATERSHED INCHES, 15.50 CFS-HRS, 1.28 ACRE-FEET; BASEFLOW . .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AR000520

XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 3 PROPOSED CONDITIONS JOB 1 SUMMARY

EV PC 09/831.2) PAGE 3

ARY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STARC) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

CTURE CONTROL DRAINAGE TABLE MOIST TIME . - - - - . - - , - - - - - - - - - - - - - - - - RUNOFF -----------^---------------,.....-,.,.

D OPERATION AREA # COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

.LTERNATE _ 1 STORM 2

CTURE 1 RUNOFF .01 2 2 .10 .0 3.20 24.00 1.04 --- 12.02 4.77 822.2

.LTERMATE 1 STORM 10

•CTURE 1 RUNOFF .01 2 2 .10 .0 5.10 24.00 2.45 --- 12.01 11.53 1988.1

.LTERNATE _ 1 STORM _9_9

ICTURE 1 RUNOFF .01 2 2 .10 .0 7.10 24.00 4.14 --- 12.01 19.37 3340.0

AR00052I

TR20 XEQ 05-19-99 09:2B BUSH VALLEY LANDFILL CLOSURE - AREA 3 PROPOSED CONDITIONS JOB 1 SUMV"

REV PC 09/83(.2) PAC

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECT1ON/ DRAINAGE

STRUCTURE AREA STORM NUMBERS...,.....,

ID (SQ MI) 2 10 99

STRUCTURE 1

ALTERNATE 1 4.77 11.53 19.37

AR000522

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY-

iR - 2 0 SUMMARY NOPLOTS

E ooi BUSH VALLEY LANDFILL CLOSURE - AREA 4 PROPOSED CONDITIONSUNOPF 1 01 1 0.0044 74. .20 11 111

NDATA

NCREM 6 0.10

OMPUT 7 01 01 0.0 3.2 1. 2 2 Ol 02

NDCMP 1

OMPUT 7 01 01 0.0 5.1 1. 2 2 Ol 10

NDCMP 1

OMPUT 7 01 01 0.0 7.1 1. 2 2 01 99

NDCMP 1

NDJOB 2

•END OF 80-80 LIST'

UTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT - .10 HOURS RECORD ID

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 3.20 RAIN DURATION- 1-00 RAIN TABLE NO.- 2 ANT. MOIST. COND. 2

ALTERNATE NO.- 1 STORM NO,. 2 MAIN TIME INCREMENT - .10 HOURS

TION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION{FEET)

12.04 3.49 (RUNOFF)

(MRS) FIRST HYDROGRAPH POINT . .00 HOURS TIME INCREMENT . .10 HOURS DRAINAGE AREA . .00 SQ.MI

.00 DISCHG .01 .02 .03 .04 .06 .08 .19 .46 -82 2.03

.00 DISCHG 3.37 3,21 1.66 1.05 .74 ,59 .53 .48 .46 .41

.00 DISCHG .38 -35 .32 .31 .29 .27 .26 ,24 .23 .22

.00 DISCHG .21 -21 .20 .19 .18 .17 .17 .1$ .15 .15

,00 DISCHG .15 .15 .15 -15 .14 .13 .13 .13 .13 .13

.00 DISCHG -13 .13 ,13 -13 .13 .13 .13 .12 -11 .11

.00 DISCHG .11 -11 .11 -11 -11 .11 -11 -11 -11 -10

.00 DISCHG -09 -09 .09 -09 .09 .09 .09 .09 .09 .09

.00 DISCHG -09 -09 .09 .09 .09 .09 .09 .09 .09 .08

00 DISCHG -07 -07 .07 .07 .07 .07 .07 .07 ,07 .07

.00 DISCHG -07 .07 .07 .07 .07 .07 .07 .07 -07 .07

,00 DISCHG .07 .07 .07 .07 .07 .07 .07 .07 .07 .07

.00 DISCHG .07 .07 .07 .07 .07 .07 .07 .07 .07 .06

.00 DISCHG .05 .04 .01 .00

NOFF VOLUME ABOVE BASEFLOW - 1.04 WATERSHED INCHES, 2.95 CFS-HRS, .24 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

IVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

RR000523

XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 4 PROPOSED CONDITIONS JOB 1 PASS 2

,EV PC 09/83(.2) PAGE 1

UTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM N0.«10 MAIN TIME INCREMENT - .10 HOURS

ATION RUNOFF STRUCTURE 1

PEAK TIMEIHRS) PEAK DISCHARGEICFS) PEAK ELEVATION(FEET)

12.03 8.46 (RUNOFF)

:(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .00 SQ.MI.

',00 DISCHG .01 .01 .01 ,02 .02 .03 .03 .04 .04 .05

.,00 DISCHG .05 .06 .07 .07 .09 .10 .12 .14 .16 .19

.00 DISCHG .22 -25 .28 .31 .37 .43 .87 1.78 2.65 5.60

.00 DISCHG 8.34 7,47 3.76 2.31 1.60 1.27 1,13 1.01 .96 .85

.00 DISCHG .79 .73 .67 .64 .60 .57 .54 .50 .48 .45

.00 DISCHG .44 .42 .40 .39 .37 .36 .34 .32 .31 .31

.,00 DISCHG .31 .31 .31 ,31 .29 .27 .27 ,27 .27 .27

.00 DISCHG .27 .27 .27 .27 .27 .27 .26 .23 .23 .22

'.00 DISCHG .22 .22 .22 .22 .22 .23 .23 .23 .22 .20

0 DISCHG .19 .16 ,18 .18 .18 .16 .18 .18 ,18 .16

.00 DISCHG .16 .18 .18 .18 .18 .18 .18 .18 .18 .16

i .00 DISCHG .14 - 14 .14 .14 .14 .14 .14 .14 .14 .14

,00 DISCHG .14 .14 .14 .14 ,14 .14 .14 .14 .14 .14

: .00 DISCHG .14 .14 .14 .14 .14 .14 .14 .14 .14 .14

. .00 DISCHG .14 .14 .14 ,14 .14 .14 .14 .14 .14 .11

.00 DISCHG .10 -07 .02 .01 .00

JNOFF VOLUME ABOVE BASEFLOW - 2.45 WATERSHED INCHES. 6.96 CFS-HRS, .58 ACRE-FEET; BASEFLOW - ,00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

rUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

.TJTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - .00 RAIN DEPTH - 7.10 RAIN DURATION- 1.00 RAIN TABLE NO.. 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO..99 MAIN TIME INCREMENT - .10 HOURS

tATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.02 14.24 (RUNOFF)

&R00052U

TR20 XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 4 PROPOSED CONDITIONS JOB 1 PAS?

REV PC 09/83 (.2) PAGl.

TIME(HRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT • .10 HOURS DRAINAGE AREA . .00 SQ.MI

7.00 DISCHG -00 -00 .00 .01 .01 .01 .02 .02 .02 .02

6.00 DISCHG -03 -03 .04 .04 .05 -06 .07 .07 .08 ,Q$

9.00 DISCHG .09 .10 .11 .12 .12 .13 .14 .16 .17 .17

10.00 DISCHG .18 -19 .21 .23 .26 .28 .32 .37 .41 .47

11.00 DISCHG -52 -57 .64 .70 .81 .91 1.78 3.48 4.96 9.90

12,00 DISCHG 14.12 12.32 6.12 3.71 2.55 2.02 1.78 1.59 1,51 1.34

13.00 DISCHG 1-23 1-15 1.05 1.00 .93 .89 .84 .77 .74 .71

14.00 DISCHG .68 -66 .62 .61 .57 .55 .53 .49 .48 .48

15.00 DISCHG .48 .48 ,48 .47 .44 .42 .41 .41 .41 .41

16.00 DISCHG .41 -41 .41 .41 .41 .41 .39 .36 .35 .35

17.00 DISCHG .34 -34 .34 .34 .34 .35 .35 .35 .34 .31

18.00 DISCHG -29 -28 .28 .28 .28 .28 .28 .28 .28 .28

19 00 DISCHG .28 -28 .28 .28 -28 -28 .28 .28 .27 .34

20.00 DISCHG .22 .21 .21 ,21 .21 .21 .21 .21 .21 .21

21.00 DISCHG .21 .21 .21 .21 .21 .21 .21 .21 .21 .21

22.00 DISCHG -21 .21 .21 .21 .21 .21 .21 .21 .21 .21

23.00 DISCHG -21 -21 .21 .21 .21 .21 .21 .21 .21 .17

24.00 DISCHG -IS .11 ,04 .01 .00

RUNOFF VOLUME ABOVE BASEFLOW - 4.14 WATERSHED INCHES. 11.76 CFS-HRS, .97 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AR000525

XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 4 PROPOSED CONDITIONS JOB 1 SUMMARY

<EV PC 09/83 ( .2) ' PAGE 3

HRY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STAR!') AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

ION/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

CTURE CONTROL DRAINAGE TABLE MOIST TIME .----...-----..-----,---- RUNOFF ------,--------------,-------.„..„._

D OPERATION AREA It COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SQ MI) (HR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

LTERNATE 1 STORM 2

CTURE 1 RUNOFF .00 2 2 .10 .0 3.20 24.00 1.04 --- 12.04 3.49 793.0

LTERNATE 1 STORM 10

CTURE 1 RUNOFF .00 2 2 .10 .0 5.10 24.00 2.45 --- 12.03 8.46 1923.4

LTERNATE 1 STORM 99

CTURE 1 RUNOFF .00 2 2 .10 .0 7.10 24.00 4.14 - - - 12 .02 14 .24 3236.7

AR000526

TR20 XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 4 PROPOSED CONDITIONS JOB 1 SUMMARY

REV PC 09/831.2) PAc

SUMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS..........

ID (SQ MI) 2 10 99

STRUCTURE 1

ALTERNATE 1 3.49 8.46 14.24

AR000527

•80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY-

i'R-20 SUMMARY NOPLOTS

E 001 BUSH VALLEY LANDFILL CLOSURE • AREA 5 PROPOSED CONDITIONS

UNOFF 1 01 1 0.0017 74. .23 1 1 1 1 1

NDATA

NCREM 6 0.10

OMPUT 7 01 01 0.0 3.2 1. 2 2 01 02

NDCMP 1

OMPUT 7 01 01 0.0 5.1 1. 2 2 01 10

NDCMP 1

OMPUT 7 01 01 0.0 7.1 1. 2 2 01 99

NDCMP 1

NDJOB 2

•END OF 80-80 LIST*

UTIVE CONTROL OPERATION INCREM MAIN TIME INCREMENT - .10 HOURS RECORD ID

UTIVE CONTROL, OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME . .00 RAIN DEPTH - 3.20 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND. 2

ALTERNATE NO.- 1 STORM NO.. 2 MAIN TIME INCREMENT - .10 HOURS

-TION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.06 1.30 (RUNOFF)

KHRS) FIRST HYDROGRAPH POINT - .00 HOURS TIME INCREMENT . .10 HOURS DRAINAGE AREA « ,00 SQ.MI

.00 DISCHG -00 ,01 .01 .01 .02 .03 .06 .16 ,28 .68

•.00 DISCHG 1-19 1-25 .75 .46 .32 .25 .21 ,19 ,18 .16

,.00 DISCHG -15 -14 -13 .12 .11 .11 .10 .09 .09 .09

,.00 DISCHG .08 .08 .08 .07 .07 .07 .07 .06 .06 .06

,.00 DISCHG .06 .06 .06 .06 .06 .05 .05 .05 .05 .05

,.00 DISCHG .OS .05 -OS .05 .05 .05 .05 .05 .04 .04

'.00 DISCHG -04 -04 .04 .04 .04 .04 .04 .04 .04 .04

!.00 DISCHG -04 .04 -04 .04 .04 .04 .04 .04 .04 .04

I.OO DISCHG -04 - 04 .04 .04 .04 .04 .04 .04 .04 .03

1.00 DISCHG .03 .03 .03 .03 .03 -01 .03 .03 .03 .03

..00 DISCHG .03 .03 .03 .03 .03 .01 .03 .03 .03 .03

I.OO DISCHG -03 .03 .03 .03 .03 .03 .03 .03 .03 .03

I.OO DISCHG -03 -03 .03 .03 .03 .03 .03 -03 .03 .02

1.00 DISCHG -02 .02 -01 -00

JNOFF VOLUME ABOVE BASEFLOW . 1.04 WATERSHED INCHES, 1.14 CFS-HRS, .09 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1, STORM 2, ADDED TO OUTPUT HYDROGRAPH FILE ---

riVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 1 RECORD ID

AR000528

XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 5 PROPOSED CONDITIONS JOB 1 PASS

rv PC 09/B3C.2) PAGE

JTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME - -00 RAIN DEPTH • 5.10 RAIN DURATION- 1.00 RAIN TABLE NO.. 2 ANT. MOIST. COND- 2

ALTERNATE NO.- i STORM NO.-IO MAIN TIME INCREMENT - .10 HOURS

VTION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGE(CFS) PEAK ELEVATION(FEET)

12.05 3.11 [RUNOFF)

(HRS) FIRST HYDROGRAPH POINT - ,00 HOURS TIME INCREMENT - .10 HOURS DRAINAGE AREA - .00 SQ.MI

.00 DISCHG .00 -00 .00 .01 .01 .01 .01 .01 .02 .02

.00 DISCHG .02 -02 .03 .03 .03 .04 .04 ,05 .06 .07

.00 DISCHG .08 -09 .11 .12 .14 .16 .29 .61 .94 1.91

.00 DISCHG 2.98 2-96 1.72 1.03 .70 .53 .46 .40 .38 .34

.00 DISCHG .31 -29 .26 .25 .23 .22 .21 .19 .19 .18

.00 DISCHG -17 -17 .16 .15 .14 .14 .13 .12 .12 .12

.00 DISCHG .12 -12 .12 .12 .11 .11 .10 ,10 .10 .10

.00 DISCHG .10 -10 .10 .10 .10 .10 .10 .09 .09 .09

.00 DISCHG .09 -09 .09 .09 .09 .09 .09 .09 .09 .08

10 DISCHG .07 .07 .07 .07 .07 .07 .07 .07 .07 .07

0 DISCHG .07 .07 .07 .07 .07 .07 .07 .07 .07 .06

.00 DISCHG -06 -05 .05 .05 .05 .05 .05 .05 ,05 .05

.00 DISCHG .05 -05 .05 .05 .05 .05 .05 .05 .05 .05

.00 DISCHG .05 -05 .05 -OS ,05 .05 .05 -OS .05 .05

.00 DISCHG ,05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.00 DISCHG .04 .03 .01 .00

<NOFF VOLUME ABOVE BASEFLOW - 2.45 WATERSHED INCHES, 2.68 CFS-HRS, .22 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1, ALTERNATE 1. STORM 10, ADDED TO OUTPUT HYDROGRAPH FILE ---

TTTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 2 RECORD ID

TJTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 RECORD ID

STARTING TIME • -00 RAIN DEPTH • 7.10 RAIN DURATION- 1.00 RAIN TABLE NO.- 2 ANT. MOIST. COND- 2

ALTERNATE NO.- 1 STORM NO.-99 MAIN TIME INCREMENT - .10 HOURS

(ATION RUNOFF STRUCTURE 1

PEAK TIME(HRS) PEAK DISCHARGEICFS) PEAK ELEVATION(FEET)

12.04 5.24 (RUNOFF)

RR000529

TR20 XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA 5 PROPOSED CONDITIONS JOB 1 PAS'" 3

REV PC 09/831.2) PA 2

TIME(HRS) FIRST HYDROGRAPH POINT . .00 HOURS TIME INCREMENT • .10 HOURS DRAINAGE AREA - .00 SQ.MI,

7.00 DISCHG .00 -00 .00 .00 .00 .00 .01 .01 .01 .01

8.00 DISCHG -01 -01 .01 .02 .02 .02 .03 .03 .03 .03

9.00 DISCHG .03 -04 .04 .04 .05 .05 .OS .06 .06 .07

10.00 DISCHG .07 .07 .08 .09 .10 -11 .12 .14 .15 .18

11.00 DISCHG .20 .22 .24 .26 .30 .34 ,60 1.21 1.77 3.40

12.00 DISCHG 5.09 4.90 2.82 1.66 1.13 -85 ,72 .63 .59 .53

13.00 DISCHG .49 .45 .41 .39 .37 .35 ,33 .30 .29 .28

14.00 DISCHG .27 .26 .24 .24 .22 .21 .21 .19 .19 .18

15.00 DISCHG .18 .18 .18 .18 -17 -16 .16 .16 .16 .16

16.00 DISCHG .16 .16 .16 .16 .16 -16 .15 .14 .14 .13

17.00 DISCHG .13 -13 .13 .13 .13 -13 .13 .13 .13 .12

IB.00 DISCHG ,11 -11 -11 -11 -11 -11 .11 .11 .11 .11

19.00 DISCHG .11 -11 -11 -11 .11 -11 .11 .11 .11 .10

20.00 DISCHG .09 ,08 .08 .08 -08 .08 .08 .08 .08 .OS

21.00 DISCHG .08 -08 .06 .08 -08 -06 .08 ,08 .08 .08

22.00 DISCHG .08 .08 ,08 .08 .08 .08 .08 .08 .08 .08

23.00 DISCHG .08 .08 .08 .08 .08 .08 .08 .08 .08 .07

24.00 DISCHG .06 -OS .02 ,01 .00

RUNOFF VOLUME ABOVE BASEFLOW - 4.13 WATERSHED INCHES, 4.54 CFS-HRS, .37 ACRE-FEET; BASEFLOW - .00 CFS

--- HYDROGRAPH FOR STRUCTURE 1. ALTERNATE 1, STORM 99, ADDED TO OUTPUT HYDROGRAPH FILE ---

EXECUTIVE CONTROL OPERATION ENDCMP COMPUTATIONS COMPLETED FOR PASS 3 RECORD ID

EXECUTIVE CONTROL OPERATION ENDJOB RECORD ID

AR000530

XEQ 05-19-99 09:28 BUSH VALLEY LANDFILL CLOSURE - AREA S PROPOSED CONDITIONS JOB 1 SUMMARY

2V PC 09/831 .2) PAGE 3

\RY TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED

(A STAR(') AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

A QUESTION MARK!?) INDICATES A HYDROGRAPH WITH PEAK AS LAST POINT.)

