+ All documents
Home > Documents > LEGIBILITY NOTICE - UNT Digital Library

LEGIBILITY NOTICE - UNT Digital Library

Date post: 05-May-2023
Category:
Upload: khangminh22
View: 0 times
Download: 0 times
Share this document with a friend
408
LEGIBILITY NOTICE A major purpose of the Techni- cal Information Center is to provide the broadest dissemination possi- ble of information contained in DOE’s Research and Development Reports to business, industry, the academic community, and federal, state and local governments. Although a small portion of this report’ is not reproducible, it is being made available to expedite the availability of information on the research discussed herein. 1
Transcript

LEGIBILITY NOTICEA major purpose of the Techni­

cal Information Center is to provide the broadest dissemination possi­ble of information contained in DOE’s Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report’ is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

1

NUREG/CR-3862EGG-2323

Distribution Categories: RG and 1S

NUREG/CR--3862 TI85 013441

DEVELOPMENT OF TRANSIENT INITIATING EVENT FREQUENCIES FOR USE IN PROBABILISTIC RISK

ASSESSMENTS

D avid P. M ackow iak C ynthia D. Gentiilon

Kar! L. Sm ith

Published M a y 1985

EG&G Idaho, (nc. Idaho Falls, Idaho 83415

Prepared for the U.S. Nuclear Regulatory Commission

Washington, D.C. 20555 Under DOE Contract No. DE-AC07-76ID01570

FIN No. A6393

ABSTRACT

Transient initiating event frequencies are an essential input to the analysis process of a nuclear power plant probabilistic risk assessment. These frequencies describe events causing or requiring scrams. This report documents an effort to validate and update from other sources a computer-based data file developed by the Electric Power Research Institute (EPRI) describing such events at 52 United States commercial nuclear power plants. Operating information from the United States Nuclear Regulatory Commission on 24 additional plants from their date of commercial opera­tion has been combined with the EPRI data, and the entire data base has been up­dated to add 1980 through 1983 events for all 76 plants. The validity of the EPRI data and data analysis methodology and the adequacy of the EPRI transient categories are examined. New transient initiating event frequencies are derived from the expanded data base using the EPRI transient categories and data display methods. Upper bounds for these frequencies are also provided. Additional analyses explore changes in the dominant transients, changes in transient outage t'mes and their impact on plant opera­tion, and the effects of power level and scheduled scrams on transient event frequen­cies. A more rigorous data analysis methodology is developed to encourage further refinement of the transient initiating event frequencies derived herein.

Updating the transient event data base resulted in ^2400 events being added to EPRI’s -v3000-event data file. The resulting frequency estimates were in most cases lower than those reported by EPRI, but no significant order-of-magnitude changes were noted. The average number of transients per year for the combined data base is 8.5 for pressurized water reactors and 7.4 for boiling water reactors.

FIN No. A6393—Data Development and Evaluation

EXECUTIVE SUMMARY

Since the completion of the Reactor Safety Study, the United States Nuclear Regulatory Commission (USNRC) has been exploring ways to systematically apply probabilistic analysis methods to nuclear power plants. The USNRC’s Data Development and Evaluation Program has as its objective to identify and evaluate data sources and summarize the information they contain in ways useful for probabilistic risk assessments (PRAs) and other quantitative studies.

The project reported herein is one of the tasks in the Data Development and Evaluation Program. The work was done by the Reliability and Statistics Branch of EG&G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL) under the direction of the USNRC’s Office of Nuclear Regulatory Research, Division o f Risk Analysis and Operations.

The purpose of this study is to develop updated transient initiating event frequencies derived from operational data for use in PRAs. Transient events are grouped by their effect on the plant for PRA analyses, but an effect common to all of them is the need for a scram. Therefore, a transient event, for this report, is an event that causes a scram. The basis of the study is a transient event data base developed by the Electric Power Research Institute (EPRI). The project scope involves the evaluation of the data in this data base, the transient category completeness, usefulness, and detail, and the data analysis methodology. In addition, the scope involves updating of the data base to include vir­tually all active United States commercial nuclear power plants and to include more recent data.

The EPRI data were developed from operational data received in response to a questionnaire sent to various nuclear power plants. Approximately 3000 events are described in the EPRI data base. These data were evaluated by taking a sample of the data base and comparing those records to com­parable records for scram events available in public documents, primarily the USNRC’s Operating Units Status Reports. Some variations were noticed, but due to lack of the EPRI raw data and to pro­ject scope limitations, no changes were made to the EPRI data. Deviations in the total number of events recorded were < 10%.

The transient categories were evaluated by look­ing at: (a) how they were used in PRAs, (b) whether they were able to describe the newly added date, and (c) whether they contained the same amount of detail for various functions and systems for boiling water reactors (BWRs) and pressurized water reactors (PWRs). Although the EPRI tran­sient categories were judged to be adequate, a number of improvements are suggested.

The EPRI data analysis is reviewed with respect to distributional assumptions, learning curve con­siderations, data classification categories, time fac­tors, plant outage, etc. A general statistical analysis methodology for studying the transient data in greater depth is described and demonstrated on a small set of the EPRI data. The method permits one to assess specific differences among plants, clas­sification factors, time effects, etc. The use of the method on a broad scale was beyond the scope of this study.

The data base was expanded to include operating experience from virtually all active United States commercial nuclear power plants from their date of commencing commercial operation to the end of December 1983 or until a plant was removed from commercial service, whichever occurred first. Two thousand four hundred ten scram events were added, classified in a manner consistent with the EPRI data. Transient frequencies based on the com­bined data are displayed herein using the same com­puter program EPRI used to process the data base. In addition, upper bounds are supplied based on a method that considers variations in these frequen­cies among plants and over time. Further transient event analysis includes comparisons with EPRI data concerning which transients dominate and the outage times associated with the transients. Finally, the impact of transients on operation, the effects of power level and scheduled scrams on transient event frequencies, and time trends in the overall transient rates are investigated.

The main product of this work is updated tran­sient initiating event frequencies for the USNRC based on operational data for use in the event quan­tification process of a nuclear power plant PRA. These updated transient frequencies are, for most categories, lower than those reported by EPRI.

Howevei, these differences are less than a half order of magnitude and are not believed to be significant for most applications. For example, the average overall number of transients per year for this study is 8.5 for PWRs and 7.4 for BWRs, compared with EPRI’s 9.8 and 8.9, respectively. A one-line de­scription of each scram event added in this update is included to permit the study of the actual events in more detail. Because this information exists as a computer file, it is a resource for future studies of initiating event data.a

The transient initiating event frequencies and bounds derived from the combined data base de­veloped herein are for use in PRAs of nuclear power plants. As the plants now in operation get older and new plants come on-line, the number, character, and frequency of transient events will change. To be aware of these changes as they occur, a sound,

a. Corresponding EPRI raw data were not available.

useful transient data base needs to be maintained and periodically analyzed. The Licensee Event Report (LER) Rule that became effective January 1, 1984 requires that all events causing unexpected scrams be reported. To optimize the use of this information, it should be combined in a com­mon format with the data in this report. Ideally, that format would be based on a revision of th" EPRI transient categories to give more useful detail and flexibility. The data contained ! “rein together with the ongoing LER data should be classified using the refined categories. Maintaining and peri­odically analyzing the resulting data base will pro­duce two benefits. From a PRA standpoint, the data will be as complete and accurate as possible and will allow the PRA analyst more flexibility than is currently available. From a more immediate reg­ulatory standpoint, having a current transient event data base will facilitate early identification of poten­tial problems among the plants so that preventive measures can be taken.

ACKNOWLEDGMENTS

The authors wish to express their thanks to Dr. David Worledge of the Electric Power Research Institute for arranging to send us the PLUNGE Program and its accompanying initiating event data base.

In addition, the authors also wish to express their appreciation to several people whose contribution made this program possible: Michael R. Groh for his assistance with the BARGRAF computer graphics plotting program; Scott D. Matthews and Teresa R. Mecham for their assistance with statistics and computer programming and graphics; John P. Poloski for his assistance with the LOGLIN computer program; Larry C. Walton for INEL CYBER System conversion of the PLUNGE and orthonormalization computer programs and for development of various tape and data handling routines used in the study; Donald A. Weber for his assistance with transient event categorization; Ollie B. Meeky, Howard S. Stromberg, Kay Watson, and Sharlene R. Williams for their assistance in processing the initiating event data gathered in this study; and Jan S. Isom and Linda R. Duncan for their patience in the word processing and text composition of this report.

CONTENTS

ABSTRACT ............................................................................................................................................... ii

EXECUTIVE SUMMARY ..................................................................................................................... iii

ACKNOWLEDGMENTS ......................................................................................................................... v

NOMENCLATURE ................................................................................................................................. xiv

1. INTRODUCTION ......................................................................................................................... 1

2. VALIDATION OF EPRI TRANSIENT EVENT DATA ...................................................... 2

3. EVALUATION OF EPRI TRANSIENT CATEGORIES ..................................................... 7

3.1 Ability of the Categories to Describe Data ...................................................................... 7

3.2 Category Use in Risk Assessments ................................................................................... 8

3.3 Ability of Categories to Describe Future Transient Event Data .................................. 8

3.4 Suggested Changes to the Categories ............................................................................... 18

4. DATA BASE DEVELOPMENT ............................................................................................... 34

4.1 Expansion and Update of the EPRI Data Base .............................................................. 34

4.2 Data Sources ......................................................................................................................... 38

4.3 Data Categorization and Combination ........................................................................... 38

4.4 Data Display and Analysis ................................................................................................. 38

5. DATA SUMMARY ....................................................................................................................... 40

5.1 New Transient Initiating Event Frequencies .................................................................... 40

5.2 Dominant Transients Comparison ................................................................................... 40

5.3 Transient Outage Time Comparison ................................................................................. 41

5.4 Transient Downtime Impact on Operation ...................................................................... 41

5.5 The Effects of Power Level and Scheduled Scrams ...................................................... 41

5.6 Transient Event Rate Time Trends ................................................................................... 42

6. DEVELOPMENT OF A TRANSIENT EVENT DATA ANALYSIS METHODOLOGY ...................................................................................................................... 69

6.1 EPRI Data Presentation and Analysis ............................................................................. 69

6.2 Typical Transient Data ....................................................................................................... 70

6.3 Transient Study Variables .................................................................................................... 70

6.3.1 Plant Outage Correction ........................................................................................... 716.3.2 Cumulative Number of Transients ......................................................................... 71

6.4 Preliminary Data Analysis .................................................................................................. 72

6.5 Development of Nonhomogeneous Poisson Process .............. ........................................ 74

6.6 Estimating the Mean Value Function ................................................................................ 74

6.6.1 Generation of the Design Matrix .......................................................................... 756.6.2 Orthonormalization ................................................................................................... 766.6.3 Model Evaluation ....................................................................................................... 76

6.7 Occurrence Rate Estimation ................................................................................................. 76

6.8 Summary ................................................................................................................................. 78

7. FINDINGS AND RECOMMENDATIONS ............................................................................... 96

8. REFERENCES ................................................................................................................................. 101

APPENDIX A—LOG-LINEAR MODELS TO IDENTIFY OUTLIERS ........................................ A-l

APPENDIX B—TRANSIENT EVENT COMPARISONS FOR OUTLIER SAMPLEPLANT/REACTOR YEAR COMBINATIONS .................................................... B-l

APPENDIX C—ONE-LINE TRANSIENT EVENT DESCRIPTIONS .......................................... C-l

APPENDIX D—PWR TRANSIENT EVENT COUNTS BY PLANT AND REACTORYEAR ............................................................................................................................. D-l

APPENDIX E—BWR TRANSIENT EVENT COUNTS BY PLANT AND REACTORYEAR ............................................................................................................................. E-l

APPENDIX F—FURTHER INFORMATION ON BOUNDS CALCULATIONS ........................ F-l

APPENDIX G—TRANSIENT EVENT COUNTS EXCLUDING LOW POWER ANDSCHEDULED SCRAMS ............................................................................................ G-l

APPENDIX H—TRANSIENT RATE TREND ESTIMATION DATA .......................................... H-l

APPENDIX I—ORTHONORMALIZATION COMPUTER PROGRAM OUTPUT .................. 1-1

FIGURES

1. Facility data form ........................................................................................................................... 35

2. Transient/outage data form .......................................................................................................... 35

3. EPRI and INEL PWR transient event data .............................................................................. 36

4. EPRI and INEL BWR transient event data .............................................................................. 37

50

51

54

55

89

90

92

94

95

1-5

3

9

12

15

19

24

29

44

46

48

49

52

53

56

57

Transient event occurrences by category for EPRI PWR data ......................................