[ON/ STANDARD RAIN ANTEC MAIN PRECIPITATION PEAK DISCHARGE

rTURE CONTROL DRAINAGE TABLE MOIST TIME ,----.---------,---,.---- RUNOFF - , - - - - . - - . - - - - - - - - - - - . - - - . . - - - _ _ - . - _ _ _

3 OPERATION AREA * COND INCREM BEGIN AMOUNT DURATION AMOUNT ELEVATION TIME RATE RATE

(SQ MI) (MR) (HR) (IN) (HR) (IN) (FT) (HR) (CFS) (CSM)

LTERHATE I STORM 2

CTURE 1 RUNOFF .00 2 2 .10 .0 3.20 24.00 1.04 --- 12.06 1.30 762.0

LTERNATE 1 STORM 10

CTURE 1 RUNOFF .00 2 2 .10 .0 5.10 24.00 2.45 --- 12.05 3.11 1828.4

LTERMATE 1 STORM 99CTURE 1 RUNOFF .00 2 2 .10 -0 7.10 24.00 4.13 --- 12.04 5.24 3081.7

RR000531

TR20 XEQ 05-19-99 09:2B BUSH VALLEY LANDFILL CLOSURE - AREA 5 PROPOSED CONDITIONS JOB 1 SUM!

REV PC 09/83 (.2) PAGE 4

SUMMARY TABLE 3 - DISCHARGE 1CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/ DRAINAGE

STRUCTURE AREA STORM NUMBERS..........

ID (SQ Ml) 2 10 99

STRUCTURE 1 _._QOALTERNATE 1 1.30 3.11 5.24

AR00053IA

Figure (M: EXISTING SITF. CONDITIONSAERIAL PHOTO. OF B.V.L. (Photo{;raph T;>ken: March 26.

RR000532

flR000533

RR00053U

BENCH AND SLOPE DRAIN DESIGN CALCULATIONS

RR000535

10HttO

OCOUJXoUlmOCO

OuI

S?a- w

0

o

uiQ X

ui

ujS-

e

eci°i

1o o d d d d d d

odd ddddd

§13 as. i ido o o o o o

u?§ I I §8888

UJ

ooo o o m D IB

wIi •CO

UJCLOCOOCO1i

o^ *H5 a3 ii§a »S88CO

ESi

S *

illc 3 w6|y

Ul

oooo

oooo

gssgb d c> d

§1d

8888

d oi W

q p q q<o w w co

IR000536

UJ

oUJXoCO

zUJ00

sK

IS

UJQ u

w _5"

02*ia

ui

85*3

Ul0

u ~ 9xo^^, |g|f

|;d940 CD Ok CD f) (O Ok^ oj o r*. «» in u>o o o o W o o o

(A in (n in on (n in

UJ

O1Ua.sCO

Ii

Ulca

a. o. o. a

a:

P 3> 55« 'r

co m

(O 8SS

£8w016 v-' c> o

p d q dw w w w

Io

AR000537

AR000538

^ H fl 9 Project• m Projactf:V V V . Task:EA Engineering, Science, and Technology Cafcuiatad:

Checked:

Buah V«toy Undfil - Harford County61131.013001JDM Data:

Data:12/9/96

TR-55 WorfcshMt #2: Runoff Curve Number and Runoff

Staga of DMtapmant Pmpoaad CondHfcnaDrainaga An* Daacription: Drainage ATM to Bancn B-1

SoiNamaandHydrologic Group

igatatad Topaol - Cap C

Cow DMcnption(oow type, tM-mtiit, andhy_ro*opc oondMon; pareant

impar oua; unoonn*ctedyoonn*cMImparvioua area rate)

Mudcw- ocnlinuoua graaaaa

CN

T«bto2-274

F«.2-3

Fig.2-4

Tot*

uaacN-

Araa(acraa)

0.44

0.44

CfTAraa33

0

0

0

0

0

0

0

0

0

33

74

Fraquancy (yaara)24 Hour Rainfal, P On)Runoir, Q On)(uaa P vtd CN with Tatta M ,Fig. 2-1 , or Eon. 2-3 and 2-4)

Storm #123.21.04

Storm f2104.21.74

Storm §3255.12.44

Storm §4505.52.77

Storm vo1007.24.22

flR000539

« Projact BuahVaiayLandfii- Harford CountyProjactf: 61131.01

Taate 3001EA Engineering, Science, and Technology CahaJatad; JDM Data: __i .

______________________________________ Chackad: Data:

TR-55 Worksheet «: Time of Concentration (TJ or Travel Tim, (TODrainage ATM Description: Drainage Area to Bench B-1

ShaatFlow1 SurfBoaDaacripten(Tabla3-1)2 Manning'a Roughnaaa Coaff., n(TaMa3-1)3 FtowLaroth. LftoML«300ft)4 Two yaar 24 hour RavWal, P25 LandStopa, a6Tt

Sagmant

ninwnhr

1-2DmaOM

0.241503.2

0.0330.269 0.000 0.000

Shallow Conoantratad Flow7 Surfaoa Daacripfen (1*pavad. 2=unpavad)B Flow Langlh, L9 Watarcouraa Stopa, a10 Avaraga VatocJty. V (Fig. 3-1)11 Tt

Sagmant

nnmft/ahr

2-32

1600.0724.330.012

0.000.000

0.000.000 J.

BENCHChannalFlow

Bottom width of trapazoidaJ channalDapth of IrapazokW channal - (Dapth of Flow)Sida alopaa of trapazoidaJ channal (?H:1V)

12 Croaa Sectional Flow Araa, a13 Watted Parima*ar. pw14 Hydraulic Radiua. r15 Channal Slop., a

Channal Covar MatarM16 Manning'a Roughnaaa Coaff., n17V16 Flow Lanffth, L1ST,

Sagmantnftaqftnnnm

ft/anhr

3-40.10.275

0.302.850.1370.040

Short Oraaa0.0272.9M30

0.003

0.000.000.000

0.000

0.000

0.000.000.000

0.000

0.000 Q

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainaga Araa, A^,Runoff Curva Nurrtoar. CN (workahaat «2)Tvna of Concantraton. Tc (workahaat §3)Rainfal Diatributen Typa (I, (A, II, III)Pond and Swamp Araaa Spraad Throughout Watarahad

aqmi

hr

%Am

2 Fraguancy3 Rainfal, P (24 nor)4 Initial Abatvction, I. (T*bta 4-1)5\JP6 Unit PaakDiacharoa. i (Exhibit 4)7 Runoff, Q(wodcshaat 2)6 Pond A Swamp Adjuaownt Factor, F,(F,« 1.00 ternona)9 Paak Diacnarga, (

yrinin

camflnin

cfa

0.00174

0.284II

0.00

Storm *12

3.20.7030.220628.61.041.000.45

Storm f2104.2

0.7030.167656.51.741.000.79

Storm *3255.1

0.7030.138672.3Z441.001.1J

Storm #4505.5

0.7030.128677.7Z771.001.29

Sh.-..i

r•*

CE

_

ctMmi01\DESK U U U J 4 U

12/o-ee

BENCH B-1

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rale, Q - 1.13 cfs (ft) (ft) (fps) (n)Bottom width, B « 0.1 nSide slope, Z * 8.0 ?H:1 V 0.25 0.126 3.3 0.166 0.042Sidestope.Z- 2.0 ?H:1V 0.26 0.131 3.1 0.150 0.019

Manning roughness, n • 0.027 > 0.27 0.136 2.9 0.135 0.001Channel slope, S - 0.04 ft/ft 0.28 0.141 2.7 0.121 0.020

Rock filter height. H • 0.0 ft 0.29 0.146 2.5 0.109 0.036Flow Depth, D« 0.27 n 0.30 0.150 2.4 0.099 0.051

0.31 0.155 2.2 0.090 0.065Top width« 2.80 ft 0.32 0.160 2.1 0.082 0.078

Flow area, A- 0.39 sq ft 0.33 0.165 2.0 0.075 0.090Wetted perimeter, P« 2.88ft 0.34 0.170 1.6 0.069 0.101

Mean depth, Dm = 0.140ft 0.35 0.175 1.7 0.063 0.111Hydraulic radius, R * 0.136ft 0.36 0.180 1.7 0.058 0.121

Velocity, V* 2.89 fps 0.37 0.185 1.6 0.054 0.1310.38 0.189 1.5 0.050 0.1400.39 0.194 1.4 0.046 0.1480.40 0.199 1.3 0.043 0.1560.41 0.204 1.3 0.040 0.1640.42 0.209 1.2 0.037 0.1720.43 0.214 1.2 0.035 0.1790.44 0.219 1.1 0.032 0.1860.45 0.223 1.1 0.030 0.1930.46 0.228 1.0 0.028 0.2000.47 0.233 1.0 0.027 0.2060.48 0.238 0.9 0.025 0.2130.49 0.243 0.9 0.024 0.2190.50 0.246 0.9 0.022 0.2250.51 0.253 0.8 0.021 0.2320.52 0.257 0.8 0.020 0.2380.53 0.262 0.8 0.019 0.2430.54 0.267 0.7 0.018 0.2490.55 0.272 0.7 0.017 0.2550.56 0.277 0.7 0.016 0.2610.57 0.282 0.7 0.015 0.2670.58 0.287 0.6 0.014 0.2720.59 0.291 0.6 0.014 0.2780.60 0.286 0.6 0.013 0.2830.61 0.301 0.6 0.012 0.2890.62 0.306 0.6 0.012 0.2940.63 0.311 0.6 0.011 0.3000.64 0.316 0.5 0.011 0.3050.65 0.321 0.5 0.010 0.3100.66 0.325 0.5 0.010 0.3160.67 0.330 0.5 0.009 0.3210.68 0.335 0.5 0.009 0.3260.69 0.340 0.5 0.009 0.331

* Actual flow depth (D) is where hydraulic radii match (smallest "difference").

P:\Stata U«l\Cou*yNH ordAPrc «113101\DESIGr4-1V fl H U U U D 4 |

{{•1 * ProjactHOLr k. preset rl VVP TaalcEA Engineering, Science, and Technology c cuiatod:

Chackad:

Buah Valay LandM - Harford County61131.013001JDM Data:

Data:12/9/98

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Staoa of Davatopmant Propoaad CondfflonaDrainaoa Araa Daacripbon: Drainaga Araa to Banch B-2

SoiNamaandHydrologic Group

tgatated Topaoil - Cap C

Covar Daacrjpten(covar typa, traabnarrt, andhydrologic condMian; paroant

imparwoue; unccnnacted/connactadimparvioua araa rate)

Maadow- continuoua graaaaa

CN

Tabla2-274

Fig.2-3

Fig.2-4

Totala

UaaCN-

Araa(acraa)

0.48

0.48

CN*Araa36

0

0

0

0

0

0

0

0

0

36

74

Fraquancy (yaant)24 Hour Rainfal, P (in)Runoff, Q (in)(uaa P and CN wHh Tabb 2-1,Fig. 2-1 , or Eqn. 2-3 and 2-4)

Storm*! I Storm 9223.21.04

104.21.74

Storm §3255.12.44

Storm MSO5.52.77

Storm v51007.24.22

flROOQ5U2

• Prpjact Buah Vaftty UndM - Harfard CountyProjactf: 61131.01

Taate 3001EA Engineering, Science, and Technology Catoutotad: JDM Data:____________________________________________Chackad: Date:

TR-55 Worksheet *3: Time of Concentration (TJ or Travel Time (Tt)Drainage Area Description: Drainage Area to Bench B-2

ShaatFkw1 SufacaDaacriptian(Tabla3-1)2 Mw ng'a Roughnaaa Coaff., n (Tabta 3-1)3 FtowLanoth. L (total L<- 300 ft)4 Two yaar 24 hour Rainfal, P25 UndStopa, •6Tt

Sagmant

ninftmhr

1-2DanaaGnw

0.241003.2

0.0400.180 0.000 0.000

ShaHow Concanfrvtad Flow7 Surfaca Daacriptkn (1*pavad, 2-unpavwd)8 Flow Langth. L9 Watarcouraa Stepa, a10 Avaraga Vatodty. V (Fig. 3-1)11 Tt

Cagmant

ftnmft/ar*

2-3290

0.1335.880.004

0.000.000

0,000.000 I.I

BENCHChannal Flow

Bottom width of trapazoidal channalDapth of frapazadal channal - (Dapth of Flow)Sida alopaa of frapazoidal channal (?H: 1 V)

12 Croat Sactional Flow Area, a13 Wattad Parimator, pw14 Hydrauic Radwa, r15 Channal Slopa. a

Channal Covar Matarial16 Manning'a Roughnaaa Coaff., n17V18 Flow Langth, L19 T,

Sagmantnnaqftnnnm

ft/anhr

3-40.1

0.2*05

0.453.060.1470.060

Short Oraaa0.0273.43730

0.002

0.000.000.000

0.000

0.000

0.00o.x0.000

0.000

00001 0

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainaga Araa. A,,,Runoff Curva Numbar, CN (workahaat 92)Tvm of Concentration. Tc (workahaat «3)Ranfal DiaWbuten Typa (1. IA, II, III)Pond and Swwnp Araaa Spraad Throughout Watarahad

aqmi

hr

%Am

2 Fraquancy3 Rainfal. P (24 hour)4 Initial Abafracfan, U (Tab*a 4-1)su/p6 Urat Pa t Diachvga. % (Exhibit 4)7 Runoff. Q (workahaat 2)B Pond & Swamp Adjuatment Factor, F, (Fp * 1 .00 for nona)9 Paak Diacharga, %

yrinin

cam/inin

cfa

0.00174

0.187HO.X

Storm*!2

3.20.7030.220758.51.041.X0.59

Storm 92104.2

0.7030.167785.11.741.X1.03

Storm §3255.1

0.7030.1388X.62.441.X

1.44*

Storm 94505.5

0.7030.128806.92.771.X1.67

Sto i

CC(

12/W86

BENCH B-2

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q« 1.468 cfs (ft) (ft) (fps) (ft)Bottom width, B « 0.1 ftSide Slope, Z - 8.0 ?H:1V 0.25 0.126' 4.3 0.211 0.085Side slope, Z« 2.0 ?H:1V 0.26 0,131 4.0 0.188 0.057

Manning roughness, n « 0.027 0.27 0,136 3.7 0.169 0.033Channel slope, S * 0.05 ft/ft 0.28 0.141 3.5 0.152 0.011

Rock filter height, H - 0.0 ft > 0.29 0.146 3.3 0.137 0.009Flow Depth, D - 0.290 n 0.30 0.150 3.1 0.124 0.026

0.31 0.155 2.9 0.113 0.042Top width « 3.00 ft 0.32 0.160 2.7 0.103 0.057

Flow area, A - 0.45 sq ft 0.33 0.165 2.5 0.094 0.071Wetted perimeter, P « 3.09 ft 0.34 0.170 2.4 0.086 0.084

Mean depth, Dm« 0.150 ft 0.35 0.175 2.3 0.079 0.095Hydraulic radius, R - 0.146 ft 0.36 0.180 2.1 0.073 0.107

Velocity. V« 3.27 fps 0.37 0.185 2.0 0.067 0.1170.38 0.189 1.9 0.062 0,1270.39 0.194 1.8 0.058 0.1360.40 0.199 1.7 0.054 0.1450.41 0.204 1.7 0.050 0.1540.42 0.209 1.6 0.047 0.1620.43 0.214 1.5 0.043 0.1700.44 0.219 1.5 0.041 0.1780.45 0.223 1.4 0.038 0.1850.46 0.228 1.3 0.036 0.1930.47 0.233 1.3 0.033 0.2000.48 0.238 1.2 0.031 0.2070.49 0.243 1.2 0.030 0.2130.50 0.248 1.1 0.028 0.2200.51 0.253 1.1 0.026 0.2260.52 0.257 1.0 0.025 0.2330.53 0.262 1.0 0.023 0.2390.54 0.267 1.0 0.022 0.2450.55 0.272 0.9 0.021 0.2510.56 0.277 0.9 0.020 0.2570.57 0.282 0.9 0.019 0.2630.58 0.287 0.8 0.018 0.2690.59 0.291 0.8 0.017 0.2740.60 0.296 0.8 0.016 0.2800.61 0.301 0.8 0.016 0.2860.62 0.306 0.7 0.015 0.2910.63 0.311 0.7 0.014 0.2970.64 0.316 0.7 0.013 0.3020.65 0.321 0.7 0.013 0.3080.66 0.325 0.7 0.012 0.3130.67 0.330 0.6 0.012 0.3180.68 0.335 0.6 0.011 0.3240.69 0.340 0.6 0.011 0.329

' Actual flow depth (D) is where hydraulic radii match (smallest "difference').

P:\Stata LocanC«rty\Hartord\Pro cta«113101\DESIGN-1>CALCS

^ • fl B* ProjactJBai m Projact*:•aW P TaafcEA Engineering, Science, and Technology Caicuiatad:

Chackad:

Buah VaHay LandM - Harford County61131.013X1JOM Data:

Data:12/9/96

TR-55 Worksheet #2: Runoff Curva Number and Runoff

Staga of Davatopmant Prepoaad CondrtenaDrainaga Anta Daacription: Drainaga Araa to Banch B-3

SoiNamaandHydrologic Gnx*

eatatad Topaoi - Cap C

Covar Daacnptkm(covar typa, taatmant, andhydrotogic condNkm; paroant

imparvioua; unoomactad/oonnacladimparvioua araa rate)

Maadow oonbnuoua graaaaa

CN

Tabla2-274

RB-2-3

FlQ.2-4

Tolala

UaaCN*

Araa(•craa)

0.26

0.26

CN'Araa19

0

0

0

0

0

0

0

0

0

19

74

Fraquancy (yaani)24 Hour Rainfal, P (in)Runoff, Q (in)(uaa P and CN with Tabla 2-1,Fig. 2-1 , or Eon. 2-3 and 2-4)

Storm*!23.21.04

Storm 92104.21.74

Storm #3255.12-44

Storm 94505.52.77

Storm 051007.24.22

RR0005U5

Projact Buah Valay Landfll - Harfard CountyProjact* 61131.01

Taafc 3X1EA Engineering, Science, and Technology caicuiatad: JPM Data:___________________________________ __ _____Chackad: Data:

TR-55 Worksheet t3: Time of Concentration (TJ or Travel Time (T,)Drainage Araa Description: Drainage Area to Bench B-3

ShaatFtow1 Surfaoa Daacripfen (TaWe 3-1)2 Manrirtfa Roughnaaa Coaff., n {Tabla 3-1)3 Flow Langth, L (total L<« 300 fl>4 Two yaar 24 hour Rarrfal, P2SUndStopa, a6Tt

Sagmant

nInrVftnr O.OX O.OX O.OX

Shaflow Concantratad Flow7 Surfaca Daacripbon (1»pavad, 2«unpavad)B Flow Langth. L9 Wataroouraa SJopa, a10 Avwaga Valodty. V (Fig. 3-1 )11 Tt

Cagmant

nnmtVahr

2-3235

0.1716.67O.X1

O.XO.OX

O.XO.OX 3

SWALE BENCHChannal Flow

Bottom width of frapazoidal channalDaplrt of trapazoidal channal - (Daptti of Ftow)Sida atopaa of Irapazoidai channal (?H:1 V)

12 Croat Sactenal Flow Araa, aIt) VVVUMJ I VIIIIWH, \fH

14 Hydraulic Radiua, r15 Channal Stopa, a

Channal Covar Material16 Manning'a Roughnaaa Coaff., n17V18 Flow Langth, L19 T,

Sagmantnft

aqtt[ftftnm

n/anhr

1-22

1.003

5.X8.320.6010.036

Short Graaa0.0277.454110

0.004

3-40.10.343

O.M2.26o.m0.044

O.XO.XO.OX

Short Om»0.0273.M1138

0.011

0.000

O.OXTC»

60

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainaga Araa, AMRunoff Curva Numbar. CN (workahaet 92)Tima of Concantraten, Tc (workahaat *3)Rainfal DMnbuten Typa (1, IA, H, HI)Pond and Swamp Araaa Spraad Throughout Watarahad

aqmi

hr

%Am

2 Fraquancy3 Rainfal, P (24 hour)4 Initial Abatractton, 1, (TaWa 4-1)5U/P6 Unit Paak Diacnarga. % (Exhft* 4)7 Runoff. Q (workahaat 2)6 Pond A Swamp Adjuatmant Factor. F, (F, « 1 .00 for nona)9 Paak Diacnarga, o^

yrinin

camfinin

cfe

0.00074

0.016HO.X

Storm f12

3.20.7030.2201487.51.041.X0.63

Storm 92104.2

0.7030.1871428.91.741.X1.01

Storm *3255.1

0.7030.1381391.62.441.X1.3*

Storm 94505.5

0.7030.1281379.12,771.X1.56

Stu,/i

00

Pr Sttt UKrtCfcurtyV*rtortPraf«

12/B/96

BENCH B-3

Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q - 1.58 cfs (ft) (ft) (fps) (ft)Bottom width. B « 0.1 ftSide slope, Z- 4.0 ?H:1V 0.25 0.126 6.5 0.424 0.298Side slope, Z« 2.0 ?H:1 V 0.26 0.130 6.0 0.380 0.249

Manning roughness, n - 0.027 0.27 0.135 5.6 0.341 0.206Channel slope, S« 0.044 ft/ft 0.28 0.140 5.3 0.308 0.168

Rock filter height. H - 0.0 n 0.29 0.145 4.9 0.278 0.134Flow Depth, D« 0.34 n 0.30 0.149 4.6 0.253 0.103

0.31 0.154 4.3 0.230 0.076Top width« 2.14 ft 0.32 0.159 4.1 0.210 0.051

Flow area, A • 0.38 sq ft 0.33 0.164 3.8 0.193 0.029Wetted perimeter, P * 2.26 ft > 0.34 0.168 3.6 0.177 0.008

Mean depth. Dm * 0.178 ft 0.35 0.173 3.4 0.163 0.010Hydraulic radius, R - 0.168ft 0.36 0.178 3.3 0.150 0.028

Velocity, V = 3.63 fps 0.37 0.183 3.1 0.139 0.0440.38 0.187 2.9 0.128 0.0590.39 0.192 2.8 0.119 0.0730.40 0.197 2.7 0.111 0.0860.41 0.201 2.5 0.103 0.0980.42 0.206 2.4 0.096 0.1100.43 0.211 2.3 0.090 0.1210.44 0.216 2.2 0.084 0.1310.45 0.220 2.1 0.079 0.1420.46 0.225 2.0 0.074 0.1510.47 0.230 1.9 0.069 0.1600.48 0.234 1.9 0.065 0.1690.49 0.239 1.8 0.062 0.1780.50 0.244 1.7 0.058 0.1860.51 0.249 1.7 0.055 0.1940.52 0.253 1.6 0.052 0.2020.53 0.258 1.5 0.049 0.2090.54 0.263 1.5 0.046 0.2160.55 0.268 1.4 0.044 0.2240.56 0.272 1.4 0.042 0.2310.57 0.277 1.3 0.040 0.2370.58 0.282 1.3 0.038 0.2440.59 0.286 1.3 0.036 0.2510.60 0.291 1.2 0.034 0.2570.61 0.296 1.2 0.033 0.2630.62 0.301 1.1 0.031 0.2700.63 0.305 1.1 0.030 0.2760.64 0.310 1.1 0.028 0.2820.65 0.315 1.0 0.027 0.2880.66 0.319 1.0 0.026 0.2940.67 0.324 1.0 0.025 0.2990.68 0.329 0.9 0.024 0.3050.69 0.334 0.9 0.023 0.311

Actual flow depth (D) is where hydraulic radii match (smallest "difference*).

P:

^ • fl v ProjactPB m. Projact «:•VIHP Ta*1A Engineering, Science, and Technology Caicuiatad:

Chackad:

Buah VaHay LandfU - Harford Cotxrty61131.013001JDM Data:

Data:12/9/9B

TR-55 Worksheet * 2: Runoff Curve Number and Runoff

Staoa of Davatapmant Prepoaad ConditionaDrainaga Araa Daacription: Drainaga Araa to Banch B-4

SoflNamaandHydrologic Group

getatad Topaoil - Cap C

Covar Daacription(covar typa. tiaa-iiant. andhydrologic condition; parcant

imparvioua; uncomactad/bonnactadimparvioua araa rate)

Maadow- ccntamoua graaaaa

CN

Tabla2-274

H9-2-3

Fig.2-4

Totala

UaaCN*

Araa(acraa)

0.89

0.89

CN'Araa66

0

0

0

0

0

0

0

0

0

66

74

Fraquancy (yaara)24 Hour Rainfal, P (in)Runoff, Q (in)(uaa P and CN wtth TaUa 2-1 ,Fig. 2-1 , or Eqn. 2-3 and 2-4)

Storm*!23.21.04

Storm*.104.21.74

Storm §3255.12.44

Storm #4505.52.77

Storm *51007.24.22

RR0005l*8

• Prpjact Buah Valay LandM - Harfard CountyProjact f: 61131.01

Taate 3X1EA Engineering, Science, and Technology Calculated: JDM Data:

____________________________________________Chackad: __ n»t»:

TR-55 Worksheet #3: Time of Concentration (T_) or Travel Time (T_)Prainaqe Area Description: Drainage Area to Bench EM

ShaatFlow1 Surtoe Daacription (Tatto 3-1)2 Manninc. Rourtvtoea Coaff.. n (Tabla 3-1)3 FtawLenrth. L ftaM L «• 300 ft)4 Two yaar 24 hour Rainfal, P2SLandStopa. a6Tt

Segment

nnn/rthr

1-2Short QMS

0.151003.2

0.0400.124 O.OX O.OX ;.

Shallow Concentrated Flow7 Surfaca DaauiuOmi (1 'paved, 2>unpavad)8 Flmv Langtti, L9 Watarcoma Stopa. a10 Avareoe Vatoctty. V (Fig. 3-1 )11 Tt

Sagmant

nnmftfehr

2-3290

0.1225.640.004

O.X0.000

O.XO.OX ).

BENCHChannal Flow

Bottom width of toapazotdal channalDapth of trapazokW channal - (Depth of Flow)Sida atopee of tvpezoideJ eternal (?H:1 V)

12 Croaa Sactenal Flow Araa, a13 Wattad Parimator, pw14 Hydrauic Radua, r15 Channal Stopa, a

Channel Cover Material16 Manning'a Roughnaaa Coaff., n17V18 Flow Langth, L19 T,

Gagnwitnft

eqftnnnm

ft/anhr

3-40.10.463.50.793.450.2280.035

Short Graaa0.0273.854200

0.014

O.XO.XO.OX

0.000

O.OX

O.XO.XO.OX

O.OX

O.OX 0.

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drajnaga Araa, AMRunoff Cwva Numbar, CN (workahaat «2)TVna of Concarrtraten, Tc (worteahaat 93)Rainfal Diatibuten Typa (I, IA, II, III)Pond and Swamp Araaa Spraad Throughout Watarahad

aqmi

hr

*Am

2 Fraquancy3 RainM. P (24 hour)4 Initial Abafracten, U (TaNa 4-1)5I P6 Unrt Paak Diacnarga. <k (Exhtoit 4)7 Runoff. Q (worfcthaat 2)8 Pond & Swamp Adjuatmant Factor. ff (f, * 1.X for nona)9 Paak Diacnarga.

yhin

cam/inn

cfa

O.X174

0.143II

,_ O.X

fistormfl2

3.20.7030.220646.61.041.X1.22

Storm 92104.2

0.7030.167871.21.741.XZ11

Storm 93255.1

0.7030.138665.4Z441.X3.01

Storm M505.5

0.7030.128890.32.771.X3.43

Stb..i

)0>

flR0005l+9

12/wee

BENCH B-4

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q * 3.01 cfs (n) (ft) (fps) (n)Bottom width, B - 0.1 n

Side slope. Z« 5.0 ?H:1V 0.25 0.126 12.3 1.317 1.191Side slope. Z- 2.0 ?H:1V 0.26 0.131 11.5 1.178 1.047

Manning roughness, n« 0.027 0.27 0.136 10.7 1.058 0.922Channel slope, S - 0.035 fl/ft 0.28 0.140 10.0 0.953 0.813

Rock filter height, H« 0.0 n 0.29 0.145 9.3 0.862 0.717Flow Depth, D« 0.46 tt 0.30 0.150 8.7 0.782 0.632

0.31 0.155 8.2 0.712 0.557Top width* 3.32 A 0.32 0.160 7.7 0.650 0.490

Flow area, A* 0.79 sq A 0.33 0.164 7.3 0.595 0.430Wetted perimeter, P * 3.47 A 0.34 0.169 6.9 0.546 0.377

Mean depth. Dm • 0.237 A 0.35 0.174 6.5 0.502 0.328Hydraulic radius. R - 0.226 A 0.36 0.179 6.1 0.463 0.284

Velocity, V* 3.13 fps 0.37 0.183 5.6 0.427 0.2440.38 0.188 5.5 0.396 0.2070.39 0.193 5.3 0.367 0.1740.40 0.198 5.0 0.341 0.1430.41 0.203 4.8 0.317 0.1150.42 0.207 4.6 0.296 0.0890.43 0.212 4.4 0.276 0.0640.44 0.217 4.2 0.259 0.0420.45 0.222 4.0 0.242 0.021

> 0.46 0.226 3.8 0.227 0.0010.47 0.231 3.7 0.213 0.0180.48 0.236 3.5 0.201 0.0350.49 0.241 3.4 0.189 0.0520.50 0.246 3.3 0.178 0.0670.51 0.250 3.1 0.168 0.0820.52 0.255 3.0 0.159 0.0960.53 0.260 2.9 0.150 0.1100.54 0.265 2.8 0.142 0.1220.55 0.269 2.7 0.135 0.1350.56 0.274 2.6 0.128 0.1460.57 0.279 2.5 0.121 0.1570.58 0.284 2.4 0.115 0.1680.59 0.288 2.4 0.110 0.1790.60 0.293 2.3 0.105 0.1890.61 0.298 2.2 0.100 0.1980.62 0.303 2.1 0.095 0.2060.63 0.308 2.1 0.091 0.2170.64 0.312 2.0 0.086 0.2260.65 0.317 1.9 0.083 0.2350.66 0.322 1.9 0.079 0.2430.67 0.327 1.8 0.076 0.2510.68 0.331 1.8 0.072 0.2590.69 0.336 1.7 0.069 0.267

* Actual flow depth (D) is where hydraulic radii match (smallest "difference").