Transient event occurrences by category for combined PWR data ..............................

Transient event occurrences by category for EPRI BWR data ......................................

Transient event occurrences by category for combined BWR data ..............................

Plant cumulative number of transients versus reactor age ..............................................

Plant cumulative number of transients versus reactor critical age .......... .....................

Transient rate versus reactor year ........................................................................................

Comparison of occurrence rates for reactor age data .............................................. .......

Comparison of occurrence rates for reactor critical age data ........................................

Orthonormalization program output .................................................................................

TABLES

Summary of transient event comparisons for the outlier sample ....................................

Use of EPRI PWR transient categories in risk assessments .............................................

Use of EPRI BWR transient categories in risk assessments ............................................

Comparison of EPRI PWR and BWR transient categories by function ......................

Suggested PWR and BWR transient category lists ..........................................................

EPRI and proposed PWR categories ..................................................................................

EPRI and proposed BWR categories ..................................................................................

Summary of PWR transient occurrence rates and bounds ..............................................

Summary of BWR transient occurrence rates and bounds ..............................................

Ranking of dominant PWR transient categories by number of events(excluding EPRI categories 38, 39, and 40) ......................................................................

Ranking of dominant PWR transient categories by number of events ........................

Ranking of dominant BWR transient categories by number of events (excluding EPRI categories 35, 36, and 37) ......................................................................................................

Ranking of dominant BWR transient categories by number of events ........................

Comparison of EPRI data and combined data PWR average transient outage times

Comparison of EPRI data and combined data BWR average transient outage times

16. Estimated PWR transient impact on plant outage time .......................................................... 59

17. Estimated BWR transient impact on plant outage time .......................................................... 60

18. Effects of low power and scheduled scrams on PWR event counts by plant .................... 61

19. Effects of low power and scheduled scrams on BWR event counts by plant .................... 63

20. Effects of low power and scheduled scrams on PWR event counts bytransient category ............................................................................................................................ 64

21. Effects of low power and scheduled scrams on BWR event counts bytransient category ............................................................................................................................ 65

22. Reactor year rate comparisons .................................................................................................... 67

23. Calendar year transient rate estimates ........................................................................................ 68

24. Sample NP-2230 data table .......................................................................................................... 79

25. Maine Yankee plant transient occurrence and outage data .................................................... 80

26. Calvert Cliffs 1 plant transient occurrence and outage data .................................................. 81

27. Millstone 2 plant transient occurrence and outage data .......................................................... 82

28. Calvert Cliffs 2 plant transient occurrence and outage data .................................................. 84

29. Cumulative number of transients ................................................................................................ 85

30. Exponential and Poisson parameter estimation ........................................................................ 91

31. Model coefficients for data of Figures 9 and 10 ........................................................................ 93

32. PWR transient data summary ...................................................................................................... 97

33. BWR transient data summary ...................................................................................................... 99

A -l. Additive effect estimates for PWR transient occurrence rates ................................................. A-5

A-2. Additive effect estimates for BWR transient occurrence rates ................................................. A-7

A-3. Plants identified by outlier search ................................................................................................. A-8

B-l. EPRI and other source PWR transient event comparisons ....................................................... B-4

B-2. EPRI and other source BWR transient event comparisons .......................................................B-l6

C-l. Nuclear power plant list ................................................................................................................... C-5

C-2. PWR one-line event descriptions sorted by transient category ....................... .......................... C-7

C-3. BWR one-line event descriptions sorted by transient category ................................................. C-9

C-4. PWR one-line event descriptions sorted by plant ........................................................................C-l 1

C-5. BWR one-line event descriptions sorted by plant .................................................................... C -l3

D -l. Total of all PWR transients ........................................................................................................ D-5

D-2. PWR Category 1: Loss of RCS flow (1 loop) ........................................................................ D-6

D-3. PWR Category 2: Uncontrolled rod withdrawal .................................................................... D-7

D-4. PWR Category 3: CRDM problems and/or rod drop .......................................................... D-8

D-5. PWR Category 4: Leakage from control rods ........................................................................ D-9

D-6. PWR Category 5: Leakage in primary system ........................................................................ D-10

D-7. PWR Category 6: Low pressurizer pressure ............................................................................ D -ll

D-8. PWR Category 7: Pressurizer leakage .............................................................. .................... D -l2

D-9. PWR Category 8: High pressurizer pressure ............................................................................ D-13

D-10. PWR Category 9: Inadvertent safety injection signal ............................................................D-14

D -ll. PWR Category 10: Containment pressure problems ..............................................................D -l5

D-12. PWR Category 11: CVCS malfunction—boron dilution ........................................................ D-16

D-13. PWR Category 12: Pressure/temperature/power imbalance—rod position error ..............D -l7

D-14. PWR Category 13: Startup of inactive coolant pump ............................................................ D-18

D -l5. PWR Category 14: Total loss of RCS flow ............................................................................ D -l9

D-16. PWR Category 15: Loss or reduction in feedwater flow (1 loop) ........................................D-20

D-17. PWR Category 16: Total loss of feedwater flow (all loops) ................................................D-21

D-18. PWR Category 17: Full or partial closure of MSIV (1 loop) ..............................................D-22

D-19. PWR Category 18: Closure of all MSIV .................................................................................. D-23

D-20. PWR Category 19: Increase in feedwater flow (1 loop) ........................................................ D-24

D-21. PWR Category 20: Increase in feedwater flow (all loops) ....................................................D-25

D-22. PWR Category 21: Feedwater flow instability—operator error ............................................D-26

D-23. PWR Category 22: Feedwater flow instability—miscellaneous mechanical causes ............D-27

D-24. PWR Category 23: Loss of condensate pump (1 loop) ..........................................................D-28

D-25. PWR Category 24: Loss of condensate pumps (all loops) ....................................................D-29

D-26. PWR Category 25: Loss of condenser vacuum .......................... ........................................... D-30

D-27. PWR Category 26: Steam generator leakage ............................................................................D-31

D-28. PWR Category 27: Condenser leakage ...................................................................................... D-32

D-29. PWR Category 28: Miscellaneous leakage in secondary system .......................................... D-33

D-30. PWR Category 29: "Sudden opening of steam relief valves .................................................. D-34

D-31. PWR Category 30: Loss of circulating water .................................................... ......................D-35

D-32. PWR Category 31: Loss of component cooling .............................................. .. . r . .......... D-36

D-33. PWR Category 32: Loss of service water system .................................................................... D-37

D-34. PWR Category 33: Turbine trip, throttle valve closure, EHC problems ............................ D-38

D-35. PWR Category 34: Generator trip or generator caused faults .............................................. D-39

D-36. PWR Category 35: Loss of all offsite power ...........................................................................D-40

D-37. PWR Category 36: Pressurizer spray failure ............................................................................ D-41

D-38. PWR Category 37: Loss of power to necessary plant systems ............................................ D-42

D-39. PWR Category 38: Spurious trips—cause unknown .............................................................. D-43

D-40. PWR Category 39: Auto trip—no transient condition .......................................................... D-44

D-41. PWR Category 40: Manual trip—no transient condition ...................................................... D-45

D-42. PWR Category 41: Fire within plant ........................................................................................D-46

E-l. Total of all BWR transients ...................................................................... .............................. E-5

E-2. BWR Category 1: Electric load rejection ........................................ ...................................... E-6

E-3. BWR Category 2: Electric load rejection with turbine bypass valve failure ...................... E-7

E-4. BWR Category 3: Turbine trip .................................................................................................. E-8

E-5, BWR Category 4: Turbine trip with turbine bypass valve failure ........................................ E-9

E-6. BWR Category 5: Main steam isolation valve closure .......................................................... E-10

E'7. BWR Category 6: Inadvertent closure of one MSIV .............................................................. E-l 1

E-8. BWR Category 7: Partial MSIV closure .................................................................................. E -l2

E-9. BWR Category 8: Loss of normal condenser vacuum .......................................................... E -l3

E-10. BWR Category 9: Pressure regulator fails open ...................................................................... E-14

E -ll. BWR Category 10: Pressure regulator fails closed .................................................................. E -l5

E -l2. BWR Category 11: Inadvertent opening of a safety/relief valve (stuck) ............................ E -l6

E-13. BWR Category 12: Turbine bypass fails open ................................................................ : . . . E-17

E-14, BWR Category 13: Turbine bypass or control valves cause increasedpressure (closed) .......................................................................................................................... E -l8

E-15. BWR Category 14: Recirculation control failure—increasing flow ..................................... E-19

E-16. BWR Category 15: Recirculation control failure—decreasing flow ................................... E-20

E-17. BWR Category 16: Trip of one recirculation pump ............................................................ E-21

E-18. BWR Category 17: Trip of all recirculation pumps .............................................................. E-22

E-19. BWR Category 18: Abnormal startup of idle recirculation pump .................... ..............E-23

E-20. BWR Category 19: Recirculation pump seizure ....................................................................E-24

E-21. BWR Category 20: Feedwater—increasing flow at power ................................................ E-25

E-22. BWR Category 21: Loss of feedwater heater ........................................................................E-26

E-23. BWR Category 22: Loss of all feedwater flow ............ ...................................................... E-27

E-24. BWR Category 23: Trip of one feedwater pump (or condensate pump) ........................... E-28

E-25. BWR Category 24: Feedwater—low flow ..............................................................................E-29

E-26. BWR Category 25: Low feedwater flow during startup or shutdown ............................... E-30

E-27. BWR Category 26: High feedwater flow during startup or shutdown ...............................E-31

E-28. BWR Category 27: Rod withdrawal at power ......................................................................E-32

E-29. BWR Category 28: High flux due to rod withdrawal at startup .........................................E-33

E-30. BWR Category 29: Inadvertent insertion of rod or rods .................................................... E-34

E-31. BWR Category 30: Detected fault in reactor protection system .........................................E-35

E-32. BWR Category 31: Loss of offsite power ..............................................................................E-36

E-33. BWR Category 32: Loss of auxiliary power (loss of auxiliary transformer) ......................E-37

E-34. BWR Category 33: Inadvertent startup of HPCI/HPCS .................................................... E-38

E-35. BWR Category 34: Scram due to plant occurrences ............................................................ E-39

E-36. BWR Category 35: Spurious trip via instrumentation, RPS fault .......................................E-40

E-37. BWR Category 36: Manual scram—no out-of-tolerance condition .....................................E-41

E-38. BWR Category 37: Cause unknown ...................................................................................... E-42

G -l. Counts by plant and reactor year for PWR transient events ............................................... G-4

G-2. Counts by plant and reactor year for PWR transient events occurring between26 and 110% power .................................................................................................................. G-5

G-3. Counts by plant and reactor year for PWR transient events excludingscheduled scrams ........................................................................................................................ G-6

G-4. Counts by plant and reactor year for PWR transient events occurring between26 and 110% power excluding scheduled scrams ........................... ..................................... G-7

G-5. Counts by plant and reactor year for BWR transient events ............................................... G-8

G-6. Counts by plant and reactor year for BWR transient events occurring between26 and 110% power ....................................... ........................................................................ G-9

G-7. Counts by plant and reactor year for BWR transient events excludingscheduled scrams .........................................................................................................................G-10

G-8. Counts by plant and reactor year for BWR transient events occurring between26 and 110% power excluding scheduled scrams .................................................................... G-l 1

G-9. Counts by plant and transient category for PWR transient events ..................................... G-l2

G-10. Counts by plant and transient category for PWR transient events occurring between26 and 110% power ....................................................................................... ........................... G-13

G -ll. Counts by plant and transient category for PWR transient events excludingscheduled scrams ........................................................................................................................G -l4

G-12. Counts by plant and transient category for PWR transient events occurring between26 and 110% power excluding scheduled scrams .................................................................... G -l5

G-13. Counts by plant and transient category for BWR transient events ..................................... G-16

G-14. Counts by plant and transient category for BWR transient events occurring between26 and 110% power ...................................................................................................................G -l7

G -l5. Counts by plant and transient category for BWR transient events excludingscheduled scrams ........................................................................................................................ G -l8

G-16. Counts by plant and transient category for BWR transient events occurring between26 and 110% power excluding scheduled scrams .................................................................... G -l9

H-l. PWR transient event counts by plant and calendar year ....................................................... H-4

H-2. BWR transient event counts by plant and calendar year ....................................................... H-5

H-3. PWR reactor critical time by calendar year ............................................................................. H-6

H-4. BWR reactor critical time by calendar year ............................................................................. H-10

1-1. Matrix illustration showing selected values from the orthonormalization printout ............. 1-4

NOMENCLATURE

This section contains the PWR and BWR transient category definitions and acronyms used in this report.