P:\SMe Loc*rCortyY1arfontt>rc cb>

H Ha\4t" Pro**Ct• rm **«**EA Engineering, Science, and Technology Calculated:

Checked:

Bueh Vetey LandM - Hwford County61131.013001JDM Data:

Date:12/9/96

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Staga of Development Propoeed CondWoneDrainage Aree Daacription: Drainage Area to Bench B-6

SoiNvneendHydrologic Group

tgatatad Toped - C^s C

Covar Daacription(cover type, treatment, andhydrologic ocndtton; percent

imparvioua araa rate)Meadow oonbnuoua graaaaa

CN

Table2-274

Fig.2-3

FiQ.2-4

Totale

UeeCN«

Aree(ecree)

1.78

1.78

CN'Area132

0

0

0

0

0

0

0

0

0

132

74

Frequency (yeara)24 Har Rainfal, P On)Runoff. Q (in)(uee P and CN with Table 2-1.Rg. 2-1 , or Eqn. 2-3 and 2-4)

Storm *123.21.04

Storm 92104.21.74

Storm §3255.12.44

Storm 94505.52.77

Storm *61007.24.22

tt113101TCSIGW

• Project BuehValayLendftl.Harfard CountyProject f: 61131.01

Teete 3X1EA Engineering, Science, and Technology calculated: JDM Date:__i j___________________:_________________________Checked:____________ Date:

TR-55 Worksheet «: Time of Concentration (TJ or Travel Time (TODrainage Area Description: Drainage Area to Bench B-5

Sheet Flow1 Surface Deecripten (Tabla 3-1)2 Mervwv- Roughnaa* Coaff.. n (Tabla 3-1)3 Flow Length, L (total L<- 300 m4 Two veer 24 hour Rainfal, P25 Land Slope, e6Tt

Segment

ftInnmhr

1-2Short Ghw

0.151003.2

0.0400.124 O.OX O.OX •

7 Surface Deacripoon (1 -paved. 2»unpeved)6 Flow Length, L9 Wetarcouree Slope, a10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftnmn/ahr

2-32

1350.1416.060.006

O.XO.OX

O.XO.OX .I

BENCHChannel Flow

Bottom width al frapazoidal channalDepth of trapezoidal channel - (Depth of Flow)Side elopee of trapezoidal channal (7H:1 V)

12 Croee Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydraulic Radua, r15 Channal Stopa, a

Channel Covar Material16 Manning'a Roughnaaa Coeff., n17V16 Flow Length, L18 T,

Segmentnnaqnnnnm

r__fthr

3-40.1

0.4905

1.255.100.2450.041

Short Graee0.0274.377450

0.029

O.XO.XO.OX

O.OX

O.OX

O.XO.XO.OX

O.OX

O.OXTc-

0.'

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AMRunoff Cine Number, CN (workahaat 92)Time of Concentration, Tc (workaheet *3)Rainfal Diatributen Type (1. IA. H. IH)Pond end Swamp Areaa Spread Throughout Watarahad

aqmi

hr

%Am

2 Frequency3 Rainfal. P (24 hour)4 Initial Abalracten, 1, (Tabla 4-1)SVP6 Unft Peak Diachvge, q, (ExhWt 4)7 Runoff, Qfworkaheet 2)6 Pond & Swamp Adjuetmart Factor, f, (F, « 1.00 tor none)9 Paak Diacharge, <^

*nin

cam/Inn

Cft

0.00374

0.159KO.X

Storm *12

3.20.7030.220811.81.041.X234

Storm f2104.2

0.7030.167837.41.741.X4.06

Storm f3255.1

0.7030.136652.32-441.XI.7M

Storm M505.5

0.7030.128857.3Z771.X6.60

StD :

1.0.•»•»

"<

RR000552

BENCH B-5

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate. Q« 6.794 cfs (ft) (ft) (fps) (ft)Bottom width, B - 0.1 nSideslope.Z- 9.0 ?H:1V 0.25 0.126 15.7 1.679 1.553SkJeslope.Z- 2.0 ?H:1V 0.26 0.131 14.6 1.498 1.367

Manning roughness, n« 0.027 0.27 0.136 13.5 1.343 1.207Channel slope, S * 0.041 ft/n 0.28 0.141 12.6 1.208 1.067

Rock filter height, H« 0.0 n 0.29 0.146 11.8 1.091 0.945Flow Depth, D« 0.490 n 0.30 0.151 11.0 0.988 0.636

0.31 0.155 10.4 0.896 0.743Top width» 5.49 ft 0.32 0.160 9.7 0.819 0.658

Flow area, A« 1.37sqft 0.33 0.165 9.2 0.748 0.583Wetted perimeter. P« 5.63ft 0.34 0.170 6.7 0.686 0.516

Mean depth, Dm» 0.249ft 0.35 0.175 8.2 0.630 0.455Hydraulic radius. R« 0.243 ft 0.36 0.180 7.7 0.580 0.400

Velocity. V« 4.23 fps 0.37 0.185 7.3 0.535 0.3510.38 0.190 7.0 0.495 0.3060.39 0.194 6.6 0.459 0.2640.40 0.199 6.3 0.426 0.2270.41 0.204 6.0 0.396 0.1920.42 0.209 5.7 0.369 0.1600.43 0.214 5.5 0.344 0.1310.44 0.219 5.2 0.322 0.1030.45 0.224 5.0 0.301 0.0780.46 0.229 4.8 0.283 0.0540.47 0.233 4.6 0.265 0.0320.48 0.238 4.4 0.249 0.011

> 0.49 0.243 4.2 0.235 0.0090.50 0.246 4.1 0.221 0.0270.51 0.253 3.9 0.208 0.0440.52 0.258 3.8 0.197 0.0610.53 0.263 3.6 0.186 0.0770.54 0.267 3.5 0.176 0.0910.55 0.272 3.4 0.167 0.1060.56 0.277 3.3 0.156 0.1190.57 0.282 3.1 0.150 0.1320.58 0.287 3.0 0.143 0.1440.59 0.292 2.9 0.136 0.1560.60 0.297 2.8 0.129 0.1680.61 0.302 2.7 0.123 0.1790.62 0.306 2.7 0.117 0.1890.63 0.311 2.6 0.112 0.2000.64 0.316 2.5 0.107 0.2100.65 0.321 2.4 0.102 0.2190.66 0.326 2.4 0.097 0.2290.67 0.331 2.3 0.093 0.2380.68 0.336 2.2 0.089 0.2470.69 0.341 2.2 0.065 0.255

* Actual flow depth (D) is where hydraulic radii match (smallest 'difference").

P:\Stata La™rfK ur*y\f4ertbrd\Pn4acte«113101\DESIG ARQQQ553

^ •i * ProjectP*V_y Project*:VHHrl P Teak:EA Engineering, Science, and Technology Calculated:

Checked:

Bueh Valey Landfil - Harford County61131.013X1JDM Date:

Date:12/9/98

TR-55 Worksheet 02: Runoff Curve Number and Runoff

Stage of Devekmmenf Propoeed CorMflteneDrainage Area Deecription: Drafn e Araa to Bench B-C

So* Name endHydrologic Group

igatatad Topeod - Cap C

Covar Deecripten(cow type, treafrnent, andhydrologic condMon; percent

Impervioua; unconnected/connectedImpervioue araa rate)

Meadow oontinuoua graaeea

CN

TaUe2-274

Fig.2-3

Fig.2-4

Totala

UeeCN*

Area(•crea)

0.63

0.63

CN-Area47

0

0

0

0

0

0

0

0

0

47

74

Frequency (yeara)24 Hour Rainfal, P (in)Runoff, Q (in)(uaa P and CN with Table 2-1,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm *123.21.04

Storm 92104.21.74

Storm 93255.12.44

Storm *4505.52.77

Storm #51007.24.22

RR00055U

Project Juah Veeay Landfl - Harfard CountyProject 9: 61131.01

Taaic 3QQ1EA Engineering, Science, and Technology Calculated: JDM DM: i i

Checked: Date:

TR-55 Worksheet *3: Time of Concentration (TJ or Travel Time (TODrainage Araa Description: Drainage Area to Bench B-6

Sheet Flow1 Surfeoe Deecripten (Table 3-1)2 Mannino • Roughnaea Coaff.. n (Table 3-1 )3 Flow Length, L (total L <» 3X ft)4 Two year 24 hour Rainfal, P25 Land Slope, a6Tt

Segment

ftmftmrr

1-2Short Oaet

0.151003.2

0.0400.124 O.OX

Shallow Concentrated Flow7 Surface Deecripten (1 "paved, 2*unpeved)6 Flow Langtti. L9 Watercourae Slope, a10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftftmftfahr

2-32

2800.0864.730.016

BENCHChannal Flow

Bottom width of . azoidal channalDepth of trapezoidal channel - (Depth of Flow)Side atopee of frvpazoidal channal (?H:1 V)

12 Crow Sectenal Flow Aree, e13 Wetted Perimeter, pw14 Hydraulic Radiue, r15 Channel Slope, a

Channel Cover Material16 Manning1* Roughneea Coeff., n17V18 Flow Length, L1ST,

Segmentftft

aqftftnnm

n/afthr

3-40.1

0.4103

0.552.600.2020.041

Short Gnaa0.0273.M3170

0.012

O.XO.OX

O.OX

O.XO.OX

O.XO.XO.OX

O.OX

O.OX

O.XO.XO.OX

o.ooc

1.

00001 0

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AMRunoff Curve Number, CN (worksheet 92)T me of Concentration, Tc (workahaat *3)Rainfal Dietributen Type (I, IA, II, Ul)Pond and Swamp Area* Spreed Throughout Watarahed

aqmi

hr

%Am

2 Frequency3 Rainfal, P (24 hour)4 InrtM Abstraction, I, (Table 4-1)5U/P6 U«t Peak Diecherga. % (Erf** 4)7 Runoff, Q (workahaet 2)6 Pond & Swamp Adjuefrnent Factor. FP(F,« 1.X far none)9 Paak Diacharge, (

yrinin

canVtnin

cfa

O.X174

0.152HO.X

Storm 112

3.20.7030.220824.61.041.X0.84

Storm 92104.2

0.7030.167649.91.741.X1.46

Storm *3255.1

0.7030.138864.52.441.X2.0M

Storm 94505.5

0.7030.128869.5Z771.X2.37

St,. n

CCr

P:\StaflR000555

12W96

BENCH B-6

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q - 2.0*0 cfs (n) (n) (fps) (n)Bottom width, B « 0.1 ftSide slope. Z« 4.0 ?H:1V 0.25 0.126 9.8 0.825 ' 0.700Side slope, Z« 2.0 ?H:1V 0.26 0.130 9.1 0.739 0.606

Manning roughness, n - 0.027 0.27 0.135 8.5 0.664 0.529Channel slope. S - 0.041 ftm 0.28 0.140 7.9 0.599 0.459

Rock filter height. H - 0.0 n 0.29 0.145 7.4 0.542 0.397Flow Depth, D* 0.410 n 0.30 0.149 6.9 0.492 0.343

0.31 0.154 6.5 0.448 0.294Top width« 2.56 n 0.32 0.159 6.1 0.409 0.250

Flow area, A - 0.55 sq n 0.33 0.164 5.8 0.375 0.211Wetted perimeter, P = 2.71 n 0.34 0.168 5.5 0.344 0.176

Mean depth. Dm * 0.213 n 0.35 0.173 5.2 0.317 0.144Hydraulic radius, R * 0.201 n 0.36 0.178 4.9 0.292 0.114

Velocity. V« 3.81 fps 0.37 0.183 4.6 0.270 0.0870.38 0.187 4.4 0.250 0.0630.39 0.192 4.2 0.232 0.0400.40 0.197 4.0 0.216 0.019

> 0.41 0.201 3.8 0.201 0.0010.42 0.206 3.6 0.187 0.0190.43 0.211 3.5 0.175 0.0360.44 0.216 3.3 0.164 0.0520.45 0.220 3.2 0.153 0.0670.46 0.225 3.1 0.144 0.0610.47 0.230 2.9 0.135 0.0950.48 0.234 2.8 0.127 0.1070.49 0.239 2.7 0.120 0.1190.50 0.244 2.6 0.113 0.1310.51 0.249 2.5 0.107 0.1420.52 0.253 2.4 0.101 0.1530.53 0.258 2.3 0.095 0.1630.54 0.263 2.2 0.090 0.1720.55 0.268 2.2 0.086 0.1820.56 0.272 2.1 0.081 0.1910.57 0.277 2.0 0.077 0.2000.58 0.282 1.9 0.073 0.2080.59 0.286 1.9 0.070 0.2170.60 0.291 1.8 0.066 0.2250.61 0.296 1.8 0.063 0.2330.62 0.301 1.7 0.060 0.2400.63 0.305 1.7 0.058 0.2480.64 0.310 1.6 0.055 0.2550.65 0.315 1.6 0.053 0.2620.66 0.319 1.5 0.050 0.2690.67 0.324 1.5 0.048 0.2760.68 0.329 1.4 0.046 0.2830.69 0.334 1.4 0.044 0.290

• Actual flow depth (D) is where hydraulic radii match (smallest "difference").

P:\State Local\Couf_yNHarford\PrcK*»«1 AR000556

^ • fl w Project••k m Preset f.••F V Teak:

EA Engineering, Science, and Technology calculated:Checked:

Buah Valav Undfll - Hwford County61131.013001JDM Date:

Date-12/9/96

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Stage of Development Propoeed CondHtoneDrainage Aree Deecripbon: Drainage Aree to Bench B*7

Sod Uame andHydrologic Group

»0etBted Topeoi - Cap C

Ccver Deacripten(cover type, treatment, andhydrologic condition; percent

irnpervkxja; urccnriectetyoonnectedimparvioua area rate)

Maadow oontinuoue graaeea

CN

Table2-274

Fig.2-3

Fig.2-4

Totata

UeeCN»

Area(acrea)

0.55

0.55

CN*Aree41

0

0

0

0

0

0

0

0

0

41

74

Frequency (yeara)24 Hour Rainfal, P (in)Rinoff. Q (in)(uae P and CN wMh Table 2-1.Fig. 2-1 . or Eqn. 2-3 end 2-4)

Storm *123.21.04

Storm 92104.21.74

Storm *3255.1Z44

Storm M505.52.77

Storm *51007.2

4.22

RR000557

• Project Bueh Valay Landfil - Harford CountyProject*: 61131.01

Taefc 3X1EA Engineering, Science, and Technology calculated: JDM Date:

____________________________________________Checked: Date:

TR-55 Worksheet #3: Time of Concentration (TJ or Travel Time (Tt)Drainage Area Description: Drainage Araa to Bench B-7

Sheet Flow1 Surface DaauipUuii (Table 3-1)2 Merming'e Roughnaaa Coeff., n (Table 3-1 )3 Flow Length. L (toW L <« 3X ft)4 Two year 24 hour Rainfal, P25 Land Slope, a6Tt

Segment

ftinftmhr

1-2DeneeGraM

0.241003.2

0.0400.180 O.OX 0.000 •

ShaBow Concentrated Flow7 Surface Doacripten (1 -paved, 2-unpaved)8 Flow Length. L9 Watercouree Stopa, a10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftftmn/ehr

2-32

2650.0794.530.016

O.X0.000

O.XO.OX .1

BENCHChannal Flow

Bottom width of trapezoidal channelDepth of trapezoidal channel - (Depth of Flow)Side alopaa of trapezoidal channel (7H:1V)

12 Croaa Sectional Flow Aree, a13 Wetted Perimeter, pw14 Hydraulic Radkia, r15 Channel Slope, a

Channal Cover Material16 Manning'a Roughnaee Coeff., n17V18 Flow Length, L19 T,

Segmentftneqftftftftm

tt/afthr

3-40.1

0.3503

0.402.310.1740.054

Short Graaa0.0273.M»130

0.009

O.XO.Xoooo

0.000

O.OX

O.XO.XO.OX

O.OX

O.OOOI 0.

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, A,,,Runoff Curve Number. CN (worfcahaet 92)Time of Concentration, Tc (workaheat *3)Rainfal Dietibuten Type (I, IA. II, III)Pond and Swamp Areaa Spread Throughout Waterahed

aqmi

hr

%Am

2 Frequency3 Rainfal. P (24 hour)4 Initial Abetracten, 1. (Table 4-1)syp6 Unit Peek Diecharge, <v, (Exhtoit 4)7 Runoff, Q (worksheet 2)8 Pond 4 Swamp Adjuetment Factor, F, (F, « 1.X for none)9 Paak Diacherga, <^

yrinin

cam/inin

cfa

O.X174

0.206HO.X

_,Storm *1

23.2

0.7030.220728.31.041.X0.65

Storm #2104.2

0.7030.167755.31.741.X1.13

Storm #3255.1

0.7030.138770.92.441.X1.119

Storm M505.5

0.7030.128776.32,771.X1.85

Ste i

307

flR000558

12/a/oe

BENCH B-7

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q * 1.619 cfs (ft) (ft) (fps) (n)Bottom width, B » 0.1 n

Side slope. Z« 4.0 ?H:1V 0.30 0.149 5.4 0.276 0.126Side slope. Z - 2.0 ?H:1V 0.31 0.154 5.1 0.251 0.097

Manning roughness, n« 0.027 0.32 0.159 4.8 0.229 0.070Channel slope. S« 0.0538 ft/ft 0.33 0.164 4.5 0.210 0.046

Rock fitter height, H • 0.0 n 0.34 0.168 4.3 0.193 0.024Flow Depth, D - 0.350 n > 0.35 0.173 4.0 0.177 0.004

0.36 0.178 3.8 0.164 0.014Top width - 2.20 n 0.37 0.163 3.6 0.151 0.031

Flow area, A« 0.40 sq n 0.38 0.187 3.4 0.140 0.047Wetted perimeter, P« 2.33 n 0.39 0.192 3.3 0.130 0.062

Mean depth. Dm - 0.183 n 0.40 0.197 3.1 0.121 0.076Hydraulic radius, R * 0.173ft 0.41 0.201 3.0 0.112 0.089

Velocity, V* 4.02 fps 0.42 0.206 2.8 0.105 0.1010.43 0.211 2.7 0.098 0.1130.44 0.216 2.6 0.092 0.1240.45 0.220 2.5 0.086 0.1340.46 0.225 2.4 0.081 0.1440.47 0.230 2.3 0.076 0.1540.48 0.234 2.2 0.071 0.1630.49 0.239 2.1 0.067 0.1720.50 0.244 2.0 0.063 0.1810.51 0.249 1.9 0.060 0.1890.52 0.253 1.9 0.056 0.1970.53 0.258 1.8 0.053 0.2050.54 0.263 1.7 0.051 0.2120.55 0.268 1.7 0.048 0.2200.56 0.272 1.6 0.046 0.2270.57 0.277 1.6 0.043 0.2340.58 0.282 1.5 0.041 0.2410.59 0.286 1.5 0.039 0.2470.60 0.291 1.4 0.037 0.2540.61 0.296 1.4 0.035 0.2600.62 0.301 1.3 0.034 0.2670.63 0.305 1.3 0.032 0.2730.64 0.310 1.3 0.031 0.2790.65 0.315 1.2 0.029 0.2850.66 0.319 1.2 0.026 0.2910.67 0.324 1.1 0.027 0.2970.68 0.329 1.1 0.026 0.3030.69 0.334 1.1 0.025 0.3090.70 0.338 1.1 0.024 0.3150.71 0.343 1.0 0.023 0.3200.72 0.348 1.0 0.022 0.3260.73 0.353 1.0 0.021 0.3320.74 0.357 0.9 0.020 0.337

* Actual flow depth (D) is where hydraulic radii match (smallest 'difference').

P:\Stete LoeaftCoutyHarfordNPro cteW

^ • fl V ProjectBaBk_ym Project*:•i r HP Teak:A Engineering, Science, and Technology CaicUatad:

Checked:

Bueh Valley Landfil - Harford County61131.013X1JDM Date:

Date:12/9/96

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Stage of Development Pmpoead CcndMonaDrainaoe Area Daacripten: Oreinaoa Araa to Bench B-8

Sod Name andHydrologic Group

plated Topeoi - C^> C

Cover Deecripten(cover type, treaanent, andhydrologic condtton; percent

Impervioua; unconrtectedtannectodimparvioua area rate)

Meadow continuoua QraaaM

CN

Table2-274

Fig.2-3

Fig-2-4

Totale

UeeCN-

Araa(acraa)

0.50

0.58

CN'Area44

0

0

0

0

0

0

0

0

0

44

74

Frequency (yeara)24 Hour Rainfal, P (in)Rimff , Q (in)(uee P and CN with Tabla 2-1.Fig, 2-1. or Eqn. 2-3 and 2-4)

Stonnil23.21.04

Storm 92104.21.74

Storm *3255.1Z44

Storm 94505.52.77

Storm *51007.24.22

Project Pueh Valley LandM - Harford CountyProject*: 61131.01

Taafc 3001EA Engineering, Science, and Technology Calculated: JDM Date:__r

___ ____ _________________________Checked:_________ Date:

TR-55 Worksheet *3: Time of Concentration (TJ or Travel Time (TJDrainage Araa Description: Drainage Araa to Bench B-8

Sheet Flow1 Surface Deecripten (Table 3-1)2 Mannina'e Roughneee Coeff., n (Table 3-1)3 Flow Length. L (total L <* 300 ft)4 Two year 24 hour Rainfal, P2SLandStope, a6Tt

Segment

ftinftml»

1-2DemeGraM

0.241003.2

0.0700.144 O.OX O.OX 1

7 Surface Deecripten (1*paved, 2*unpaved)8 Flow Length, L9 Watercourae Slope, a10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftfimWehr

2-32

1650.1155.470.008

O.XO.OX

O.X0.000 c

BENCHChannel Flow

Bottom width of trapezoidal channalDepth of trapezoidal channel - (Depth of Flow)Side alopee of trapezoidal channal (7H:1 V)

12 Croae Sectional Flow Araa, a13 Wetted Perwneter, pw14 Hydraulic Rsdws, r15 CharvwJ Slope, a

Channel Cover Material16 Manning'a Roughness Coaff., n17V16 Flow Length, L19 T,

Segmentftnaqftftfturn

n/afthr

3-40.1

0.3003

0.502.570.1930.042

Short Greee0.0273.777120

0.009

O.XO.X0.000

O.OX

O.OX

O.XO.XO.OX

O.OX

O.OXTe-

n.(•

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, A*Runoff Curve Number, CN (worksheet 92)Time of Concentration. Tc (worksheet 13)Rainfal Diatributen Type (1, IA, II. Ill)Pond and Swamp Areee Spread Throughout Watershed

eqrni

hr

%Am

2 Frequency3 Rainfal, P (24 hour)4 kvbal Abatraction, 1. (Tabla 4-1)5I^P6 Ural Peek Diecherge, q,, (Exhibit 4)7 Runoff. Q (workaheet 2)8 Pond 4 Swvnp Adjuabnent Factor, F, (F, « 1 .00 for none)9 Peak Diecherge, (

*inin

cam/inin

cfa

0.00174

0.181IIO.X

Storm »12

3.20.7030.220808.11.041.X0.77

Storm 92104.2

0.7030.167831.91.741.X1.34

Storm 93255.1

0.7030.138846.8Z441.X1.M8

Storm 94505.5

0.7030.128851.92.771.X2.17

StOtn.l•

."0(641

flR00056P:\

12*96

BENCH B-8

.wale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q« 1.901 cfs (ft) (ft) (fps) (ft)Bottom width, B » 0.1 n

Side slope, 2 - 4.0 ?H:1V 0.30 0.149 6.4 0.425 0.275Side slope. Z - 2.0 ?H:1V 0.31 0.154 6.0 0.387 0.233

Manning roughness, n» 0.027 0.32 0.159 5.6 0.353 0.194Channel slope, S * 0.042 fl/fl 0.33 0.164 5.3 0.323 0.160

Rock fitter height, H« 0.0 n 0.34 0.168 5.0 0.297 0.129Flow Depth, D - 0.390 n 0.35 0.173 4.7 0.273 0.100

0.36 0.178 4.5 0.252 0.074Top width« 2.44 n 0.37 0.163 4.3 0.233 0.050

Flow area, A« 0.50 sq n 0.38 0.187 4.0 0.216 0.028Wetted perimeter, P« 2.58 n > 0.39 0.192 3.9 0.200 0.008

Mean depth, Dm« 0.203 n 0.40 0.197 3.7 0.186 0.011Hydraulic radius. R = 0.192 n 0.41 0.201 3.5 0.173 0.026

Velocity, V- 3.85 fps 0.42 0.206 3.3 0.162 0.0450.43 0.211 3.2 0.151 0.0600.44 0.216 3.1 0.141 0.0740.45 0.220 2.9 0.132 0.0880.46 0.225 2.8 0.124 0.1010.47 0.230 2.7 0.117 0.1130.48 0.234 ' 2.6 0.110 0.1250.49 0.239 2.5 0.103 0.1360.50 0.244 2.4 0.098 0.1460.51 0.249 2.3 0.092 0.1570.52 0.253 2.2 0.087 0.1660.53 0.258 2.1 0.082 0.1760.54 0.263 2.1 0.078 0.1850.55 0.268 2.0 0.074 0.1940.56 0.272 1.9 0.070 0.2020.57 0.277 1.8 0.067 0.2100.58 0.282 1.8 0.063 0.2180.59 0.286 1.7 0.060 0.2260.60 0.291 1.7 0.057 0.2340.61 0.296 1.6 0.055 0.2410.62 0.301 1.6 0.052 0.2490.63 0.305 1.5 0.050 0.2560.64 0.310 1.5 0.047 0.2630.65 0.315 1.4 0.045 0.2690.66 0.319 1.4 0.043 0.2760.67 0.324 1.3 0.042 07830.68 0.329 1.3 0.040 0.2890.69 0.334 1.3 0.038 0.2960.70 0.338 1.2 0.037 0.3020.71 0.343 1.2 0.035 0.3080.72 0.348 1.2 0.034 0.3140.73 0.353 1.1 0.032 0.3200.74 0.357 1.1 0.031 0.326

* Actual flow depth (D) is where hydraulic radii match (smal)est 'difference').

P:\Stete LoceTCointyWvford>Projoctettt1310ire ARQQQ562

S 4 v Pro**ct•MaV ^ Project*:•V W Teek:

EA Engineering. Science, and Technology Catenated:Checked:

Bush Valey Landfil - Harford County61131.013001JDM Date:

Date:12/9/96

TR-55 Worksheet *2: Runoff Curve Number and Runoff

St*)e of Development Propoeed ConditeneDraineoe Area Deecripten: Drsineoe Areas to Slope Drain S.D.-1

Soil Name andHydrologic Group

tgetated Topeol - Cap C

Cover Description(covar type, treatment, andhydrologic condition; percent

impervioua; unconnected/connectedimpervious area rate)

Meadow continuous graaaea

CN

Table2-274

FiO-2-3

Fig.2-4

Totals

UeoCN*

Area(acres)

0.92

0.92

CN'Araa68

0

0

0

0

0

0

0

0

0

68

74

Frequency (years)24 Hour Rainfal, P (in)Runoff, Q (in)(uaa P and CN with Table 2-1,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm *123.21.04

Storm 92104.21.74

Storm 93255.1244

Storm 94505.52.77

Storm 951007.24.22

LDc OxJrty H•1d c P l •cW

Project BuahValeyLandfB- Harford CountyProject f: 61131.01

Task: 3X1EA Engineering, Science, and Technology Calculated: JDM Date:____________________________________________Checked:_____ Date:

TR-55 Worksheet #3: Time of Concentration (TJ or Travel Time (TJDrainage Area Description: Drainage Areas to Slope Drain S.D.-1

Sheet Flow1 Surface Deecripten (Table 3-1)2 Mamng'a Roughness Coeff.. n (Table 3-1)3 Flow Length, L (total L <« 300 ft)4 Two yee/ 24 hour Rainfal, P25 Land Slope, e6Tt

Segment

ftinftmhr

1-2Denis Great

0.241503.2

0.0330.260 O.OX O.OX

Shalow Concentrated Flow7 Surface Description (1 -paved, 2*unpeved)6 Flow Length, L9 Watercourse Stopa. a10 Average Velocity. V (Fig. 3-1)11 Tt

Segment

ftftmft/ahr

2-32

1800.0724.330.012

O.XO.OX

O.X0.000 1

BENCH SLOPE DRAINChennelFlow

Bottom width of trapezoidal channalDepth of frapezoidal channel - (Depth of Flow)Side slopes of trapsrotdel channel (?H:1 V)

12 Cross Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydrautc Radius, r15 Channel Slope, a

Channel Cover Material16 Manning'a Roughness Coeff., n17V18 Flow Length, L19 T,

Segmentftft

aqftftftnm

n/afthr

3-40.10.285

0.422.960.1420.040

Short Grass0.0273.00630

0.003

5-66

0.103

0.636.630.0950.108

Short Grass0.0273.77665

0.005

O.XO.X0.000

O.OX

O.OXTc-

n.i.

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Aree, A.,Runoff Curve Number. CN (workaheet 92)Tims of Concent-ten. Tc (worksheet *3)Rainfal Diatributen Type (1. IA, II. Ill)Pond end Swamp Arses Spread Throughout Watershed

eqmi

hr

*Am

2 Frequency3 Rainral. P (24 how)4 kwtM Abetracten. I, (Tab* 4-1)syp6 Unit Peak Diecftvge, (Exhtoit 4)7 Runoff, 0 (worksheet 2)8 Pond & Swamp Adjustment Factor. F, (F, * 1.X for none)9 Peek Discharge,

yrinin

cam/inin

cfs

O.X174

0.288NO.X

Storm n2

3.20.7030.220624.71.041.X0.93

Storm §2104.2

0.7030.167651.61.741.X1.63

Storm §3255.1

0.7030.136667.32.441.X2.94

Storm 94SO5.5

0.7030.12867Z7Z771.X2.68

StOrtil

).0Ji

AROOQ561*

12*86

SLOPE DRAIN S.D.-1

iwale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate. Q« 2.34 cfs (ft) (n) (fps) (n)Bottom width. B « 6.0 nSide slope, Z * 3.0 ?H:1V 0.05 0.049 7.6 0.274 0.225Side slope, Z - 3.0 ?H:1V 0.06 0.058 6.3 0.207 0.149

Manning roughness, n • 0.027 0.07 0.067 5.4 0.163 0.095Channel slope. S * 0.106 ft/ft 0.08 0.077 4.7 0.132 0.056

Rock fitter height, H« 0.0 n 0.09 0.086 4.1 0.110 0.024Flow Depth. D - 0.100 rt > 0.10 0.095 3.7 0.093 0.002

0.11 0.104 3.4 0.080 0.024Top width- 6.60 A 0.12 0.113 3.1 0.070 0.043

Flow area. A - 0.63 sq n 0.13 0.122 2.8 0.062 0.060Wetted perimeter, P - 6.63 n 0.14 0.131 2.6 0.055 0.076

Mean depth, Dm - 0.095 n 0.15 0.139 2.4 0.049 0.090Hydraulic radius, R« 0.095 n 0.16 0.148 2.3 0.044 0.104

Velocity, V- 3.71 fpa 0.17 0.156 2.1 0.040 0.1160.18 0.165 2.0 0.037 0.1280.19 0.173 1.9 0.033 0.1400.20 0.182 1.8 0.031 0.1510.21 0.190 1.7 0.028 0.1620.22 0.198 1.6 0.026 0.1720.23 0.206 1.5 0.024 0.1820.24 0.215 1.5 0.023 0.1920.25 0.223 1.4 0.021 0.2010.26 0.231 1.3 0.020 0.2110.27 0.239 1.3 0.019 0.2200.28 0.246 1.2 0.018 0.2290.29 0.254 1.2 0.017 0.2380.30 0.262 1.1 0.016 0.2460.31 0770 1.1 0.015 0.2550.32 0.278 1.1 0.014 0.2640.33 0785 1.0 0.013 0.2720.34 0793 1.0 0.013 0.2800.35 0.300 0.9 0.012 0.2880.36 0.308 0.9 0.011 07960.37 0.315 0.9 0.011 0.3040.38 0.323 0.9 0.010 0.3120.39 0.330 0.6 0.010 0.3200.40 0.338 0.8 0.010 0.3280.41 0.345 0.8 0.009 0.3360.42 0.352 0.8 0.009 0.3430.43 0.360 0.7 0.008 0.3510.44 0.367 0.7 0.008 0.3590.45 0.374 0.7 0.008 0.3660.46 0.381 0.7 0.007 0.3740.47 0.388 0.7 0.007 0.3810.48 0.395 0.7 0.007 0.3880.49 0.402 0.6 0.007 0.396

Actual flow depth (D) is where hydraulic radii match (smallest 'difference").