EPRI PWR Transient Category Definitions

Category _ _ _ _ _ ______________________ Title and D e f in it io n ______________________

1. Loss o f RCS Flow (I loop)—an inadvertent hardware or human error interrupts the flow in one loop of the reactor coolant system.

2. Uncontrolled Rod Withdrawal—one or more control rods are withdrawn inadvertently.

3. CRDM Problems and/or Rod Drop—failures in the control rod drive mechanism (CRDM) occur that lead to out-of-tolerance conditions in the primary system. The transient may include dropping of one or more control rods into the core as part of the CRDM failure.

4. Leakage from Control Rods—primary system leakage around the control rod drive mechanism is excessive and reactor shutdown is required.

5. Leakage in Primary System—primary system leakage through various piping components is excessive and reactor shutdown is required. This transient does not include:

No. 4 — Leakage from control rods No. 7 — Pressurizer leakage No. 26 — Steam generator leakage

6. Low Pressurizer Pressure—the pressurizer pressure falls below the lower operating limit.

7. Pressurizer Leakage—pressurizer components allow excessive primary system leakage and reactor shutdown is required.

8. High Pressurizer Pressure—the pressurizer pressure climbs above the upper operating limit.

9. Inadvertent Sqfety Injection Signal—hardware or operator error initiates a safety injection.

10. Containment Pressure Problems—hardware or operator error results in containment pressure exceeding limits.

11. CVCS Malfunction—Boron Dilution—hardware or operator error results in a CVCS malfunc­tion such that reactor power is affected.

12. Pressure/Temperature/Power Imbalance—Rod Position Error—poor control rod positioning from mechanical or operator error causes a scram based on a pressure, temperature, or power imbalance.

13. Startup o f Inactive Coolant Pump—an idle coolant pump is started at an improper power and flow condition.

14. Total Loss o f RCS Flow—& hardware or operator error causes a loss of reactor coolant system flow.

15. Loss or Reduction in Feedwater Flow (1 loop)—one feedwater pump trips or another occur­rence results in an overall decrease in feedwater flow.

16. Total Loss o f Feedwater Flow (all loops)^a simultaneous loss of all main feedwater occurs, excluding that due to loss of all offsite power (Category 35).

17. Full or Partial Closure o f M SIV (I loop)—one main steam isolation valve (MSIV) closes, the rest remaining open, or partial closure of one or more MSIV occurs.

18. Closure o f All M SIV— one o f various steam line or nuclear system malfunctions requires ter­mination of steam flow from the vessel. The closure of one MSIV may cause an immediate closure of all other MSIVs; this occurrence is also included in this transient definition. However, any closure that is the result of another initiator is not included.

19. Increase in Feedwater Flow (1 Loop)—an increase in feedwater flow occurs in one loop.

20. Increase in Feedwater Flow (All Loops)—an increase in feedwater flow occurs in all loops.

21. Feedwater Flow Instability—Operator Error—feedwater is being controlled manually, usually during startup or shutdown, and excessive or insufficient feedwater flow occurs.

22. Feedwater Flow Instability—Miscellaneous Mechanical Causes—excessive or insufficient feed­water flow results from hardware failures in the feedwater system.

23. Loss o f Condensate Pumps (1 loop)—one condensate pump fails, reducing feedwater flow.

24. Loss o f Condensate Pumps (all loops)—all condensate pumps fail, causing a loss of feedwafer flow.

25. Loss o f Condenser Vacuum—either a complete loss or decrease in condenser vacuum results from a hardware or human error.

26. Steam Generator Leakage—excessive primary system to secondary leakage occurs in the steam generator.

27. Condenser Leakage—excessive secondary system leakage occurs in the condenser.3

28. Miscellaneous Leakage in Secondary System—excessive leakage occurs in the secondary system other than in the condenser (see Category 27).

29. Sudden Opening o f Steam Relief Valves—& secondary system steam relief valve opens inadvertently, causing an unacceptably Sow pressure in the secondary system.

30. Loss o f Circulating Water—circulating water is not available to the plant.

31. Loss o f Component Cooling—excessive temperature of critical components is a result of a loss or decrease in component cooling water flow.

32. Loss o f Service Water System—the service water system fails to perform its function.

33. Turbine Trip, Throttle Valve Closure, EHC Problems—& turbine trip occurs; or turbine prob­lems occur which in effect decrease steam flow to the turbine, causing a rapid change in the amount of energy removed from the primary system.

a. All events in the combined data file in this category are condenser tube leaks.

34. Generator Trip or Generator Caused Faults—the generator is tripped due to electrical grid distur­bances or generator faults.

35. Loss o f A ll O ff site Power—all power to the plant from external sources (the grid or 8 dedicated transmission line to another plant) is lost.

36. Pressurizer Spray Failure—the pressurizer spray system spuriously actuates or fails upon demand.

37. Loss o f Power to Necessary Plant Systems—power is lost to a component or group of com­ponents such that plant shutdown is necessary. It does not include loss of power to those com­ponents whose failure causes another defined transient to occur.

38. Spurious Trips—Cause Unknown—& scram occurs and no out-of-tolerance condition can be detected; the cause of the scram cannot be determined.

39. Automatic Trip—No Transient Condition—an auto scram is initiated by a hardware failure in instrumentation or logic circuits and no out-of-tolerance condition exists.

40. Manual Trip—No Transient Condition—the operator initiates a scram for any reason when no out-of-tolerance condition exists.

41. Fire Within Plant—a plant shutdown is necessitated by a fire in some part of the plant.

EPRI BWR Transient Category Definitions

Category ______________________________ Title and Definition______________________________

1. Electric Load Rejection—the electric load rejection transient occurs when electrical grid distur­bances result in significant loss of load on the generator. Also included are intentional generator trips.

2. Electric Load Rejection with Turbine Bypass Valve Failure—this transient is identical to No. 1 except that the turbine bypass valves do not open simultaneously with shutdown of the turbine.

3. Turbine Trip—a turbine trip transient occurs when any one of a number of turbine or nuclear system malfunctions requires the turbine to be shut down. Turbine trips which occur as a by­product of other transients such as loss of condenser vacuum or reactor high level trip are not included. Intentional turbine trips are included.

4. Turbine Trip with Turbine Bypass Valve Failure—this transient is identical to No. 3 except that the turbine bypass fails to open.

5. Main Steam Isolation Valve (MSIV) Closure—the MSIV closure transient occurs when any one of various steam line and nuclear system malfunctions require termination of steam flow from the vessel automatically or by operator action.

6. Inadvertent Closure o f One MSIV— only one MSIV closes, the rest remaining open, due to operator or equipment error.

7. Partial M SIV Closure—partial closure of one or more MSIVs results from a hardware or human error.

8. Loss o f Normal Condenser Vacuum—either a complete loss or decrease in condenser vacuum results from a hardware or human error.

9. Pressure Regulator Fails Open—either the controlling pressure regulator or backup regulator fails in an open direction. The failure causes a decreasing coolant inventory as the mass flow of water entering the vessel decreases.

10. Pressure Regulator Fails Closed—either the controlling pressure regulator or backup regulator fails in a closed direction. This failure causes increasing pressure and thus decreasing steam flow from the vessel.

11. Inadvertent Opening o f a Safety/Relief Valve (Stuck)—a safety/relief valve sticks open. Due to an operator or equipment error a single safety/relief valve can be opened, increasing steam flow from the vessel. If the valve cannot be closed, a scram is initiated. This transient only includes those openings that cannot be subsequently closed before a scram occurs.

12. Turbine Bypass Fails Open—equipment or operator error results in inadvertent or excessive opening of turbine bypass valves so as to decrease the vessel level.

13. Turbine Bypass or Control Valves Cause Increased Pressure (closed)—either operator error or equipment failure causes the turbine bypass or control valves to close, resulting in increased system pressure.

14. Recirculation Control Failure—Increasing Flow—a failure of a flow controller, either in one loop or the master flow controller, causes an increasing flow in the core.

15. Recirculation Control Failure—Decreasing Flow—flow controller failure causes a decreased flow to the core.

16. Trip o f One Recirculation Pump—one recirculation pump trips due to a hardware or human error.

17. Trip o f All Recirculation Pumps—the simultaneous loss of all recirculation pumps occurs.

18. Abnormal Startup o f Idle Recirculation Pump—an idle recirculation pump is started at an improper power and flow condition. The increased flow could cause a flux spike, or, if the loop has been idle so as to allow coolant in the pump loop to cool, core inlet subcooling.

19. Recirculation Pump Seizure—the failure of a recirculation pump is such that no coastdown occurs, and a sudden flow decrease is experienced.

20. Feedwater—Increasing Flow at Power—event causes increasing feedwater flow at power. Ex­cluded (see Category 26) are increasing flow events during startup or shutdown, when manual feedwater control is being utilized.

21. Loss o f Feedwater Heater—the loss-of-feedwater heating is such that the reactor vessel receives feedwater cool enough to exceed core scram parameters.

22. Loss o f A ll Feedwater Flow— the simultaneous loss-of-main feedwater flow, excluding that due to loss-of-offsite power (see Category 31), occurs.

23. Trip o f One Feedwater Pump (or Condensate Pump)—the loss of one feedwater pump or con­densate pump is such that a partial loss of feedwater is experienced.

24. Feedwater—Low Flow—plant occurrence causes decreasing feedwater flow at power. Excluded are events at low power (see Category 25).

25. Low Feedwater Flow During Startup or Shutdown—event results in low feedwater flow at essen­tially zero power; this definition includes only startup or shutdown operations.

26. High Feedwater Flow During Startup or Shutdown—excessive feedwater flow occurs during startup or shutdown. The .eactor is essentially at zero power.

27. Rod Withdrawal at Power—one or more control rods are withdrawn inadvertently in the power range of plant operation.

28. High Flux Due to Rod Withdrawal at Startup—the inadvertent withdrawal of a control rod causes a local power increase.

29. Inadvertent Insertion o f Rod or Rods—malfunction causes an inadvertent insertion of rod or rods during power operation.

30. Detected FuuH in Reactor Protection System—a scram is initiated due to an indicated fault in the reactor protection system. An example is the indication of a high level in the scram discharge volume.

31. Loss o f O ff site Power—all power to the plant from external sources (the grid of dedicated transmission lines to another plant) is lost. This event requires the plant emergency power sources to be available.

32. Loss o f Auxiliary Power (Loss o f Auxiliary Transformer)—the loss of incoming power to a plant results from onsite failures such as the loss of an auxiliary transformer.

33. Inadvertent Startup o f HPCI/HPCS—one of the systems supplying high pressure cold water to the vessel inadvertently starts up. In general, a BWR will have either a high pressure coolant injection (HPCI) system or a high pressure core spray (HPCS) system.

34. Scram Due to Plant Occurrences—an automatic or manual scram is initiated by an occurrence that does not cause an out-of-tolerance condition in the primary system, but requires shut­down. Examples are turbine vibration, off-gas explosion, fire, excess conductivity of reactor coolant, etc.

35. Spurious Trip Via Instrumentation, RPS Fault—a scram resulting from hardware or human error in instrumentation or logic circuits occurs.

36. Manual Scram—No Out-of-Tolerance Condition—a manual initiation of a scram, either pur­posely or by error, occurs and there are no out-of-tolerance conditions.

37. Cause Unknown—a scram occurs, but the cause was not determinable.

ACRONYMS

APRM Average power range meterATWS Anticipated transient without scramB&W Babcock and WilcoxBWR Boiling water reactorCE Combustion Engineering

CRDM Control rod drive mechanismCVCS Chemistry and volume control systemDOE Department of EnergyEHC Electrohydraulic controlEPRI Electric Power Research Institute

FRV Feedwater regulating valveFW FeedwaterGE General ElectricHPCI High pressure coolant injectionHPCS High pressure core spray

IREP Interim Reliability Evaluation ProgramIRM Intermediate range meterLOCA Loss of coolant accidentLOCV Loss of condenser vacuumLOP Loss of power

M-G Motor-generatorMSIV Main steam isolation valvePCS Power conversion systemPRA Probabilistic risk assessmentPWR Pressurized water reactor

RCS Reactor coolant systemRPS Reactor protection systemRPT Recirculation pump tripRSS Reactor Safety StudySG Steam generator

SI Safety injectionTCV Turbine control valveUSNRC United States Nuclear Regulatory CommissionW Westinghouse

DEVELOPMENT OF TRANSIENT INITIATING EVENT FREQUENCIES FOR USE IN PROBABILISTIC RISK

ASSESSMENTS1. INTRODUCTION

Transient initiating event frequencies are impor­tant inputs to probabilistic risk assessments (PRAs) of commercial nuclear power plants. If these tran­sient initiating event frequencies are derived from operational data, the uncertainties can be reduced to give a truer indication of the risk associated with the operation of a commercial nuclear power plant.