P:\State LocdV&MrtyVHvfortfPn W ARQOQ565

^ HL flk* Projectfc m Project*:VHvleV TaefcEA Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Lsndfil - Harfard Couity61131.013001JDM Date:

Date:12/9/96

TR-55 Worksheet *2: Runoff Curve Number and Runoff

Staoe of Development Proposed ConditionsDminege Aree Deecripten: Drainage Aree to Slope Drain S.D.-2

Soi Name andHydrologic Group

•geteted Topeoi • Cap C

Cover Deecripten(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedImpervious araa rate)

Meadow- continuous passes

CN

Table2-274

Fig.2-3

Fig.2-4

Totals

UseCN*

Aree(acres)

1.15

1.15

CN*Area85

0

0

0

0

0

0

0

0

0

65

74

Frequency (years)24 Hoir Rainfal. P On)Rimff. Q (in)(uee P and CN with Table 2-1 ,Fig. 2-1 , or £71. 2-3 and 2-4)

Storm *123.21.04

Storm 92104.21.74

Storm 93255.12.44

Storm 14505.52.77

Storm 951007.24.22

&R000566

Project Bush Veley Landfl - Harford Co-ntvProject*: 61131.01

Task: 3001EA Engineering, Science, and Technology calculated: JDM Date:

________________________________________Checked: __ Date:

TR-55 Worksheet *3: Time of Concentration (T«) or Travel Time (TODrainage Area Description: Drainage Aiea to Slope Drain SJ3.-2

ShsetFtow1 Surface Deecripten (Table 3-1)2 Mwwtfe Roughness Coaff., n (Table 3-1)3 Flow Length. L (totel L <« 300 ft)4 Two year 24 hour Rainfal, P25 Land Slope, s6Tt

Segment

fthnmhr

1-2Short QVM

0.15IX3.2

0.0400.124 O.OX 0.000

.

4 -

Shadow Concentrated Flow7 Surface Description (Icpaved, 2*unpeved)6 Flow Length. L9 Watercourse Slope, s10 Average Velocity. V (Fig. 3-1)11 Tt

Segment

nMlWerr

2-32X

0.1225.640.004

O.X0.000

O.X0.000

BENCH SLOPE DRAINChannel Flow

Bottom width of trapezoidel channalDepth of trapezoidal channel - (Depth of Flow)Side elopee of frapazoidal chemel (7H:1V)

12 Cross Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydradte Redws. r15 Chwvwf Slope, a

Channel Cover Material16 Manning's Roughnaaa Coeff., n17V18 Flow Length, L19 T,

Segmentftfl

sqftftftftm

W»fthr

3-40.1

0.463.5

0.793.450.2280.035

Short Grass0.0273.854200

0.014

4-66

0.1303

0.836.62

0.1220.233

Riprap0.04

4.417X

0.004

O.XO.X

O.OX

O.OX

O.OXT«-

•ft•

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Araa, AMRunoff Curve Number. CN (worksheet 92)Time of Concentration, Tc (workahaat *3)Rainfal Distribution Type (I, IA, II, III)Pond and Swamp Areas Spread Throughout Watershed

eqmi

hr

%Am

2 Frequency3 Rainfal, P (24 hour)4 lnHWAbefracten.1. (Table 4-1)5 VP6 Ur* Peak Discharge. % (ExHt* 4)7 Runoff, Q (worksheet 2)8 Pond ft Swwnp Adjustment Factor, F, (F, - 1 .00 for none)9 Peak Discharge, (

yrinin

cam/Inin

cfs

0.00274

0.146IIO.X

Storm *1237

0.7030.220837.91.041.001.56

Storm 92104.2

0.7030.167862.91.741.X2.70

Storm *3255.1

0.7030.136877.2Z441.X

3.U3

Storm 94505.5

0.7030.12688272,771.X4.39

Stu.r

((i

__,

AR000567

12/OTO

SLOPE DRAIN S.D.- 2

wale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q - 3.153 cfs (ft) (ft) (fps) (ft)Bottom width, B - 6.0 nSide slope, Z - 3.0 ?H:1 V 0.05 0.049 12.5 0.566 0.537Side slope, Z- 3.0 ?H:1V 0.06 0.058 10.4 0.442 0.384

Manning roughness, n* 0.04 0.07 0.067 8.9 0.348 0.281Channel slope, S« 0.233 fl/ft 0.08 0.077 7.7 0.283 0.206

Rock filter height, H« 0.0 n 0.09 0.086 6.8 0.236 o!l50Flow Depth, D* 0.130 n 0.10 0.095 6.1 0.200 0.105

0.11 0.104 5.5 0.172 0,068Topwidth- 6.78 n 0.12 0.113 5.0 0.150 0.037

Flow area, A* 0.83 sq n > 0.13 0.122 4.6 0.132 0.010Wetted perimeter, P - 6.82 n 0.14 0.131 4.3 0.117 0.013

Mean depth, Dm * 0.123 n 0.15 0.139 4.0 0.105 0.034Hydraulic radius, R - 0.122 n 0.16 0.146 3.7 0.095 0.053

Velocity, V« 4.64 fps 0.17 0.156 3.5 0.086 0.0710.18 0.165 3.3 0.078 0.0870.19 0.173 3.1 0.072 0.1020.20 0.182 2.9 0.066 0.1160.21 0.190 2.8 0.061 0.1290.22 0.198 2.6 0.056 0.1420.23 0.206 2.5 0.052 0.1540.24 0.215 2.4 0.049 0.1660.25 0.223 2.3 0.046 0.1770.26 0.231 2.2 0.043 0.1880.27 0.239 2.1 0.040 0.1980.26 0.246 2.0 0.038 0.2090.29 0.254 1.9 0.036 0.2190.30 0.262 1.9 0.034 0.2290.31 0.270 1.8 0.032 0.2380.32 0.278 1.7 0.030 0.2480.33 0.285 1.7 0.029 0.2570.34 0.293 1.6 0.027 0.2660.35 0.300 1.6 0.026 0.2750.36 0.308 1.5 0.025 0.2830.37 0.315 1.5 0.023 0.2920.38 0.323 1.4 0.022 0.3010.39 0.330 1.4 0.021 0.3090.40 0.338 1.3 0.020 0.3170.41 0.345 1.3 0.020 0.3250.42 0.352 1.3 0.019 0.3330.43 0.360 1.2 0.018 0.3420.44 0.367 1.2 0.017 0.3490.45 0.374 12 0.017 0.3570.46 0.381 1.1 0.016 0.3650.47 0.388 1.1 0.015 0.3730.46 0.395 1.1 0.015 0.3800.49 0.402 1.1 0.014 0.388

Actual flow depth (D) is where hydraulic radii match (smallest "difference").

P:\Stete Local\C*w*y\Harford\Profecte«113tt

I B B ProjectBe m Project*VBFlV Ta*EA Engineering, Science, and Technology CafcuMed:

Checked:

Bueh Valey Landfi - Harford County61131.013001JDM Date:

Date-12W98

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Steoa of Development Proposed CondttonsDrainage Area Description: Drainage Arses to Slope Drain S.D.-3

Sol Name andHydrologic Gn*4>

gateted Topsol - Cap C

Cover Description(cover type. Oeabnaiit andhydrologic condition; percent

impervious; unconnectedrconnectedImpervious araa ratto)

Meadow continuous graaaaa

CN

Table2-274

Fig.2-3

Fig.2-4

,

Totals

UaeCN*

Araa(acraa)

2.38

2.39

CN-Ares177

0

0

0

0

0

0

0

0

0

177

74

Frequency (years)24 Hour Rainfal, P On)Rtfwff. Q (in)(uee P and CN with Table 2-1,Fto.2-1.orEqn.2-3and2-4)

Storm*!23.21.04

Storm 92104.21.74

Storm f3255.12.44

Storm 94505.52.77

Storm *51007.24.22

RR000569P:\st_to

Project Bush VaBey Landtt - Harford CountyProject*: 61131.01

TssJc 3001EA Engineering, Science, and Technology CstcUsted: JDM Date:______________________________________________Checked: Date:

TR-55 Worksheet #3: Time of Concentration (TJ or Travel Time (TJDrainage Area Description: Drainage Areas to Slope Drain S.D.-3

Sheet Flow1 Surfs» Description (TeWs 3-1)2 Msnninfl's Roughnsea Coaff., n fTaUs 3-1)3 Flow Length, L(totelL<« 300 n)4 Two year 24 hour Rainfal, P25 Land Slope, a6Tt

Segment

ftinftmhr

1-2Start Oa«

0.151003.2

0.0400.124 O.OX

Srmflow Concentrated Flow7 Surface Description (1 «paved. 2*unpeved)6 Flow Length. L9 Wsteroourae Slope, a10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftftmft/arr

2-32

1350.1416.060.006

O.X0.000

O.OX

O.X0.000

I

}BENCH SLOPE DRAIN

Channel FlowBottom wkMh of frapezoidal charmaiDepth of trapezoidal channel - (Dapth of Flow)Side slopes of trapezoidal channal (?H:1V)

12 Cross Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channal Slope, a

Channal Covar Materiel16 Manning's Roughness Coeff,, n17V18 Flow Length, L19 T,

Segmentftnsqftftftftm

rt/«fthr

3-40.1

0.5106

1.616.X0.2560.041

Short Gresa0.0274.501450

0.028

4-56

0.213

1.397.33

0.1900.215

Riprap0.045.708

650.003

O.XO.X0.000

o.ooc0000| 0

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area. AMRunoff Curve Number, CN (worksheet 92)line of uoncefwaoon, iciwonxaneeiKi)Rainfal Distribution Type (1, IA, II, III)Pond end Swamp Areas Spread Throughout Watershed

eqmi

hr

*Am

2 Frequency3 Rainfal. P (24 how)4 Initial Abstraction, t, (Table 4-1)5U/P6 Unit Peek Diectwge, q» (Exhfcit 4)7 Runoff. Q (worksheet 2)6 Pond ft Swwnp Adjustment Factor, F,(F,« 1.X for none)9 Peek Diacharge,

yrinin

cam/inin

cfa

0.00474

0.161IIO.X

Storm *12

3.20.7030.220807.01.041.003.13

Storm 92104.2

0.7030.167832.71.741.005.43

Storm §3255.1

0.7030.136847.62.44IX7.737

Storm M505.5

0.7030.128652.72.771.X6.82

St*<n

CC£

.

AR000570

12/ft-ge

SLOPE DRAIN S.D.-3

wale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q« 7.737 cfs (tt) (ft) (fps) (ft)Bottom width, B « 6.0 ft

Side slope, Z= 3.0 ?H:1V 0.10 0.095 12.3 0.604 0.509Side slope. Z- 3.0 ?H:1V 0.11 0.104 11.1 0.520 0.416

Manning roughness, n * 0.04 0.12 0.113 10.1 0.453 0.340Channel slope, S« 0.215 ft/ft 0.13 0.122 9.3 0.399 0.277

Rock filter height. H« 0.0 n 0.14 0.131 8.6 0.354 0.224Flow Depth, D - 0.210 n 0.15 0.139 8.0 0.317 0.178

0.16 0.148 7.5 0.286 0.138Top width« 7.28 ft 0.17 0.156 7.0 0.259 0.103

Flow area, A> 1.39sqft 0.18 0.165 6.6 0.236 0.071Wetted perimeter, P * 7.33ft 0.19 0.173 6.2 0.216 0.043

Mean depth. Dm * 0.192ft 0.20 0.182 5.9 0.199 0.017Hydraulic radius, R - 0.190ft > 0.21 0.190 5.6 0.184 0.006

Velocity, V« 6.56 f pi 0.22 0.198 5.3 0.170 0.0280.23 0.206 5.0 0.158 0.0480.24 0.215 4.8 0.147 0.0670.25 0.223 4.6 0.138 0.0850.26 0.231 4.4 0.129 0.1020.27 0.239 4.2 0.121 0.1170.28 0.246 4.0 0.114 0.1330.29 0.254 3.9 0.107 0.1470.30 0.262 3.7 0.101 0.1610.31 0.270 3.6 0.096 0.1740.32 0.278 3.5 0.091 0.1870.33 0.285 3.4 0.086 0.1990.34 0.293 3.2 0.082 0.2110.35 0.300 3.1 0.078 0.2230.36 0.308 3.0 0.074 0.2340.37 0.315 2.9 0.071 0.2450.38 0.323 2.9 0.068 0.2550.39 0.330 2.8 0.065 0.2660.40 0.338 2.7 0.062 0.2760.41 0.345 2.6 0.059 0.2860.42 0.352 2.5 0.057 0.2960.43 0.360 2.5 0.054 0.3050.44 0.367 2.4 0.052 0.3140.45 0.374 2.3 0.050 0.3240.46 0.381 2.3 0.048 0.3330.47 0.388 2.2 0.046 0.3420.48 0.395 2.2 0.045 0.3510.49 0.402 2.1 0.043 0.3590.50 0.409 2.1 0.042 0.3680.51 0.416 2.0 0.040 0.3760.52 0.423 2.0 0.039 0.3840.53 0.430 1.9 0.037 0.3930.54 0.437 1.9 0.036 0.401

Actual flow depth (D) is where hydraulic radii match (smallest 'difference").

RR00057 IP:\State UcrtCow*y>Htftard>Pn9 W113101\DESIGN-1 M M w

S*4 V ProjectBaBeV ^ Project*:VMT^V Teak:EA Engineering, Science, and Technology Calculated:

Checked:

Bush Vattey Landfil - Harford County61131.013001JDM Date:

Date:12/9/96

TR-55 Worksheet *2: Runoff Curve Number and Runoff

Staoe of Development Proposed ConcSttaneDrainage Area Deecription: Drainage Areas to Slope Drain S.D.-4

SoiNamssndHydrotogic Group

tgeteted Topeol - Cap C

Cover Description(co*w type, treatment, andhydrologic condMon; percent

imparvioua; unconnected/connectedimpervious area ratio)

Meadow continuous press ••

CN

Table2-274

Fig-2-3

Fig.2-4

Totela

UeeCN«

Area(acres)

1.14

1.14

CN'Ares84

0

0

0

0

0

0

0

0

0

84

74

Frequency (years)24 Hour Rainfal. P (in)Runoff, Q (in)(use P end CN with Table 2-1.Rg. 2-1, or Eqn. 2-3 end 2-4)

Storm §123.21.04

Storm 92104.21.74

Storm §3255.12.44

Storm M505.5Z77

Storm 951007.24.22

RR000572

Protect Bush Vaasy Landlil - Harford CountyProject*: 61131.01

Taafc 3X1EA Engineering, Science, and Technology Catenated: JDM

Checked: Date-

TR-55 Worksheet M: Time of Concentration (TJ or Travel Time (TJDrainage Area Description: Drainage Areas to Slope Drain 8.D.-4

Sheet Flow1 Surfeoe Description (Table 3-1)2 Msnrwio's Roughnaaa Coeff., n (Table 3-1)3 FtowLenoth, L(toNL<«3Xft)4 Two year 24 hour Rainfal, P25 Land Stopa, a6Tt

Segment

fthftmrr

1-2Dans Grata

0.241003.2

0.0400.180 O.OX O.OX

Shstaw Concentrated Ftow7 Surface Description (1 -paved, 2>unpaved)8 Flow Length. L9 Watercourse Slope, a10 Average Velocity. V (Fig. 3-1)11 Tt

Segment

ftft/ftft/arr

2-32

2650.0794.530.016

O.X0.000

O.XO.OX c

BENCH SLOPE DRAINChannel Flow

Bottom width of trapezoidal channalDepth of trapezoidal channal - (Depth of Flow)Side stapes of trapezoidal enamel (?H:1 V)

12 Croee Sectional Flow Araa, a13 Wetted Perimeter, pw14 Hydraulic Radwa. r15 Chanrwl Stops, a

Channel Cover Materiel16 Manning'a Roughness Coeff., n17V18 Flow Length, L19 T,

Segmentftft

•qftftftftm

tt/sfthr

3-40.10.3503

0.402.310.1740.054

Short Grass0.0273.9691300.009

5-66

0.123

0.766.760.1130.250Riprap0.044.M1600.004

O.XO.X0.000

o.oorO.OXT««

00

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainege Area, AH,Runoff Curve Number. CN (worksheet 92)Tims of Concentration. Tc (worksheet 93)Rainfal DisWwticn Type (1, IA, II, III)Pond end Swamp Areaa Spread Throughout Watershed

aqmi

hr

%Am

2 Frequency3 RsinM. P (24 hour)4 IrwtirfAbertrtbn, UOeW*4-1)syp6 Urtt Peek Diecnarpe, *> (Exhft* 4)7 Runoff, Q (workahaat 2)8 Pond A Swamp Adjustment Factor, F, (F, * 1.X for none)9 Peak Discharge,

yrinin

camAnin

cfs

0.00274

0.206IIO.X

Storm*!2

3.20.7030.220722.51.041.X1.34

Storm 92104.2

0.7030.167749.51.741.X2.33

Storm §3255.1

0.7030.138766.22441.X3.J32

StormM505.5

0.7030.128770.6Z771.003.60

StUrrt

3

0

r

AR000573

SLOPE DRAIN S.D.-4

wale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q • 3.332 cfs (n) (ft) (fps) (n)Bottom width. B - 6.0 nSide slope, Z« 3.0 ?H:1V 0.05 0.049 10.8 0.447 0.398Side slope, Z - 3.0 ?H:1 V 0.06 0.058 9.0 0.337 0.279