For this report a transient is defined as any event that requires or results in a reactor scram. This definition includes as transients those events that are spurious or scheduled and do not cause or result from out-of-tolerance conditions in the nuclear power plant.

The purpose of this report is to describe the de­velopment of a transient initiating event data base and the resulting event frequencies. The work was done at the request of the United States Nuclear Regulatory Commission (USNRC), Division of Risk Analysis and Operations, for use in PRAs. The development included validating and expanding the data base of the Electric Power Research Institute’s (EPRI’s) Interim Report NP-2230,1 hereafter called the EPRI data base in this report.® The validation and expansion was based on the unit shutdown/ power reduction data in the USNRC’s Operating Units Status Reports* (Gray Books) and other sources. The new data, hereafter referenced in this report as the INEL data, were categorized using the EPRI transient categories listed in the “ Nomenclature” section. The two data bases were combined. The resulting updated data base includes data from all United States commercial nuclear power plants except two, from their date of initial commercial operation until either the end of December 1983 or the date they were taken out of commercial operation, whichever occurred first. The two plants not included, Fort St. Vrain and La Crosse, are considered atypical.

a. NP-2230 is an update of an earlier EPRI study. Unless other­wise qualified, the phrase “EPRI data base” in this report refers to the data summarized in NP-2230.

In the course of developing the expanded data base, the adequacy ot the individual EPRI transient categories and the detail of the PWR and BWR transient lists were investigated. In addition, a general data analysis methodology was developed. However, due to project scope limitations and lack of EPRI detailed event descriptions, no changes were made to the EPRI data base; the update just added events not In EPRI’s original scope, cover­ing additional plants and/or time periods.

Section 2 describes the effort to validate the EPRI data from other sources. Section 3 deals with the evaluation of the NP-2230 transient categories. Section 4 covers the data collection effort. Section 5 is a data summary and evaluation section. Section 6 describes the development of a generalized transient event data analysis methodology, and Section 7 describes the report findings and recommendations for follow-up work.

The appendices of this report are of two types; they either give further explanation of a process or calculation used in this project, or they give details of data that is summarized in the body of the report. Appendix A contains information concerning the selection of the outlier EPRI data sample used for validation. Appendix B contains the details of the EPRI and other source event comparisons for the outlier sample. Appendix C contains the one-line event descriptions of the data added by EG&G Idaho to the combined data base of this report. Appendices D and E have the updated transient event counts and frequencies by plant and reactor year for PWRs and BWRs respectively. Appendix F gives further information on the methods used to calculate the upper bounds found in the body of the report. Appendix G contains the tables that pre­sent the effects of low power and scheduled scrams on plant, reactor year, and category frequencies. Appendix H has more detailed data for transient rate trend estimation. Finally, Appendix I explains the computer program output associated with the transient data analysis methodology presented in Section 6.

2. VALIDATION OF EPRI TRANSIENT EVENT DATA

The EPRI transient event data served as a basis for the development of the combined data base used to derive the transient initiating event frequencies reported herein. An evaluation of selected EPRI event data against other data sources was made to validate the EPRI data as a basis for further devel­opment. Such an evaluation not only identifies any hidden strengths or weaknesses in the EPRI study, it also demonstrates that comparable information about an event is available from more than one source and ensures that this information can be in­terpreted in a consistent manner. This latter benefit proved to be useful during the data collection ef­fort to expand the existing data base. In this sec­tion the approach used to validate the EPRI data is presented.

Since NP-2230 has almost 3000 events in its data base, it would not be practical to check each one. NP-2230 transient tables list event counts by plant and reactor year. That is, for each reactor year, measured from a plant’s commercial power date, the number of events for each classification of events causing scrams is reported. To help select a sample of the data base for examination the LOGLIN^ computer program was employed. LOGLIN fits log-linear models to occurrence data and thereby permits one to estimate the effect of different plants, reactor years, and combinations of the two on the transient occurrence rate. From the LOGLIN computer runs, a sample was selected of plants that after accounting for reactor-year ef­fects,3 had a higher or lower incidence of transients than the general population. In addition, certain plant-reactor year combinations that stood out after removing both plant and reactor-year effects were flagged. Appendix A gives further details about this method and lists the plants and plant-year combina­tions identified as possible outliers. For the cases in which plants were identified as outliers, two years of operation were selected for review. The years selected were typically the earliest year for which data were available, and a year near the most re­cent full year of EPRI data for the plant.

a. For example, a higher incidence of transients occurs during the first reactor year for nearly all plants. A plant with a relatively high number of events but just one year of data would not be selected if this “ first reactor year” effect accounted for its event rate.

The EPRI data in the sample were compared to the event data available in the NRC Gray Books, Nuclear Power Plant Operating Experience Annual Summaries/4,5,6,7,8,9,10 and/or the individual plant USNRC dockets (files of official cor­respondence between the licensee and the USNRC). Four types of differences were found during the comparison: EPRI events not in the other sources, EPRI events not listed as scrams in the other sources, events from other sources not in the EPRI data, and transient events common to both the EPRI data and the other sources having event descriptions from the other sources that differed from the EPRI data categorization. Table 1 is a summary of these results. The details of the data comparisons are contained in Tables B-l and B-2.

The 22 EPRI events not in the other sources con­stitute only 7.6% of the EPRI data. Eleven of those22 events occurred at zero or very low power levels while attempting to start up following refueling outages and therefore would not necessarily get reported in the other sources. For example, Gray Book reporting requirements include a description of all shutdowns and all power reductions exceeding 20%; 11 some events occurring at zero power may not be included. Two more events that occurred at Indian Point 1 during reactor year 9 predated the Gray Books and Annual Summaries and were not listed in the USNRC dockets at the INEL. Of the remaining nine events, two occurred at 0% power, one occurred at 93% power, initial power levels for three are unknown, and the remainder occurred at power levels of <20%. Overall, the events not in other sources represent a variety of EPRI categories; spurious trips with either unknown causes or instrumentation faults and no real tran­sient condition (PWR category 39 and BWR categories 35, 36, and 37) account for 32% of these events. Ten of the events occurred at a single nuclear power station, and the remainder are concentrated at relatively few plants.

The 22 events that are not listed as scrams in the other source* fall into two categories: manual shutdowns (19) and no shutdown at all, i.e., with the reactor remaining critical but the unit not pro­ducing electricity (3). Also, 16 of the 22 events occurred at only 2 of 11 plants, both at the same station. The EPRI data for these 16 events are incomplete; initial power levels and states are not

Table 1. Summary of transient event comparisons for the outlier sample3

EPRI Data Event Counts Other Sources*5 Transient Event Counts

Not in Other Not Scrams in Not in In EPRI but inSample Plant/Reactor Year______ Total Sources** Other Sources** Total0 EPRI Data Different Categories

PWR

Haddam Neck: Reactor Year 6 1 0 0 1 0 0Reactor Year 8 1 0 0 2 1 0

Indian Point 1: Reactor Year 9 13 2 0 11 0 2Reactor Year 12 19 0 10- 10 1 0

Indian Point 2: Reactor Year 3 37 1 6- 31 1 5Reactor Year 6 9 0 0 10 1 1

Millstone 2: Reactor Year 1 42 1 0 41 0 4Reactor Year 4 1 0 0 2 1 0

Robinson 2: Reactor Year 3 28 2 2 27 3 11Reactor Year 8 11 _2_ 0 10 1 4,

PWR Totals 162 8 18 145 9 25

BWR

Browns Ferry 2: Reactor Year 1 1 0 0 1 0 1Reactor Year 5 21 4 2 15 0 5

Brunswick 1: Reactor Year 1 18 5 0 14 1 9Reactor Year 3 14 2 0 14 2 9

Brunswick 2: Reactor Year 1 28 1 0 27 0 7Reactor Year 4 13 2 2 10 1 4

EPRI Data Event Counts Other Sources*5 Transient Event Counts

Not in Other Not Scrams in Not in In EPRI but in ______ Sample Plant/Reactor Year______ Total Sources*5 Other Sources*5 Totalc EPRI Data Different Categories

BWR

Cooper Station: Reactor Year 1 28 0 0 28 0 5Reactor Year 3 1 0 0 7 6 0

Humboldt Bay: Reactor Year 11 2 0 0 .2 0 1Reactor Year 12 0 — — — — —

Oyster Creek: Reactor Year 2 1 0 0 1 0 0Reactor Year 7 1 0 0 1 0 0

BWR totals 128 14 4 120 10 41

Sample totals 290 22 22 265 19 66

a. See Appendix B for details.

b. USNRC Gray Books, NRC Nuclear Power Plant Operating Experience Annual Summaries, and plant USNRC dockets.

c. Events listed as scrams in the other sources.

specified for any of them. Five of the ten Indian Point 1 events were flagged by EPRI as planned scrams, thus making them less likely to be reported in the other sources. All the EPRI BWR events in the sample listed as shutdowns in the other sources were categorized by EPRI as manual scrams with no out-of-tolerance conditions (Category 36). As with events not matched in the other sources, these events occurred at just five of the eleven plants in the sample. These events also constitute only 7.6% of the EPRI data.

There are 19 events that were found in the other sources and are not in the EPRI data (7.1% of the other source total). Of the 11 plants in the sample all but four had from one to three events in this category. Three of these four had no events, while Cooper Station during reactor year 3 had six events reported to the USNRC that were not included in the EPRI data. Four of the Cooper events were deliberate manual scrams with no out-of-tolerance conditions (BWR Category 36), and the other two were spurious trips caused by instrumentation faults (BWR Category 35). The remaining events are spread out both among plants and among the tran­sient event categories. A possible explanation for all the events not in the EPRI data base comes from EPRI itself. Subsection 3.3 of NP-2230 states that not all data received from the utilities were included in the NP-2230 analysis.

The impact of the differences discussed thus far on total event counts is ^<9%. Events not in EPRI are closely balanced by events not in the other sources for this sample, so that differences in total counts are primarily influenced by the count of events in EPRI that are listed but not as scrams in other sources. In many cases the events in question either were associated with long-term outages or were deliberate.

Also, the events were generally concentrated at only a few plants. This may be due to the sample selection, which focused on plant and plant-year combinations having unusual counts. The plant- year combination most affected by events not included in EPRI was Cooper Reactor Year 3, a combination selected due to its relatively low number of events. The other sources in most cases validated the EPRI counts for the other outlier com­binations selected because of a low number of events (Haddam Neck, Millstone 2 Reactor Year 4, Browns Ferry 2 Reactor Year 2, Humboldt Bay, and Oyster Creek). Most of the cases of events not

listed in other sources or listed as nonscrams oc­curred at the four plants (Indian Point 1, Indian Point 2, and Brunswick 1 and 2) identified as being high in overall EPRI counts.

Further evaluation of these events is hampered by the lack of more detailed event descriptions. The questionnaire responses EPRI received are pro­prietary, and even the event dates are not part of the information presented in NP-2230. Thus, it is not possible to fully resolve differences between the information reported to EPRI and to the other sources. This part of the evaluation shows that the EPRI information is reasonable and in most cases does agree with the other sources. The observed dif­ferences in event counts do not have a significant impact on any of the EPRI event categories.

The last area of interest concerns the events that were located in both the EPRI and the other source data but, based on the source event descriptions, were placed in a different transient category than EPRI selected. There are 246 events classified as transients in both the EPRI and the other source data. Sixty-six or 26.8% of these were categorized differently. Neglecting multiple occurrences of the same basic event, there are 57 events involved.3 Twenty-two of those 57 events could have been placed in the category that EPRI chose given a more complete description of the event sequence. The re­maining events could not have been given the same category based on the description given in other sources as EPRI selected based on the description it received from the utilities.

A more detailed examination of the category dif­ferences can help data base users assess their impact. For PWRs, 12 events could have been assigned the same category given more information. The major­ity (8) of these differences relate to Category 39, “ Auto trip—no transient condition.” Five of the eight are differences in whether the trip is automatic (Category 39) or manual (Category 40). Distin­guishing whether transient conditions actually exist rather than instrumentation problems is also a dif­ficulty that shows in four of the eight unexplained PWR classification difference cases. Other unex­plained classification differences involve events related to the turbine and to feedwater flow. Details of these events are in Appendix B.

a. Here, events are considered the same if they are from the same plant and have identical descriptions in the other sources.

Among BWRs, a similar situation exists in that Category 35, “ Spurious trip via instrumentation, RPS fault,” is involved in five of ten events that could have the same category and in 11 of 27 events with other source descriptions distinctly differing from the EPRI classification. In this latter group, four of the othei source Category 35 events were classified in the EPRI data base as turbine trips, one as electric load rejection, two as imbalances in the main steam system, and one as recirculation con­trol failure; the other three events were shown in the other sources to be actual out-of-tolerance con­ditions and in one case a manual scram rather than an RPS fault. Other unexplained classification dif­ferences include three cases of one source indicating steam system problems with another indicating recirculation system problems, two cases of EPRI indicating recirculation problems with other sources indicating feedwater problems, one case with EPRI having a feedwater problem and the other sources indicating main steam (pressure regulator), and two cases of differences relating to turbine bypass valves.

There is no simple explanation for the wide dif­ferences in the categories for some of these events. The other source event descriptions are in most cases sufficient in detail to allow unambiguous categorization of these events. Because the event descriptions for the EPRI data are not available, this apparent conflict cannot be resolved here. However, in studying these events three conclusions are apparent. First, differences in the classifications

exist and in the observed sample affect 18% of the matched PWR events and 37% of the matched BWR events. Secondly, a large percentage of these differences can be attributed to the amount of detail present in the descriptions, a challenge involved in any data analysis effort. Thirdly, the impact of these differences is controlled by the fact that each description conveys some information about the events; the differences are not random. The descrip­tions given above and in more detail in Appendix B should help the reader assess the impact of the types of differences observed in this sample.

This evaluation has shown both quantitative and qualitative differences in the events recorded by EPRI and the other sources. The quantitative dif­ferences are < 10%. The impact of the qualitative (classification) differences is harder to evaluate. With the current state of information about the events, the conclusion of this assessment of the EPRI data base is that it is appropriate to update and build on it rather than try to retrieve all the transient event information from the Gtay Books and other sources. On the whole, the EPRI data is valid and indicative of U.S. commercial nuclear power plant operational experience. The observed differences discussed here and in Appendix B are presented so that the reader can be aware of the uncertainties that they introduce.

Due to the project scope limitations, only the EPRI data described in Appendix B was compared to other sources. Therefore, no changes were made to EPRI data.

3. EVALUATION OF EPRI TRANSIENT CATEGORIES

EPRI’s first initiating event data tabulation was published in 1978 as report N P-801 . 12 EPRI began its data collection and analysis task to determine the frequency of anticipated transients using the transient lists given in the Reactor Safety Study (WASH 1400),*3 as shown in the quote below:

“ In WASH 1400 a list of both anticipated and unanticipated transients is given. This list was used as a preliminary basis for establishing categories for the various types of transients. As data arrived for the present study from the utilities, it became apparent that the categories from WASH 1400 needed expansion to cover all the various transients experienced. Thus, the list of transient categories was expanded to 37 BWR and 41 PWR categories.”

The above paragraph, from NP-801, p. 2-1, has a footnote that states that “ Later analyses may indicate a need for further breakdown of the pres­ent categories.” NP-2230 is a revision to NP-801 and it includes ten changes to the PWR categories. The changes are detailed in NP-2230, Appendix C, Section C.2, and include deleting 3 categories, adding 3 new categories, and renumbering and redefining 6 categories. However, even with the addition of 17 new plants and 1467 more transient events, no fundamental changes were made to the transient category lists in NP-2230 as compared to NP-801.

As a part of the effort to incorporate the EPRI data base into the data base of this report, the ade­quacy of the 37 BWR and the 41 PWR transient categories is also investigated. The categories, listed in the "Nomenclature” section, are investigated in three areas: their ability to capture the data, their usefulness in PRAs, and the level of detail between the two types of plants.

3.1 Ability of the Categories to Describe Data

The development of the NP-2230 categories demonstrates the possible need for transient category changes as the body of transient event data grows in size. With the data base for this report con­taining 2,410 events more than NP-2230’s 2996 events, the question of whether or not the

transient categories are sufficient to cover this added data can still be raised.

During the data categorization effort, several transients were encountered that either did not neat­ly fit into any category defined for any type of plant or that fit into a category defined only for the other plant type. Several examples follow.

On June 24, 1972, the BWR Dresden 3 had its turbine control valve (TCV) fail open, causing a scram. EPRI BWR Category 13, “Turbine bypass or control valves cause increased pressure (closed),” covers the closing of the TCV but not its opening. The event was placed in EPRI Category 12, “ Tur­bine bypass valve fails open,” due to the similar effect on the plant even though the event did not involve the bypass valve.

There were several BWR events categorized under Category 34, “ Scram due to plant occurrences,” that would have fit one of several categories that are currently defined only for PWRs such as Category 37, “ Loss of power to necessary plant systems;” or 31, “ Loss of component cooling;” or32, “ Loss of service water system;” or 41, “ Fire within plant,” had they been defined for BWRs also.

Also, all of the events placed in PWR Category 27, “ Condenser leakage,” do not fit the category definition of excessive secondary system leakage in the condenser. For the 15 events in this category the event descriptions from the USNRC’s Gray Books show condenser tube leakage. This is leakage of service or circulating water from the con­denser tube into the secondary water in the con­denser, not secondary system leakage. In this one instance the category does not accurately describe the data and, therefore, the transient definition for this event is misleading to the PRA analyst.

In summary, the EPRI categories were judged to be adequate but in need of better definition to accurately describe the data. In order to cover all possible events, certain broad categories are present in the EPRI classifications (PWR Category 37, BWR Category 34). These categories are more highly used with the new data than with the EPRI data. More detail in the categories as shown by the examples above would help in correctly classifying the events.

3.2 Category Use In Risk Assessments

The initiating event frequencies of the EPRI tran­sient categories provide a generic data base for use in risk assessments. How that data base has been used in a risk assessment provides an indication of the usefulness of the categories to the analyst. If the categories cover major systems individually, the analyst may use them with only modifications to make them plant specific if necessary. If they are broad categories covering many systems, they form a restriction on what the PRA analyst can consider without invoking additional assumptions that are not based on data. Considering category use in PRAs will not show exactly the areas where lack of data was a constraint on the PRA analyst; but an indication of varying uses of the existing cate­gories would support maintaining or increasing the level of detail present in the categories. On the other hand, a consistent pattern of transient grouping among various PRAs would indicate the possibility of combining data, ending with even fewer categories.

To determine the categories’ use and, therefore, their usefulness, various risk assessments were reviewed. These included the Reactor Safety Study (RSS), four PRAs done under the Interim Reliabili­ty Evaluation Program (IREP) [Arkansas Nuclear One Unit One (ANOl),*4 Browns Ferry Unit One (BRF1),15 Crystal River Unit Three (CRP3),16 and Millstone Unit One (M N Sl)^], and utility con­ducted PRAs of Limerick Generating Station (LGS1),18 Zion Station Units One and Two (ZIS1 and 2),19 and Big Rock Point (BRP1).20 In addi­tion, a probabilistic evaluation of the anticipated transients without scram (ATWS) accident sequences for generic General Electric (GE ATWS), W.estinghouse (W ATWS), Combustion Engineer­ing (CE ATWS), and Babcock and Wilcox (B&W ATWS) plants21 was included.

The categories used in the above mentioned risk assessments are those from NP-801, the predecessor of NP-2230. The changes to the categories from NP-801 to NP-2230 appeared only in the PWR list and are slight. What is of interest here is the use of the categories, not necessarily the categories themselves. Because NP-801 and the NP-2230 revi­sion are based on operational data, they have a large list of transient categories, some of which are made up of only one transient. For use in PRAs, the EPRI

transient categories are combined into broad in­itiating event groups based on demanding similar plant responses.

The PRA use of the NP-801 categories is shown in Tables 2 and 3. The table entries are identifiers for the combined transient event groups. A dashed line under a PRA heading for a particular EPRI transient indicates that transient either was not con­sidered in the initiating event quantification process or was established using non-EPRI data. In the case of the RSS, a dashed line indicates that the tran­sient had not been considered as yet and, therefore, was not a part of the list of anticipated and unan­ticipated transients developed for that study.

Tables 2 and 3 show that there is no consistent grouping of the various EPRI categories for use in initiating events. For both detailed and general EPRI categories, some are included in some PRAs and left out of others.

To allow the PRA analyst the maximum amount of flexibility in this transient grouping process, the EPRI categories, where possible, should be single transients rather than broadiy-defined events. This will allow the initiating event groupings to have the smallest aggregate frequency because they will con­tain just the relevant events. Furthermore, it will ensure that important transients are not left out of a PRA analysis because they are a part of a broader category that is not considered a possible risk to the plant.

3.3 Ability of Categories to Describe Future Transient Event Data

From an engineering standpoint there are incon­sistencies in the EPRI transient category lists. If the PWR and BWR categories are grouped by the func­tion affected and compared side by side as in Table 4, it can be seen that the level of detail be­tween the two plant types for identical functions dif­fers considerably.

To illustrate, consider the function of maintain­ing condenser vacuum for both types of plants. The functional safety implications of a loss of condenser vacuum (LOCV), the equipment (taking into ac­count the BWR Off-Gas System) and the operation

EPRI NP-801

PWRCategory Title ANOl

1 Loss of RCS flow (1 loop) t 32 Uncontrolled rod withdrawal t 33 CRDM problems and/or rod drop t 34 Leakage from control rods —5 Leakage in primary system —

6 High or low pressurizer pressure T37 Pressurizer leakage —

8 Pressurizer relief or safety valve opening —

9 Inadvertent safety injection signal —

10 Containment pressure problems T3

11 CVCS malfunction—boron dilution —

12 Pressure, temperature, power imbalance —13 Startup of inactive coolant pump —14 Total loss of RCS flow T315 Loss or reduction in feedwater flow (1 loop) t 3

16 Total loss of feedwater flow (all loops) t 217 Full or partial closure of MSIV (1 loop) T2-T318 Closure of all MSIV T219 Increase in feedwater flow (1 loop) —

20 Increase in feedwater flow (all loops) T2

21 Feedwater flow instability—operator error t 222 Feedwater flow instability—miscellaneous mechanical

causes T223 Loss of condensate pumps (1 loop) T324 Loss of condensate pumps (all loops) t 225 Loss of condenser vacuum t 2

PRA or ATWS Study®

ATWS

B&W CE W

t t t t TtTj Tj t jt t Tt t tTl Tl TlTl Tl Tl

t t Tx t tTl Tl TlTl Tl TlTM t m Tmt m Tm Tm

— t b t tt t t t t tt l Tp TxTw TW Twt t t t t t

t f Tf Tft t t t t tt m t M t mt l Tl T xt l t l Tx

t f t f Tf

t f tf t ft t t t t tt f t f t fTC TC T c

ZISCRP3 RSS 1 and

T2 _ t 5Tl t 3 Tl3Tl t 3 T I0.1Tl T3 t 3Tl — t 3

Tl — T 10.1Tj — t 3Tl T3 t 3Tl T3 t 9Tl --

Tl t 3 Tl3Tl — T 10.1Tj T3 Tl3t 2 T3 t 5t 2 —■ t 6

t 2 T2 t 6t 2 — t 7t 2 T3 Ts.lTl — T s.lTl T3 Ts.l

Tl — t 6

Tl — t 6t 2 — t 6t 2 T2 t 6t 2 T i T8.l

EPRI NP-801

PWRCategory Title

26 Steam generator leakage27 Condenser leakage28 Miscellaneous leakage in secondary system29 Sudden opening of steam relief valves30 Loss of circulating water

31 Loss of component cooling32 Loss of service water system33 Turbine trip, throttle valve closure, EHC problems34 Generator trip or generator caused faults35 Loss of station power

36 Loss of power to necessary plant systems37 Spurious auto trip—no transient condition38 Auto/manual trip due to operator error39 Manual trip due to false signals40 Spurious trips—cause unknown41 Fire within plant

PRA or ATWS Study®

ANOl

t 2t 2

t 3t 3Tl

t 3t 3t 3

ATWS

B&W CE w

Tl Tl TlTC TC TCt l t l TXt l t l TXTC TC TC

TW TW TWt t t t t tt t t t t tt t t t TtTe Te Te

Te t e Tet t t t t tt t t t t tt t t t Ttt t t x t tt t t t t t

ZISCRP3 RSS 1 and 2

Tl t 3 t 4Tl — t 6Tl — T6-T hTl T3 TU-T12t 2 T3 t 8.1

T ja — t 10.2t 2 — t 8.3Tl T3 Ts.lT] — T8.lt 2a Tl t 8.2

Tl t 3 t 10.3Tl — T 10.1Tl — T 10.1Tl — TjO.lTl — T 10.1Tl — —

a. This table shows which EPRI categories were combined for the in itiating events considered in each o f the seven PWR risk assessments. The PRA initiating events and their descriptions are given below.