Manning roughness, n» 0.04 0.07 0.067 7.7 0.266 0.198Channel slope, S * 0.25 ft/tt 0.08 0.077 6.7 0.216 0.139

Rock filter height, H - 0.0 n 0.09 0.086 5.9 0.180 0.094Flow Depth, D - 0.120 n 0.10 0.095 5.3 0.152 0.057

0.11 0.104 4.8 0.131 0.027Top width- 6.72 n > 0.12 0.113 4.4 0.114 0.001

Flow area, A - 0.76 sq n 0.13 0.122 4.0 0.101 0.021Wetted perimeter, P - 6.76 n 0.14 0.131 3.7 0.089 0.041

Mean depth, Dm = 0.114 n 0.15 0.139 3.4 0.080 0.059Hydraulic radius, R = 0.113 n 0.16 0.148 3.2 0.072 0.076

Velocity, V* 4.37 fps 0.17 0.156 3.0 0.065 0.0910.18 0.165 2.8 0.060 0.1050.19 0.173 2.7 0.055 0.1190.20 0.182 2.5 0.050 0.1310.21 0.190 2.4 0.046 0.1440.22 0.198 2.3 0.043 0.1550.23 0.206 2.2 0.040 0.1660.24 0.215 2.1 0.037 0.1770.25 0.223 2.0 0.035 0.1880.26 0.231 1.9 0.033 0.1960.27 0.239 1.8 0.031 0.2080.28 0.246 1.7 0.029 0.2180.29 0.254 1.7 0.027 0.2270.30 0.262 1.6 0.026 0.2370.31 0770 1.6 0.024 0.2460.32 0.276 1.5 0.023 0.2550.33 0.285 1.4 0.022 0.2630.34 0.293 1.4 0.021 0.2720.35 0.300 1.4 0.020 0.2810.36 0.308 1.3 0.019 0.2890.37 0.315 1.3 0.018 0.2980.38 0.323 1.2 0.017 0.3060.39 0.330 1.2 0.016 0.3140.40 0.338 1.2 0.016 0.3220.41 0.345 1.1 0.015 0.3300.42 0.352 1.1 0.014 0.3380.43 0.360 1.1 0.014 0.3460.44 0.367 1.0 0.013 0.3540.45 0.374 1.0 0.013 0.3610.46 0.381 1.0 0,012 0.3690.47 0.388 1.0 0.012 0.3760.48 0.395 0.9 0.011 0.3840.49 0.402 0.9 0.011 0.391

Actual flow depth (D) is where hydraulic radii match (smallest "difference").

P:\Stato Loc*\Cotrty\Hartord\P H n U U U J / 4

-J —

Project Project No

-———— .

Computed by——ffl* Date V 1 4/1? Checked by________ Datein No.