Arkansas Nuclear One (ANOl)

T j—Loss of offsite power

T j—Total interruption of the power conversion system

T3—All other transients which do not affect frontline systems significantly

ATWS—Babcock and Wilcox (B&W), Combustion Engineering (CE),

______ and Westinghouse (W)______

Tg—Boron dilution (CE only)

T c —Loss of condenser vacuum

Tg—Loss of offsite power

Tp—Loss of main feedwater

Tj—Primary system depressurization

T j—Control rod withdrawal

Tl —Load increase—T ^ (W only)

Tm —MSIV closure

Tp—Idle loop startup (CE only)

T j —Turbine trip

TW —Loss of primary system flow

______ Crystal River-3 (CRP3)______

T j—Transients which leave the power conversion system (PCS) available

T ja —Loss of component cooling

T j—Transients which directly cause the operation of the PCS to be interrupted

Tj a —Loss of offsite power

Reactor Safety Study (RSS)

Tl —Loss of offsite power

T2—Loss of feedwater

T3—All other transients that leave feedwater initially available

Zion 1 and 2 (ZIS 1 and 2)

T3—Small LOCA (< 2 in. rupture)

T4—Primary system leakage to secondary coolant

T5—Loss of reactor coolant flow

Tg—Loss of feedwater flow

T7—Partial loss of steam flow

Tg ]—Turbine trip (general)

Tg 2—Turbine trip due to loss of offsite power

Tg 3—Turbine trip due to loss of service water

Tg—Spurious safety injection

T]Q ]—Reactor trip (general)

T 10.2—Reactor trip due toloss of component cooling

T 10 3—Reactor trip due toloss of ac or dc power

T 11—Loss of steam inside containment

T 12—Loss of steam outside containment

T 13—Core power increase'

EPRI NP-801

BWRCategory __________________________ Title

1 Electric load rejection2 Electric load rejection with turbine bypass valve failure3 Turbine trip4 Turbine trip with turbine bypass valve failure5 Main steam isolation valve closure

6 Inadvertent closure of one MSIV (rest open)7 Partial MSIV closure8 Loss of normal condenser vacuum9 Pressure regulator fails open

10 Pressure regulator fails closed

11 Inadverter ‘ opening of a safety/relief valve (stuck)12 Turbine bypass fails open13 Turbine bypass or control valves cause increased pressure (closed)14 Recirculation control failure—increasing flow15 Recirculation control failure—decreasing flow

16 Trip of one recirculation pump17 Trip of all recirculation pumps18 Abnormal startup of idle recirculation pump19 Recirculation pump seizure20 Increasing feedwater flow at power

21 Loss of feedwater heater22 Loss of all feedwater flow23 Trip of one feedwater pump (or condensate pump)24 Low feedwater flow25 Low feedwater flow during startup or shutdown

PRA or ATWS Study®

MNS1 RSSATWS

GE

t 2t 6t 2t 6Tl

t 2t 2t 6t 5t 2

t 4t 5t 2t 2t 2

t 2t 2t 2t 2t 2

t 2T5T2t 2t 2

BRF1

T2t 2t 2t 2Tl

T2

TlTlt 2

t 2t 2

Tl

Tl

BRP1

t 5t 5

T6

T6

t 6t 8Tl

t 2

t 8

t 3t 4t 3

LGS1

t 2t 2t 2TlTl

t 2Tlt 2t 2

t 4t 2

t 2

t 2

t 2t 5t 2t 2

TlTlTlTlt 2

t 2Tlt 2t 2Tl

t 5TlTlTlTl

TlTlTlTlt 2

Tlt 3TlTlTl

t 3

t 3t 3

t 3

t 3t 3

t2t 3T3t 3

T3t 2

EPRI NP-801 PRA or ATWS Study3

BWRCategory Title

ATWSGE BRF1 BRP1 LGSI MNS1 RSS

26 High feedwater flow during startup or shutdown t 2 — — — Tl —21 Rod withdraw at power T 7 — — t 2 Tl t 328 High flux due to rod withdrawal at startup T 7 — — — Tl29 Inadvertent insertion of rod or rods t 2 — — — Tl t 330 Detected fault in reactor protection system t 2 — — — Tl

31 Loss of offsite power T3 T3 T3 t 4 Tl32 Loss of auxiliary power (loss of auxiliary transformer) T3 Tl T 7 T3 t 4 t 333 Inadvertent startup of HPCI/HPCS t 2 — — — — t 334 SCRAM due to plant occurrences t 2 — t 8 — Tl

35 Spurious trip via instrumentation, RPS fault t 2 — Tg — Tl —

36 Manual SCRAM—no out-of-tolerance condition t 2 — t 8 — T] —

37 Cause unknown t 2 — — Tl —

a. This table shows which EPRI categories were combined for the initiating events considered in each of the six BWR risk assessments. The PRA initiating events and their descriptions are given below.

ATWS-General Electric (GE)

T j—MSIV closure

T j—Turbine trip

T3—Loss of offsite power

T4—Inadvertent opening of a relief valve

Tg—Loss of condenser

T7—Control rod withdrawal

_______ Browns Ferry-1 (BRF1)

T j—Transients that cause the power conversion system (PCS) to be unavailable except for loss of offsite power

T3—Loss of offsite power

______ Big Rock Point (BRP1)______

T j—a. A demand on the turbine bypass valve,

b. Main condenser availability dependent on random failures, and

T5—Loss o f feedwater T j—Transients that do not cause the PCS to be unavailable

c. Manual action required for recirculation pump trip (RPT)

Big Rock Point (BRP1) _____ (continued)

T j—a. Demand on the bypass valve

b. Main condenser availability dependent on manual action, and

c. Manual action required for RPT

T3—a. Total loss of feedwater

b. Main condenser availability dependent on random failures, and

c. Manual action required for RPT

T4—a. Partial loss of feedwater

b. Main condenser availability dependent on random failures, and

c. Manual action required for RPT

b. Main condenser availability dependent on random failures, and

c. Automatic RPT at beginning of transient

Tg—a. Certain loss of main condenser, and

b. Manual action required for RPT

T7—a. Certain loss of main condenser, and

b. Automatic RPT at beginning of transient

Tg—a. No legitimate high pressure or low level condition and

b. Main condenser availability dependent on random failure

__________Limerick-l(LGSl)_________

T j—Turbine trip

T3—Loss of offsite power

T4—Inadvertent open relief valve

T5—Loss of feedwater

________Millstone-1 (MNS1)_______

T j—Most transients

T j—Loss of power conversion system (other than loss of feedwater)

T3—Loss of feedwater

T4—Loss of normal ac power

T5—Safety/relief valve transient

Reactor Safety Study (RSS)

T j—Loss of offsite power

T j—Loss of feedwater

T5—a. Demand on the bypass valve T j—MISV closureT3—All other transients that leave

feedwater initially available

Function PWR Category BWR Category

Main turbine/ generator

33 Turbine trip, throttle valve closure, EHC problems

34 Generator trip or generator caused faults

1 Electric load rejection2 Electric load rejection with turbine

bypass valve failure3 Turbine trip4 Turbine trip with turbine bypass valve

failure

Condenser vacuum

Condensate

Feedwater

Reactor system flow

25 Loss of condenser vacuum27 Condenser leakage30 Loss of circulating water

23 Loss of condensate pump (1 loop)24 Loss of condensate pumps (all loops)

15 Loss or reduction in feedwater flow (1 loop)

16 Total loss of feedwater flow (all loops)

19 Increase in feedwater flow (1 loop)20 Increase in feedwater flow (all loops)21 Feedwater flow instability—operator

error22 Feedwater flow instability—miscellaneous

mechanical causes28 Miscellaneous leakage in secondary

system

1 Loss of RCS flow (1 loop)13 Startup of inactive coolant pump14 Total loss of RCS flow

8 Loss o f normal condenser vacuum

20 Feedwater—increasing flow at power21 Loss of feedwater heater22 Loss of all feedwater flow23 Trip of one feedwater pump (or

condensate pump)24 Feedwater—low flow25 Low feedwater flow during startup or

shutdown26 High feedwater flow during startup

or shutdown

14 Recirculation control failure— increasing flow

15 Recirculation control failure— decreasing flow

16 Trip of one recirculation pump17 Trip of all recirculation pumps18 Abnormal startup of idle recirculation

pump19 Recirculation pump seizure

_____Function

Reactor system pressure control

Reactivity control

Steam

Safety injection

Electrical power

Reactor integrity

PWR Category

Low pressurizer pressure High pressurizer pressure Pressurizer spray failure

Uncontrolled rod withdrawal CRDM problems and/or rod drop CVCS malfunction—boron dilution Pressure/temperature/power imbalance—rod position error

Full or partial closure of MSIV (1 loop)Closure of all MSIVSudden opening of steam relief valves

Inadvertent safety injection signal Containment pressure problems

Loss of all offsite powerLoss of power to necessary plantsystems

Leakage from control rods Leakage in primary system Pressurizer leakage Steam generator leakage

68

36

23

1112

17

1829

910

3537

457

26

BWR Category

9 Pressure regulator fails open10 Pressure regulator fails closed12 Turbine bypass fails open13 Turbine bypass or control valves cause

increased pressure (closed)

27 Rod withdrawal at power28 High flux due to rod withdrawal at

startup29 Inadvertent insertion of rod or rods

5 Main steam isolation valve closure6 Inadvertent closure of one MSIV

(rest open)7 Partial MSIV closure

11 Inadvertent opening of a safety/relief valve (stuck)

33 Inadvertent startup of HPCI/HPCS

31 Loss of offsite power32 Loss of auxiliary power

Function PWR Category

Miscellaneous 31 Loss of component cooling32 Loss of service water systems41 Fire within plant

Spurious trips 38 Spurious trips—cause unknown39 Auto trip—no transient condition40 Manual trip—no transient condition

BWR Category

34 Scram due to plant occurrences30 Detected fault in reactor protection

system

35 Spurious trip by way of instrumentation, RPS fault

36 Manual scram—no out-of-tolerance condition

37 Cause unknown

are virtually identical for both plant types. Yet the PWR list has three separate transients that will result in the loss of that function (Categories 23,27, and 30), while the BWR list has just one (Category 8). All PRAs included the LOCV tran­sient in their initiating event frequencies. Also, all PWR PRAs considered loss of circulating water (Category 30) in the same initiating event grouping as LOCV, but only five of the seven studies con­sidered condenser leakage (Category 27) in this initiating event grouping. Furthermore, two of the five that considered condenser leakage put it in a different grouping than loss of vacuum and loss of circulating water. Because of the added detail in the PWR list, the PRA analysts were given that choice. The BWR PRA analysts, on the other hand, did not have that flexibility and had to use an all encom­passing event frequency. For the newly added data, the LOCV transient event frequency for a BWR contains 8 loss of circulating water events and3 condenser leakage events out of a total of 56 events. If the BWR transient list were as detailed as the PWR list, the transient frequency for LOCV would decrease by 20%. Although this is not a sig­nificant change, there is no apparent reason why BWR LOCV transient frequencies should be less accurate than PWR LOCV frequencies.

Part of the answer lies in the fact that EPRI let the data determine the number and definition of the transient categories. But just as EPRI had to expand on the RSS transient lists, with an increase of 2410 events in the data base and new plants coming on-line each year, the transient category lists should be expanded now to accommodate the future data and give the analysts that will conduct future PRAs an increased amount of flexibility.

3.4 Suggested Changes to the Categories

As EPRI personnel accumulated more operational data from the utilities, they found the transient lists they were using as a categorization basis required ex­pansion to cover all the transients experienced. They also noted that the current lists might require expan­sion in the future. As discussed in the previous parts of this section, there are specific inadequacies that should be addressed and corrected. To accomplish this task, Table 5 lists proposed transient categories in a format similar to Table 4 as the authors’ sug­gested solution.

The suggested transient lists were developed using a systematic, side-by-side analysis of a PWR and BWR power plant. Identical detail is developed with­out regard to plant type where there are comparable systems. Where necessary, specific detail is included to accommodate the differences.