RR000575EA0289B 7/13/B9

Subject——————-ft? - />UZr* Sp/>u cfcv.f//LCy vp , .^"™"(^ fTj T' Mio-' ~ot -

~~~———————-———T——y*- —.__=——g=-^TDrawing No _______Computed ty jm.——— Date 7/3-V/&_ Checked by ________ Date

J2sff~.eS/t*>

EA 02898 7/13/89 AR000576

^ •B B Project^ ^ F ^ Project tf:•a BarVaV Task:A Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford County61131.013003JDM Date:

Date:9/28/1999

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Stage of Development: Proposed ConditionsDrainage Area Description: Drainage Area to Diversion Channel - A

Soil Name andHydrologic Group

letated Topsoil - Cap C

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Meadow- continuous grasses

CN

Table2-274

Fig-2-3

Fig-2-*

Totals

Use CN =

Area(acres)

1.49

1.49

CN'Area110

0

0

0

0

0

0

0

0

0

110

74

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1,Fig. 2-1, or Eqn. 2-3 and 2-4)

Storm #123.21.04

Storm #2104.21.74

Storm #3255.12.44

Storm #4505.52-77

Storm #51007.24.22

flR000577P \Slate LocarCountyy-larforcftProjects\6113101\PRE-FINAl. DESIGN\bench\D*ersi«M:han-A xls

® Project: Bush Valley Landfill - Harford CountyProject 9: 61131.01

Task: 3003____EA Engineering, Science, and Technology calculated: JDM___ Date:________________________________________________Checked:_______ __ Date-

TR-55 Worksheet #3: Time of Concentration (Tc) or Travel TimeDrainage Area Description: Drainage Area to Diversion Channel - A

Sheet Flow1 Surface Description (Table 3-1)2 Manning's Roughness Coeff., n (Table 3-1)3 Row Length. L (total L <= 300 ft)4 Two year 24 hour Rainfall, P25 Land Slope, s6 Tt

Segment

ftinftmhr

A1B1Dense Grass

0.241003.2

0.0350.190 0.000 0.000

Shallow Concentrated Flow7 Surface Description (1=paved. 2=unpaved)8 Flow Length, L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftftrftft/shr

B1C1220

0.0503.610.002

o.oo0.000

0.000.000

Div. Channel - AChannel Flow

Bottom width of trapezoidal channelDepth of trapezoidal channel - (Depth of Flow)Side slopes of trapezoidal channel (?H:1 V)

12 Cross Sectional Flow Area, a1 3 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s

Channel Cover Material16 Manning's Roughness Coeff., n17 V18 Flow Length, L19 T,

Segmentftft

sqftftftftm

ft/5fthr

C1D16.6670.272

1.957.870.2470.019

Riprap0.042.01455

0.063

0-000-000.000

0.000

oooo

0.000.000.000

O.Ot

0.000Tc =

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, A,,,Runoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (1, IA. II, III)Pond and Swamp Areas Spread Throughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall, P (24 hour)4 Initial Abstraction, 1, (Table 4-1)5U/P6 Unit Peak Discharge, qu (Exhibit 4)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, F0 (Fp = 1 .00 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00274

0.255II

0.00

Storm #12

3.20.7030.220661.91.041.001.60

Storm #2104.2

0.7030.167689.01.741.00280

Storm #3255.1

0.7030.138704.92.441.004,01

Storm #4505.5

0.7030.128710.32.771.004.58

Stor

HR000578PAState Uoc3ftCounry\Harford\Projects\6113101\PRE-FINAL DESIGN\bench\Dwereionch3n-A xb

9/28/1999

Diversion Channel - AAssume bottom 14" of channel (filled with riprap) will be completely filled (porosity = 0)

( Flow Depth calculation models the portion of the swale above the riprap)

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q = 4.01 cfs (ft) (ft) (fps) (ft)Bottom width. B = 6.7 ft

Side slope, Z = 2.0 ?H:1V 0.20 0.187 2.8 0.414 0.227Side slope, Z = 2.0 ?H:1V 0.21 0.196 2.7 0.383 0.187

Manning roughness, n = 0.04 0.22 0.204 2.6 0.356 0.151Channel slope, S = 0.019 ft/ft 0.23 0.213 2.4 0.331 0.118

Rock filter height, H = 0.0 ft 0.24 0.222 2.3 0.309 0.088Flow Depth. D = 0.270 ft 0.25 0.230 2.2 0.290 0.060

0.26 0.239 2.1 0.272 0.033Top width = 7.75ft > 0.27 0.247 2.1 0.256 0.009 <

Flow area, A = 1.95 sq ft 0.28 0.256 2.0 0.241 0.014Wetted perimeter. P = 7.87 tt 0.29 0.264 1.9 0.228 0.036

Mean depth. Dm = 0.251 ft 0.30 0.272 1.8 0.216 0.056Hydraulic radius, R = 0.247ft 0.31 0.281 1.8 0.205 0.076

Velocity, V = 2.06 fps 0.32 0.289 1.7 0.194 0.0940.33 0.297 1.7 0.185 0.1120.34 0.305 1.6 0.176 0.1290.35 0.313 1.6 0.168 0.1450.36 0.321 1.5 0.160 0.1610.37 0.329 1.5 0.153 0.1760.38 0.337 1.4 0.147 0.1910.39 0.345 1.4 0.140 0.2050.40 0.353 1.3 0.135 0.2190.41 0.361 1.3 0.129 0.2320.42 0.369 1.3 0.124 0.2450.43 0.377 1.2 0.119 0.2570.44 0.385 1.2 0.115 0.2700.45 0.392 1.2 0.111 0.2820.46 0.400 1.1 0.107 0.2930.47 0.408 1.1 0.103 0.3050.48 0.415 1.1 0.099 0.3160.49 0.423 1.1 0.096 0.3270.50 0.431 1.0 0.093 0.3380.51 0.438 1.0 0.090 0.3490.52 0.446 1.0 0.087 0.3590.53 0.453 1.0 0.084 0.3690.54 0.461 1.0 0.081 0.3790.55 0.468 0.9 0.079 0.3890.56 0.475 0.9 0.076 0.3990.57 0.483 0.9 0.074 0.4090.58 0.490 0.9 0.072 0.4180.59 0.498 0.9 0.070 0.4280.60 0.505 0.8 0.068 0.4370.61 0.512 0.8 0.066 0.4460.62 0.519 0.8 0.064 0.4550.63 0.527 0.8 0.062 0.4640.64 0.534 0.8 0.061 0.473

* Actual flow depth (D) is where hydraulic radii match (smallest "difference").

P:\State Local\County\Harford\Projects\6113101\PRE-FINALOESIGN\bench\Diversionchan-A.xls A R U U U J I J

^ ••L ^ Project:^ ^ jF ^ Project ft:I HlF V Task:EA Engineering, Science, and Technology calculated:

Checked:

Bush Valley Landfill - Harford Countv61131.013003JDM Date.

Dale:9/2

TR-55 Worksheet #2: Runoff Curve Number and Runoff

Stage of Development: Proposed ConditionsDrainage Area Description: Drainage Area to Diversion Channel - B

Soil Name andHydrologic Group

Vegetated Topsoil - Cap C

Cover Description(cover type, treatment, andhydrologic condition; percent

impervious; unconnected/connectedimpervious area ratio)

Meadow- continuous grasses

CN

Table2-274

Fig.2-3

Fig.2-4

Totals

Use CN =

Area(acres)

1.02

1-02

CN'Ar

74

Frequency (years)24 Hour Rainfall, P (in)Runoff, Q (in)(use P and CN with Table 2-1,Fig. 2-1 , or Eqn. 2-3 and 2-4)

Storm #123.21.04

Storm #2104.21.74

Storm #3255.12.44

Storm (M505.52-77

St( i0

7.242;

flR000580P \Staie Local\CountyVHarford\Projects\6113101\PRE-FINAL DESIGN\ber>cMDiv«rsioncharvB xts

^ Hfc 1 Project:B flE ^ Project ttHHUv l F Task:iA Engineering, Science, and Technology Calculated:

Checked:

Bush Valley Landfill - Harford Countv61131.013003JDM Date:

Date'9/28/1999

TR-55 Worksheet #3: Time of Concentration (Te) or Travel Time (T,)Drainage Area Description: Drainage Area to Diversion Channel - B

eet Flow1 Surface Description (Table 3-1)2 Manning's Roughness Coeff., n (Table 3-1)3 Flow Length, L (total L <= 300 tt)4 Two year 24 hour Rainfall, P25 Land Slope, s6 Tt

Segment

ftinft/fthr

A1B1Dense Grass

0.241003.2

0.0450.172 0.000 0.000 0.172

iallow Concentrated Flow7 Surface Description (1=paved, 2=unpaved)8 Flow Length. L9 Watercourse Slope, s10 Average Velocity, V (Fig. 3-1)11 Tt

Segment

ftft/ftft/shr

0.000.000

0.000.000

0.000.000 0.000

Div. Channel - Blannel Flow

Bottom width of trapezoidal channelDepth of trapezoidal channel - (Depth of Flow)Side slopes of trapezoidal channel (?H:1V)

12 Cross Sectional Flow Area, a13 Wetted Perimeter, pw14 Hydraulic Radius, r15 Channel Slope, s

Channel Cover Material16 Manning's Roughness Coeff., n17 V18 Flow Length, L

--- 19 T,

Segmentftnsqftftftftm

ft/stthr

B1C16.6670.252

1.797.790.2300.013

Riprap0.041.60430

0.075

0.000.000.000

0.000

oooo

0.000.000.000

0.000

0.000Tc =

0.0750.247

TR-55 Worksheet #4: Graphical Peak Discharge Method

1 Drainage Area, AmRunoff Curve Number, CN (worksheet #2)Time of Concentration, Tc (worksheet #3)Rainfall Distribution Type (1. IA, II, III)Pond and Swamp Areas Spread Throughout Watershed

sq mi

hr

%Am

2 Frequency3 Rainfall. P (24 hour)4 Initial Abstraction, 1, (Table 4-1)5 la/P6 Unit Peak Discharge, qu (Exhibit 4)7 Runoff, Q (worksheet 2)8 Pond & Swamp Adjustment Factor, Fp (Fp = 1 .00 for none)9 Peak Discharge, qp

yrinin

csm/inin

cfs

0.00274

0.247II

0.00

Storm #12

3.20.7030.220671.41.041.001.10

Storm #2104.2

0.7030.167698.61.741.001.93

Storm #3255.1

0.7030.138714.42.441.002.77

Storm #4505.5

0.7030.128719.92.771.003.16

Storm #510072

0.7030.098735.24.221.004.92

flROOOSSP \State Local\County\Harfora\Proj«cts\6113101\PRE-FINAL DESIGN\bench\Dtvers»nchan-B xts

9/28/199!

Diversion Channel - BAssume bottom 14" of channel (filled with riprap) will be completely filled (porosity * 0)

( Flow Depth calculation models the portion of the swale above the riprap)

Swale Characteristics: Flow Hydraulic HydraulicDepth* Radius Velocity Radius Difference

Flow Rate, Q = 2.77 cfs (ft) (ft) (fps) (ff)Bottom width, B = 6.7 ft

Side slope, Z= 2.0 ?H:1V 0.20 0.187 2.0 0.316 0.129Side slope, Z= 2.0 ?H:1V 0.21 0.196 1.9 0.292 0.096

Manning roughness, n = 0.04 0.22 0.204 1.8 0.271 0.067Channel slope, S = 0.013 ft/ft 0.23 0.213 1.7 0.253 0.040

Rock filter height. H = 0.0 ft 0.24 0.222 1.6 0.236 0.014Flow Depth, D - 0.25 tt > 0.25 0.230 1.5 0.221 0.009 •

0.26 0.239 1.5 0.208 0.031Top width = 7.67 ft 0.27 0.247 1.4 0.195 0.052

Flowarea, A= 1.79 sq ft 0.28 0.256 1.4 0.184 0.071Wetted perimeter. P = 7.79 ft 0.29 0.264 1.3 0.174 0.090

Mean depth, Dm' 0.234 ft 0.30 0.272 1.3 0.165 0.107Hydraulic radius, R - 0.230 ft 0.31 0.281 1.2 0.156 0.124

Velocity, V= 1.55 fps 0.32 0.289 1.2 0.148 0.1400.33 0.297 1.1 0.141 0.1560.34 0.305 1.1 0.134 0.1710.35 0.313 1.1 0.128 0.1850.36 0.321 1.0 0.122 0.1990.37 0.329 1.0 0.117 0.2120.38 0.337 1.0 0.112 0.2250.39 0.345 1.0 0.107 0.23*0.40 0.353 0.9 0.103 0.20.41 0.361 0.9 0.099 0.26J0.42 0.369 0.9 0.095 0.2740.43 0.377 0.9 0.091 0.2860.44 0.385 0.8 0,088 0.2970.45 0.392 0.8 0.084 0.3080.46 0.400 0.8 0,081 0.3190.47 0.408 0.8 0.078 0.3290.48 0.415 0.8 0.076 0.3400.49 0.423 0.7 0.073 0.3500.50 0.431 0.7 0.071 0.3600.51 0.438 0.7 0.068 0.3700.52 0.446 0.7 0.066 0.3800.53 0.453 0.7 0.064 0.3890.54 0.461 0.7 0.062 0.3990.55 0.468 0.6 0.060 0.4080.56 0.475 0.6 0.058 0.4170.57 0.483 0.6 0.056 0.4260.58 0.490 0.6 0.055 0.4350.59 0.498 0.6 0.053 0.4440.60 0.505 0.6 0.052 0.4530.61 0.512 0.6 0.050 0.4620.62 0.519 0.6 0.049 0.4700.63 0.527 0.6 0.048 0.4790.64 0.534 0.5 0.046 0.4?"

* Actual flow depth (D) is where hydraulic radii match (smallest "difference").

P:\State Local\County\Harford\Projects\6113101\PRE-FtNAL DESIGNNbench^iversionchan-BHli* U U U J 0 U

Appendix H

Sediment Trap Design

RR000583

-SEDIMENT TRAP VOLUMES -VOLUME CALCULATIONS FOR EACH STRUCTURE

Sediment Trap No. 1Drainage Area No. 3 = 3.7 AcresElevtop =

Contour Elev.9-ft10-ft11 -ft12-ft

NOTES:Volume based uponVolume of 13,320 cf

12ft.

Area (sf)4193.95292.78934.711877.4

3,600 cf storage

Rip Rap Outlet Dimensions: (L=20', W,

* Height (ft)1111

Volume (cf) Avg.41945293893511877

TOTAL (cf):

= 10', W2 = 15')

End Vol. (cf)

4743711410406

22,263

per acre of drainage area.required for a sediment trap forspecific drainage area.

* Areas taken from CADD using Plans.

Sediment Trap No. 2Drainage Area No. 2 = 3.9 AcresElevtop =

Contour Elev.6-ft7-ft8-tt9-ft

NOTES:Volume based uponVolume of 14,040cf

9 ft. Rip Rap Outlet Dimensions: (L=20', W-,

Area (sf) * Height (ft)' 4405.8 14931.1 15481.6 16154.7 1

Volume (cf) Avg.4406493154826155

TOTAL (cf):

= 10'. W2 = 15')

End Vol. (cf)

466852065818

15,693

3,600 cf storage per acre of drainage area.required for a sediment trap forspecific drainage area.

* Areas taken from CADD using Plans.

SedimentDrainage AreaElevtOQ =

Contour Elev.33-ft34-ft35-ft36-ft

NOTES:Volume based

Trap No. 3No. 5 = 1.1 Acres

36ft.

Area (sf) *1366.71640.91934.62247.7

upon 3,600 cf storage

Rip Rap Outlet Dimensions: (L=15'( W-, = 10', W2 = 15')

Height (tt) Volume (cf) Avg. End Vol.1 1366.71 1640.9 1503.81 1934.6 1787.751 2247.7 2091.15

TOTAL(cf): 5,383

per acre of drainage area.Volume of 3,960 cf required for a sediment trap for specific drainage area.

* Areas taken from CADD using Plans.

flR00058l+

Appendix I

Vent Well Spacing Calculations

AR000585

(gi Project -Otj h Vtziieu L&ACJT- / //________ Project No. Z/ H3I. QiSubject GtL$ fcutfSAr/Ai . *a 7£ &n0(.______ Sheet No. _____/ ofV£.S)T U)f.ti J\Oai4*f «/ sjff/pt&fffC Drawing No. —

r .- /I/

J)

Computed by: ..x>L Date a / f 9 Checked bv f^ Date

EA0289B 10/95

r" ' ' **"" .-,..*-'

RR000586

EA0289B 10/95

Project 3Juxk if a. Ik La.nJft 7f _________ Project No. bit31.Subject Q _c GjCjifSp-titiL* / /g An^l_____ Stoat NI. ->?-„.... .of -2

f A/4// & O Z _______________ Drawing No. ________—Computed by: "TRf AC Date b-2- 99 Checked by Date

*

A'tat

^

3t( w'

y..- «. » — r - - fc~ ,-,.». tvr.r. ui -v—' • « >r «_ /tf( i (jLst rffej st

Vi^-i -'/* » j- n-i d /a HvL -t 2 i<-•?*<<{& i• • ' V (?'<• .-^ : >aiifr* 0r-- '*>t,' • • t • ., /; • • .• . • <J 'n cr **W - .;. ;S £* ,f Jcff ' //• '.'<• S'^r-fttJ.; L/a-sfifS

'

flR000587

^ o o o o o^* o CM m o o•n T- - T- CM co

HHH

o«-t(A(0

if)

oin

m

oTf

m ot

I I I III I !| i f Ui i Is

mCN

OCM

aouan|jU| p smpeyRR000588

BUSH VALLEY LANDFILL CLOSURE CAPCalculation of Radius of Influence for Vent Wells Based on Depth of Waste

For Q=1 CFMD(ft)ROI (ft)

1552

2045

2540

3037

3534

4032

4530

5028

For Q=5 CFMD(ft)ROI (ft)

ForQ=10D(ft)ROI (ft)

ForQ=12D(ft)ROI (ft)

ForQ=15D(ft)ROI (ft)

For Q=20D(ft)ROI (ft)

For Q=30D(ft)ROI (ft)

15116

CFM15163

CFM15179

CFM15200

CFM15231

CFM15283

20100

20141

20155

20173

20200

20245

2589

25127

25139

25155

25179

25219

3082

30116

30127

30141

30163

30200

3576

35107

35117

35131

35151

35185

4071

40100

40110

40123

40141

40173

4567

4594

45103

45116

45133

45163

5063

5089

5098

50110

50127

50155

flR000589

Appendix J

Well Abandonment Reports

flR000590

dim i ecnnoiogy J5 |_oveton Circ|eSparks, MO 21152

ie: 410-771-495011-4204

9 August 1999EA Project No. 61131.01

Mr. Hilary ThomtonU.S. EPA, Region 011650 Arch Street (3HS23)Philadelphia, Pennsylvania 19103-2029

Re: Remedial Design for Bush Valley LandfillHarford County, Maryland

Dear Mr. Thornton:

Enclosed for your review please find eight copies of the Well Abandonment Reports formonitoring wells MW-1, MW-2, MW-3, and MW-4 for the referenced project. Thesewells were abandoned in May 1999 in accordance with the Monitoring Well Installationand Well Abandonment Plan (EA, April 1999).

EA has also distributed copies of the enclosed materials to MDE and Harford County.

As always, please call me if you have any questions.

Very truly yours,

- Pellissier, P.E.Project Manager

6113101\letters\9Augustl999D- Pazdersky, Harford Co., 4 copiesD. Healy, MDE, 2 copies

HR00059I

MARYLAND DEPARTMENT OP THE ENVIRONMENT, WATER MANAGEMENT ADMINISTRATION-,2500 BROENING HIGHWAY, BALTIMORE. MARYLAND 21224. (410) 631-3784 V

WATER WELL ABANDONMENT-SEALING REPORT FORM

fBMIT COMES OF COMPLETED FORM TO:COUNTY ENVIRONMENT AGENCY (contact MDE. WMA if address needed)WELL OWNERMDE, WATER MANAGEMENT ADMINISTRATION, WELL PROGRAM

WELL ABANDONED:____________________ (monih/day/year)

PERMIT NUMBER OF ABANDONED WELL (if any) HA 73 2 5 1 7

PERMIT NUMBER OF REPLACEMENT WELL ________11______H______

PERSON ABANDONING WELL: Jav Co iron WELL DRILLERS LICENSE NUMBER: JGD055_____CIRCLE: MWD/MSD/MGD

OWNER'S NAME: Harford County____'SITE LOCATION MAP

WELL LOCATION: Bush Valley LandfillrniTvrv- Harford Co.Nf A»FST TOWW- Afrinffdon.TAX MAP MOCK ?A»rei.iimnrvrcinN-cc/^TtrtKJ- T rfTT*-

NPARprr RnATY Rt;, 7

,.g^t>•^

-/ Jt—t\ 40jF't\f— J-**?** — \

' ?~t t -

Vt?-0 -— - - ^ "-*- *

TYPE OF WELL BEING ABANDONED:LOG OF SEALING MATERIAL

.DRILLED _____JETTED

.BORED/AUGERED _____ HAND DUG MATERIAL

. OTHER (specify) —————————————

USE CODE:

____ DOMESTIC _____ MUNICIPAL/PUBLIC____ IRRIGATION _____ INDUSTRIALJC___TEST/OBSERVATION _____GEOTHERMAL

>entonice/cement

TYPE OF CASING:

STEEL _____ PLASTICCONCRETE ____ OTHER (specify)

SIZE OF CASING:————5——— INCHES IN DIAMETER VOLUME OF MATERIAL USED

DEPTH OF WELL: 52' FEET DEEP

WAS ANTY CASING REMOVED? _£_ YES _________ NOif yes, length removed, in feet: _C£__!2S. cut to grade

WAS CASING RIPPED OR PERFORATED? JL YES ____ NO

FF.ET

FROM

52'

TO

CDCDCC

77 gallons water1034 Ibfi cement55 Ibs bentonite

_____________________ MWD/MSD/MCD S/9/99GNATURE- M ATER'TtoX' DHUMtfUKQB-SUPERVISINC SANITARIAN LICENSt * CIRCLE ONE DATEENV 828 JULY 1997 ' l M''H

MARYLAND DEPARTMENT OF THE ENVIRONMENT. WATER MANAGEMENT ADMINISTRATION2500 BROENING HIGHWAY. BALTIMORE MARYLAND 21224, (410) 631-3784

CDOCDcnVJDCO

WATER WELL ABANDONM&?WR^SNG REPORT FORM

SUBMIT COPIES OF COMPLETED FORM TO:COUNTY ENVIRONMENT AGENCY (contact MDE, WMA if address needed)WELL OWNERMDE, WATER MANAGEMENT ADMINISTRATION, WELL PROGRAM

DATE WELL ABANDONED:. 5/4799 _ M (-w.nthMsy>yMr)

PERMIT NUMBER OF ABANDONED WELL (if any) H A ~7 3 — 2

PERMIT NUMBER ™ REPLACEMENT WE1J. _ ——

PPPSON ABANDONING WELL: „ Jay Corron WFI i run

OWNER'S NAME* Harford County

WELL LOCATION: *"»Bh Valley Landfill \rotiNTY- Harford Co. \wRApp-TTnww- Abin^tdon -TAX MAP BLOT1C PARPH. ^ (/£<nmnn/Kinv- £j^FrnnN- i-OT- fc fE-*^FAPFfT »ri»n- RtT 7 >^

7--TYPE OF WELL BEING ABANDONED:

non i PT» . . IFTTFTJ1 BORED/AUGERED HAND DUG

OTHER (specify) _ ———————————

. USE CODE:

DOMESTIC MT IViriPAT VP1 FBIJCiHHinATlov . INT?'TrrRtAL

Y TEST/OBSERVATION GEOTHERMAL

* TYPE OF CASING:

rniMrHPTT OTHFTJ r<r*'H'V)

«:T7P n- rASINO: . 6 ... IWHHS IN DIAMETER

rtPPTH OFWPII.. ,_ .^2_FPFTnPEP

WAS ANfY CASING RFM^v-n? X Yps NOif ye*, length removed, in feet: __casing cut to grade

WAS CASING RIPReDMjPBRFORATED? X YES NO

//e±ad(V* f&d/< — — MGD046

LERS LICENSE NUMBER:cmci

SITE LOCATION MAP

& ^ *

LOG OF SEALING

5 2 6

JGD055£: MWD/M: .

MATERIAL

KEETMATERIAL —————— i —— —FROM D

entonite/cement 42 O1

VOLUME OF MATERIAL USEC

63 gallona water846 Iba. cement45 Ibs bentonite

MWD/MSD/MGDSIGNATURE -MASTER WELL CfclLLER OR SUPERVISING SANITARIAN LICENSE # CIRCLE ONE

8/9/99c r

MARYLAND DEPARTMENT OF THE ENVIRONMENT, WATER MANAGEMENT ADMINISTRATION2500 BROENING HIGHWAY. BALTIMORE, MARYLAND 2122*, (410) 631-3784

WATER WELL ABANDONMENT-S&*sayf>*2PORT FORM

JBMTT COPIES OF COMPLETED FORM TO:COUNTY ENVIRONMENT AGENCY (conUct MDE, WMA if address needed)WELL OWNERMDE. WATER MANAGEMENT ADMINISTRATION, WELL PROGRAM

4TP WEM. ABAVDOWPD. 5/7/99 (rn«nrh/H.y/year)

PFtfMTT NUMPFP OF APAWpONPri WPI i (if any) HA 7 3 252

PFRMTT VITUHPR OP RFPI J.PFMENT WET I

7

PERSON ABANDONING WELL: Jay Corron WEM. DRn.T.FRS TirFNSP. NUMBER: JGD055

owiMfR's NAMF- Harford County

WELL LOCATION: Bush valley Landtill IrniiNTV- Harford Co. \^JPABF*T TOWN- Ablnedon -v.TAX MAP mnnc pARrEi. V^ /}rs~ f j

5Prnf>N. LOT: ^ ,(oC lVPARP<fJ ROAD- Rt. 7 T"

TYPE OF WELL BEING ABANDONED:

DHH T PD TFTTPnX ROHFD/AIir.FRED , „ HAND DUG

OTHPH («P-"i'y)

USE CODE:

DOMESTIC MUNIdPAUPUBLlCrRRir.ATIOM , ,. INDIICTRIAI.

y TPST/ORSERVATION . fiFOTHMRMAlr

TYPE OF CASING:

X STEEL PLASTICrONrRETp , , OTHER ($p*eify)

^rrp nc rAqyrr 6 INCHES IN DIAMETF.R

PPPTH OF WF|,I ; . _ 21 FEET DEEP

WAS ANY TASTN*-- BFMOVFD? X Y(?S NOif yes. length removed, infect: _£aeing_ cut to grade

WAS CASING RWP^D OR^EAFORATED? A- YES —— NO/f/Lel&kJ. /W*-V<— — MGD046

CIRCLE: MWD/MSD/MG1

SITE LOCATION MAP

tffitTy• jLOG OF SEALING MATERIAL

h j A n»nii - » rCil 1MATERIAL — — • —— — ———

FROM

tentonite/cement 21

TO

Of

CT»LOCDCDCDOC

VOLUME OF MATERIAL USED29 gallons water376 Ibs. cement20 Ibs. bentonite

MWD/MSD/MGD 8/9/99;NATURE-MASTER WELL DRJu.ER OR SUPERVISING SANITARIAN UCENSE # CIRCLE ONF. DATEW H5R JTJTY IQQl

MARYLAND DEPARTMENT OF THE ENVIRONMENT. WATER MANAGEMENT ADMINISTRATION2500 BROENTNG HIGHWAY, BALTIMORE. MARYLAND 21224, (410) 631 -3784

WATER WELL ABANDONMENT-SEALING REPORT FORM

SUBMIT COPIES OF COMPLETED FORM TO:COUNTY ENVIRONMENT AGENCY (contact MDE. WMA if address needed)WELL OWNERMDE, WATER MANAGEMENT ADMINISTRATION. WELL PROGRAM

DATE WET T ABANDONED- rfnnnrh/fl«w/w~.ri

* PERMIT NUMBER OF ABANDONED WELL (if any)

PERMFT NUMBER OP REPLACEMENT WELL

HA — 7 3— 2 5 2 8

— —

PERSON ABANDONING WELL: JayCorron WFM DPITTPPcrTrrwcCKrfrx.aicB. .TttlOSS

AR000595

OWNER'S NAMP- Harford County

* WELL LOCATION: Bush Valley LandfillCOUNTY- Harford Co.NEARP-T TDWN- AbinedonTAX MAP ... RLOCK _ PARrFISinmrVTSIOW-SECTION- I/YTrNEAREST ROAD- Rt . 7

* TYPE OF WELL BEING ABANDONED:

rjRIH.F" JPTTEDX RORFD/AUGFJIFD HAND DUG

OTHER (specify)

* USE CODE:

IRRIGATION rVpIISTPlAX TFST/ORSFrRVATTON r.FnTmpBM

TYPE OF CASING:

* STEEL _____ PLASTICCONCRETE OTHER (<p*r

SIZE OF CASING- . f> INCHF-S IN niAMFTF

DEPTH OF WFI 1 • , , .. __22 FF T PFFP

WAS ANY CASINO RFJtfOVED? X VPS .. _if yes, lengrh remflved. in fcei: Casing Cut t

WAS CASING RIPPED OR PERFORATED? _JL YES _

<//fr t\)Lf) ?/fl MGD046

V—— r^ _ /

/>» <!

/_ ____ 2

CIRCLE: MWP/V, ;

SITE LOCATION MAP

-/ O cgy

. j y J T ^r~PUBLICLAL

R

NO

LOG OF SEALING MATERIAL

FROM C

entonite/cement 22 '

VOLUME OF MATERIAL USEI28 gallons water376 Ibs. cement20 Ibs. bentonite

o grade - ————————————————————

__ NO

MWD/MSO/MGD 8/9/99SIGNATURE-'MASTEg WCLL/ny»rFf ff SUPERVISING SANTTARIAN LICENSE # CIRCLE ONE C 1

TOTflL


Recommended