The suggested categories are similar to the EPRI categories. Tables 6 and 7 provide more information about, respectively, PWR and BWR proposed cate­gories. The comment column for many of the cate­gories describes what motivated the suggested changes. Also, the tables contain information to aid in assessing the impact of reviewing the data to re­classify it. Detailed category descriptions are not included here and will not be developed unless the suggested categories are actually put into use.

While it is possible thu some categories may have no events initially, new plants are coming on-line and more operating experience is being gained at all plants. Thus, a more complete list of categories will be beneficial. With the suggested transient lists, the PRA analyst will have a level of detail and flexibility not available in the past.

Function

Main turbine/ generator

Condenser vacuum

Condensate

Feedwater

Suggested PWR Category

Generator trip or generator related faults

Generator trip or generator related faults with bypass valve failure

Turbine trip, throttle/stop valve closure, EHC faults

Turbine trip, throttle/stop valve closure, EHC faults with bypass valve failure

Loss of main condenser normal vacuum

Main condenser tube leakage

Loss of circulating water flow

Partial loss o f condensate flow

Total loss of condensate flow

Condensate system leakage

Low or decreasing feedwater flow at power

Total loss of feedwater flow at power

Similar EPRI Category Suggested BWR Category

PWR 34, BWR 1

BWR 2

PWR 33, BWR 3

BWR 4

PWR 25, BWR 8

PWR 27

PWR 30

PWR 23

PWR 24

PWR 28

PWR 15, BWR 24

PWR 16, BWR 22

Generator trip or generator related faults -

Generator trip or generator related faults with bypass valve failure

Turbine trip, throttle/stop valve closure, EHC faults

Turbine trip, throttle/stop valve closure, EHC faults with bypass valve failure

Loss of main condenser normal vacuum

Main condenser tube leakage

Loss of circulating water flow

Partial loss of condensate flow

Total loss of condensate flow

Condensate system leakage

Low or decreasing feedwater flow at power

Total loss of feedwater flow at power

Function

Feedwater(continued)

Reactor system flow

Suggested PWR Category

High or increasing feedwater flow at power (1 loop)

High or increasing feedwater flow at power (all loops)

Trip o f one feedwater pump

Loss o f feedwater heater(s)

Feedwater system leakage

Low or decreasing feedwater flow during startup or shutdown

High or increasing feedwatef flow during startup or shutdown

Loss of RCS flow (1 loop)

Total loss of RCS flew

Startup of inactive coolant pump

Similar EPRI Category Suggested BWR Category

PWR 19

PWR 20, BWR 20

BWR 23

BWR 21

PWR 28

PWR 21 & 22, BWR 25

PWR 21 & 22, BWR 26

PWR 1, BWR 16

PWR 14, BWR 17

PWR 13, BWR 18

BWR 14

BWR 15

BWR 19

High or increasing feedwater flow at power

Trip of one feedwater pump at power

Loss of feedwater heater(s)

Feedwater system leakage

Low or decreasing feedwater flow during startup or shutdown

High or increasing feedwater flow during startup or shutdown

Trip of one recirculation pump

Trip of all recirculation pumps

Abnormal startup o f idle recirculation pump

Increasing recirculation flow

Decreasing recirculation flow

Recirculation pump seizure

Function

Reactor pressure control

Reactivity control

Suggested PWR Category

Low pressurizer pressure

High pressurizer pressure

Pressurizer spray fails open

Pressurizer spray fails closed

Inadvertent rod withdrawal at power

Inadvertent insen ion of control rod(s) at power

Pressure/temperature/power imbalance due to rod(s) out of position

Control rod problems and/or dropped rod(s)

CVCS malfunction—boron dilution

Similar EPRI Category Suggested BWR Category

PWR 6

PWR 8

PWR 36

PWR 36

BWR 9

BWR 10

BWR 12

BWR 13

PWR 2, BWR 27

BWR 29

PWR 12

PWR 3

Pressure regulator fails open

Pressure regulator fails closed

Turbine bypass or control valves fail open

Turbine bypass or control valves fail closed

Inadvertent rod withdrawal at power

Inadvertent insertion of control rod(s) at power

Pressure/temperature/power imbalance due to rod(s) out of position

PWR II

Function

Reactivity control (continued)

Steam/reactorpressure

Safety injection

Electrical power

Reactor integrity

Suggested PWR Category

High flux due to rod withdrawal at startup

Inadvertent closure of one MSIV

Partial MSIV closure

Inadvertent closure of all MSIV

Inadvertent opening of steam relief valve(s)

Inadvertent safety injection

Primary containment pressure problems

Loss of offsite power

Loss of auxiliary power

Loss of power to necessary plant systems

Leakage from control rods

Leakage in primary system

Pressurizer leakage

Steam generator leakage

Inadvertent opening of PORV(s)/ safety valve(s)

Similar EPRI Category Suggested BWR Category

BWR 28

PWR 17, BWR 6

BWR 7

PWR 18, BWR 5

PWR 29, BWR 11

PWR 9, BWR 33

PWR 10

PWR 35, BWR 31

BWR 32

PWR 37

PWR 4

PWR 5

PWR 7

PWR 26

PWR 5

High flux due to rod withdrawal at startup

Inadvertent closure of one MSIV

Partial MSIV closure

Inadvertent closure of all MSIV

Inadvertent opening of safety/ relief valve(s)

Inadvertent startup of HPCI/HPCS

Primary containment pressure problems

Loss of offsite power

Loss of auxiliary power

Loss of power to necessary plant systems

Leakage from control rods

Function

Miscellaneousscrams

Spurious scrams

Suggested PWR Category

Detected fault in the reactor protection system

Scram due to plant occurrences

Loss of component cooling water flow

Loss of service water flow

Fire within plant

Automatic scram from instrumenta­tion or RPS fault—no out-of­tolerance condition

Manual scram—no out-of­tolerance condition

Spurious scram—cause unknown— no out-of-tolerance condition

Similar EPRI Category Suggested BWR Category

BWR 30

BWR 34

PWR 31

PWR 32

PWR 41

PWR 39, BWR 35

PWR 40, BWR 36

PWR 38, BWR 37

Detected fault in the reactor protection system

Scram due to plant occurrences

Loss of component cooling water flow

Loss of service water flow

Fire within plant

Automatic scram from instrumenta­tion or RPS fault—no out-of­tolerance condition

Manual scram—no out-of-tolerance condition

Spurious scram—cause unknown— no out-of-tolerance condition

Function

Main turbine

Main condenser vacuum

Condensate

EPRI PWR Category

33 Turbine trip, throttle valve closure, EHC problems

34 Generator trip or generator caused faults

25 Loss of condenser vacuum

27 Condenser leakage

30 Loss of circulating water

23 Loss of condensate pump (1 loop)

24 Loss o f condensate pumps (all loops)

28 Miscellaneous leakage in secondary system

Feedwater 15 Loss or reduction in feedwater

Suggested PWR Category

EPRI Categories to Be Screened Comments

Turbine trip, throttle valve closure, EHC problems

Turbine trip, throttle valve closure, EHC problems with turbine bypass valve failure

Generator trip or generator related faults

Generator trip or generator related faults with turbine bypass valve failure

Loss of main condenser normal vacuum

Main condenser tube leakage

Loss of condenser circulating water

Partial loss of condensate flow

Total loss of condensate flow

Condensate system leakage

Low or decreasing feedwater flow at power (1 loop)

None

33

None

34

None Clearer definition

28 Clearer definition

None Clearer definition

None Clearer, moregeneral definition

None Clearer, moregeneral definition

28 New category

None Clearer definition

Function

Feedwater(continued)

Reactor system flow

Reactor pressure control

EPRI PWR Category

16 Total loss of feedwater flow (all loops)

19 Increase in feedwater flow (1 loop)

20 Increase in feedwater flow (all loops)

21 Feedwater flow instability— operator error

22 Feedwater flow instability— miscellaneous mechanical causes

28 Miscellaneous leakage in secondary system

1 Loss of RCS flow (1 loop)

13 Startup of inactive coolant pump

14 Total loss of RCS flow

6 Low pressurizer pressure

8 High pressurizer pressure

Suggested PWR Category

Total loss of feedwater flow at power

High or increasing feedwater flow at power (1 loop)

High or increasing feedwater flow at power (all loops)

Low or decreasing feedwater flow during startup or shutdown

High or increasing feedwater flow during startup or shutdown

Loss of feedwater heater(s)

Trip of one feedwater pump

Feedwater system leakage

Loss of RCS flow (1 loop)

Startup of inactive coolant pump

Total loss of RCS flow

Low pressurizer pressure

High pressurizer pressure

EPRI Categories toBe Screened Comments

None Clearer definition

None

None

21, 22 New category

21, 22 New category

21, 22 New category

15 New category

28 New category

None

None

None

None

None

Function

Reactor pressure controd (continued)

Reactivity control

Steam pressure

EPRI PWR Category

36 Pressurizer spray failure

2 Uncontrolled rod withdrawal

3 CRDM problems and/or rod drop

11 CVCS malfunction—boron dilution

12 Pressure/temperature/power imbalance—rod position error

17 Full or partial closure of MSIV (1 loop)

18 Closure of all MSIV

29 Sudden opening of steam relief valve(s)

EPRI Categories to

Suggested PWR Category Be Screened Comments

Pressurizer spray fails open

Pressurizer spray fails closed

Inadvertent rod withdrawal at power

Control rod problems and/or dropped rod(s)

CVCS malfunction—boron dilution

Pressure/temperature/power imbalance due to rod(s) out of position

Inadvertent insertion of control rod(s) at power

High flux due to rod withdrawal at startup

Inadvertent closure of one MSIV

Inadvertent closure of all MSIV

Inadvertent opening of steam relief valve(s)

Partial MSIV closure

36 New category

36 New category

None Clearer definition

None Clearer definition

None —

None —

12 New category

12 New category

17 —

None —

None —

17 New category

Function

Safety injection

Electrical power

Reactor integrity

Miscellaneousscrams

______ EPR1 PWR Category_____

9 Inadvertent safety injection signal

10 Containment pressure problems

35 Loss of all offsite power

37 Loss of power to necessary plant systems

4 Leakage from control rods

5 Leakage in primary system

7 Pressurizer leakage

26 Steam generator leakage

31 Loss of component cooling

32 Loss of service water system

41 Fire within plant

Suggested PWR Category

Inadvertent safety injection

Primary containment pressure problems

Loss of all offsite power

Loss of power to necessary plant systems

Loss of auxiliary power

Leakage from control rods

Leakage in the primary system

Pressurizer leakage

Steam generator leakage

Inadvertent opening of PORV(s)/safety valve(s)

Loss of component cooling water flow

Loss of service water flow

Fire within plant

Scram due to plant occurrences

EPRI Categories to Be Screened

None

None

None

None

35, 37

None

None

None

None

5

None

None

None

39

Comments

New category

New category

New category

Function

Miscellaneous scrams (continued)

Spurious scrams

EPRI PWR Category

38 Spurious trips—cause unknown

39 Automatic trip—no transient condition

40 Manual trip—no transient condition

EPRICategories to

Suggested PWR Category Be Screened

Detected fault in the reactor 39protection system

Spurious scram—cause unknown— None no out-of-tolerance condition

Automatic scram from instrumen- None tation or RPS fault, no out-of- tolerance condition

Manual scram—no out-of- Nonetolerance conditions

Comments

New category

Function

Main turbine/ generator

EPRI BWR Category

1 Electric load rejection

2 Electric load rejection with turbine bypass valve failure

3 Turbine trip

4 Turbine trip with turbine bypass valve failure

Condenser vacuum 8 Loss of normal condenservacuum

Condensate —

Feedwater 20 Feedwater—increasing flow atpower

21 Loss o f feedwater heater

Suggested BWR Category

Generator trip or generator related faults

Generator trip or generator related faults

Turbine trip, throttle/stop valve closure, EHC faults

Turbine trip or throttle/stop valve closure or EHC faults with bypass valve failure

Loss of main condenser normal vacuum

Loss of main condenser circulat­ing water

Main condenser tube leakage

Partial loss of condensate flow

Total loss of condensate flow

Condensate system leakage

High or increasing feedwater flow at power

Loss of feedwater heater(s)

EPRI Categories to Be Screened

None

None

None

None

None

8

8, 23, 34

23

22

8, 22, 23

None

None

Comments

Clearer definition

New category

New category

New category

New category

New category

Clearer definition

Clearer definition

Function

Feedwater(continued)

Reactor system flow

EPR1 BWR Category

22 Loss of all feedwater flow

23 Trip o f one feedwater pump (or condensate pump)

24 Feedwater—low flow

23 Low feedwater flow during startup or shutdown

26 High feedwater flow during startup or shutdown

14 Recirculation control failure— increasing flow

15 Recirculation control failure— decreasing flow

16 Trip of one recirculation pump

17 Trip of all recirculation pumps

18 Abnormal startup of idle recirculation pump

19 Recirculation pump seizure

EPRICategories to

Suggested BWR Category Be Screened

Total loss of feedwater flow None at power

Trip of one feedwater pump 23 at power

Low or decreasing feedwater None flow at power

Low or decreasing feedwater None flow at startup or shutdown

Feedwater system leakage 22, 23, 24

High or increasing feedwater None flow during startup or shutdown

Increasing recirculation flow None

Decreasing recirculation flow None

Trip of one recirculation pump None

Trip of all recirculation pumps None

Abnormal startup of idle None recirculation pump

Recirculation pump seizure None

Comments

Clearer definition

Categoryseparation

Clearer definition

New category

Clearer definition

Clearer definition

Function

Reactor pressure control

Reactivity control

Reactor pressure

EPRI BWR Category

9 Pressure regulator fails open

10 Pressure regulator fails closed

12 Turbine bypass fails open

13 Turbine bypass or control valves cause increased pressure (closed)

27 Rod withdrawal at power

28 High flux due to rod withdrawal at startup

29 Inadvertent insertion of rod of rods

5 Main steam isolation valve closure

6 Inadvertent closure of one MSIV

Suggested BWR Category

EPRI Categories to Be Screened Comments

Pressure regulator fails open

Pressure regulator fails closed

Turbine bypass or control valves fail open

Turbine bypass or control valves fail closed

Inadvertent rod withdrawal at power

High flux due to rod withdrawal at startup

Inadvertent insertion of control rod(s) at power

Pressure/temperature/power imbalance due to rod(s) out of position

Closure of all main steam isolation valves

None —

None —

None Clearer definition

None —

None Clearer definition

None —

None —

27, 28 New category and 29

None Clearer definition

Inadvertent closure of one MSIV None

Function

Reactor pressure (continued)

Safety injection

Electrical power

Reactor integrity

Miscellaneousscrams

EPRI BWR Category

7 Partial MSIV closure

11 Inadvertent opening of a safety/relief valve (stuck)

33 Inadvertent startup of H PCI/ HPCS

31 Loss of offsite power

32 Loss o f auxiliary power

30 Detected fault in the reactor protection system

34 Scram due to plant occurrences

Suggested BWR Category

EPRI Categories toBe Screened Comments

Partial MSIV closure

Inadvertent opening of safety/ relief valve(s)

Inadvertent startup of HPCI/ HPCS

Primary containment pressure problems

Loss of offsite power

Loss o f auxiliary power

Loss of power to necessary plant systems

Leakage from control rods

Detected fault in the reactor protection system

Scram due to plant occurrences

Loss of component cooling water flow

Loss of service water flow

Fire within plant

None

None

None

33 New category

None —

None —

34 New category

34 New category

None —

None —

34 New Category

34 New Category

34 New Category

Function

Spurious scrams

EPRI BWR Category

35 Spurious trip via instrumenta­tion, RPS fault

36 Manual scram—no out-of- tolerance condition

37 Cause unknown

Suggested BWR Category

EPRI Categories to Be Screened Comments

Automatic scram from instnunen- ~ None tation or RPS fault, no out-of- tolerance condition

Manual scram—no out-of- Nonetolerance condition

Spurious scram—cause unknown— None no out-of-tolerance condition

Clearer definition

Clearer definition

4. DATA BASE DEVELOPMENT

The development of a data base consists of gathering data and making it useful. This section describes development of the data base used to derive the transient initiating event frequencies reported herein. Included in the development de­scription are the expansion and update of the EPRI data base, how the data were collected, the data sources used, and further information on the data categorization effort.

4.1 Expansion and Update of the EPRI Data Base

The 36 PWR plants and 16 BWR plants included in the EPRI data base were those that responded to a questionnaire from EPRI about events causing scrams. A check was made to determine if the plants reported in NP-2230 were indicative of the overall commercial nuclear power plant population. It was apparent that among utilities, no plants from Com­monwealth Edison, Florida Power and Light, or Duquesne Light were included. Further, there were relatively few GE BWR Mark 1 or Mark 3 plants. Therefore, the data base was updated to include vir­tually all commercial United States nuclear power plants in operation. LaCrosse was excluded since it is the only plant with Allis-Chalmers as a reactor vendor, and Fort St. Vrain was excluded since it is a gas-cooled reactor. Thus, data were collected for14 additional PWR plants and 10 additional BWR plants.

The EPRI data base consists of a computer file containing the following information for each tran­sient event: the plant, the event date, the plant status (mode) before and after the event, the power level of the plant at the time of the transient, the outage time, the transient category number, and whether the scram was scheduled. A computer program called PLUNGE22 was developed at EPRI to display information from this data base. Two other sets of information related to the transient data are contained within the PLUNGE software: plant in­formation and dates for all outages exceeding 24 h (regardless of the means of plant shutdown). Thus, the update included gathering more than just tran­sient data.

Every attempt was made to collect the same data about each plant, transient, and outage event as EPRI had to allow consolidation of the new and old data with a minimum of problems. As with EPRI’s data, the focus was on events causing or re­quiring a scram. Figure 1 is the form used to record the facility data for the new plants. On the facility data form was recorded the information used by the PLUNGE program as power plant search words to permit sorting by such classification factors as reactor supplier, main generator supplier, or architect- engineer among others.

The transient/outage event form, Figure 2, was used to record the pertinent data about each tran­sient or outage event. The figure is marked to show which lines apply to transients and which ones apply to outages; the outage start and end date line is the only line not completed for transient events. The event description entry is in some cases the exact transient description listed in the data sources; however, in most cases it is a condensation. Appen­dix C contains the plant code numbers used in the data collection process.

Data were gathered on the added plants for tran­sients and outages experienced from the first day of commercial operation to the end of 1979. From that date on, data were gathered to update all the active plants on the list, including the plants in the EPRI study, through the end of 1983. Most of the EPRI data is current through April of 1980. How­ever, since the last day of data for the NP-2230 plants varied from plant to plant, the newly col­lected data on those plants included some overlap of transients and outages. To preclude double counting events, any newly collected INEL data that predated the last day of EPRI data for a given plant were dropped. Data were gathered for tran­sients and outages for each plant from its first day of commercial operation through December 31, 1983, or the date of removal from commercial operation, whichever is first.

Figures 3 and 4 provide an overview of the EPRI and INEL data, showing where data was added. Where the lines on the figures pass through event counts, the EPRI study included some but not all of the indicated events.

FACILITY DATA

1. PLANT___________________________________________ NUMBER

2. TYPE

3. REACTOR SUPPLIER

4. MAIN CiF.NF.RATOR SUPPLIER

5. ARCHITECT FNGINFFR

6. PT ANT CONSTRUCTOR

7. FIRST DAY OF COMMERCIAL OPERATION

8. PLANT POWER RATING (MWt)

9. UTILITY LICENSEE

10. LAST DAY OF DATAFigure 1. Facility data form.

TRANSIENT EVENT/OUTAGE DATA

+ PLANT__________________________________

* EVENT D A TE _________________________

.(.OUTAGE START DATE____________________OUTAGE END DATE

*1. STATUS BEFORE: RUN SHUTDOWN STARTUP REFUELING

POWER LEVEL:

*3. STATUS AFTER: HOT STANDBY SHUTDOWN RUN REFUELING STARTUP

+ 4. OUTAGE LENGTH: HOURS

*5. EVENT DESCRIPTION

TRANSIENT CATEGORY:

4-6. SCHEDULED FORCED *7. AUTOMATIC SCRAM MANUAL SCRAM

+ : used for both transient and outage events

* : used only for transient events

4 : used only for outage eventsFigure 2. Transient/outage event data form.

35

YMUH «0«C 110701item Mt i 6*1001

SAN OUCflf 1 *•0101

HAOOAP H tc* 110101 «• (• (INNIt o o to i

JOINT ItACH 1 >01211

H I RtVtNSON?iqm?Hiumst u r n

JOINT ICACM |

U -i“ ilu711??? M l N f yankecTUlZtSU«RV }

710901 OCONtE I

? 9o ? i 9INDIAN M. I. . . U W } , r u i K t t m . 4

w731216

210K |731231KfWiUMC740601 fO#T CLMOUN? 40 t 20

1 N I K I S . 1 740902

OCONEE 2n o w

mom 2n o * i 7

OCONIC 974121b AftKANSAS 1

741219 M M M f IS* i

M l *21 MNCNC StCO

750*17 C U V . CLIFF I

790901COOK 1

7)0027M U S I C " ! 2

79122*toon*760920

(NOUN M . |

9

40

4

II

9

1)

II

20

n

T T

- n — r

»

9 I

16

40 119

21

n

12

10

4

19

42

19

JTMAVC* V Al * 1 41 22 13

711001s t . m i t i 11 ? 9

761221c i r s t i t m v 3 19 6 ?

7 » i m t( U » , CLIFF 2 14 10 f l

770401 L «SAlfM | 19 12 10

770130O A V I S - l l f S I 1 22 %

??1121 r—t m t t i 92 19 l f ^

711201 r * - JNOtrK ANNA | 10 4 10

7 90601 — 1COOK t 13 14 Tr . , 7 t 0 m 1$ * J t t I S . ? — y

711230 2. 9«ARKANSAS { 22 27 9

100321NORTH ANNA 2 11 4 9

101214fCOCOTIM 1 14 6 4

910701 6 . 0*F A I l f t | 11 1 9

110790 9 . 1*SAitN } 21 7 0

111011 2 , 6#PCCUIM 1 17 17 2

111201 1 . 0*3I 0U074M * 1 1

• 10601 ? . 0 *ST. U C I t 1 4

IIOIOI 4 . 1*

TOT41 IVfNTS HAN? HARS NIAN $T0 01%CUN HIM CUN S K 019

I d I t 4t 4 11*1 11. n«i io%

10.1 14,11.1 ii.

10

>rI T

4

I t

4

1

2

2

IS

T T

*110

9

14H

1 9

0

10

fic tc k n u i

0 1

3 2

I 9

13 2

2 13. 0*

3. 6 *

8 3. ) «

9 0.14

1C1 . 1*

31. 6*4

4 , 9*C

3. 1*C. 9*C. 0*

n 14 l » u 1? I I 19 <0 I I >2 I I T Q U l

IUO*|

I4 . 0 *

2

t

19,94

0 • 0*

16 .0*

0• 4*

011. 0 *

412. 0*

T 2

19 77. 4*

6 04 . 1*

1 63 . 0*

« 0. 4*

99.74

69.04

76 . 1*

111.94

9 01.04

21 . 9*

36 . 0*

S#

i *

4 . 2*0.?♦

EPRI data

INEL data

91

t i l

91

I I

40

94

194

ICT

42

111

136

90

97

81

MO

103

57

124

79

90

194

42

99

99

44

7)

91

79

79

6'.

I l l

92

64

91

19

62

12

40

44

2

62

31

24

22

21

36

7

391 )09 211 «|7 ||4 192 I I ?*1 41 40 31 I I |9 I I

4.2 ? , » 7.2 7 .0 1*9 f ,2 9*9• • I 9*1 3.9 * , | 9 .9 ) ,9 4 .1

11.2 11,9 11.0 10.4 10.0 9 .9 4.1

119I I

1.49*09,11*1

91I I

4*13 09*0l i t

49I

9.1 ! • ! • •91.0

I I9

1.11.11*11.0

19I

l . l1*2• • I7.9

10I

l . l1 .9• • I7.9

II

1*0 I.ft I . T 7.9

1 9 0I I I

1 .0 9 .0 .6•0 .0 .0»•? 1.7 1,7

? .9 ? ,9 7.9

31

.<1*17.9

4 ?1 I

4.0 7.0 . 0 .0

?»9 7 .9 7 • • • i n

0 3974 0 411,19

•0 1.99 • 0 «*• 9

Figure 3. EPRI and INEL PWR transient event data.

RCACTCR V i « M 10 1) 12 11 1 ) U 17 1 9 19 20 21 H 21 7 C M I

IOMSOfft I40070*

310 »CCR f t .

I M I l W - 610101

9 M I C P T . 1691101

G V t T C t C tC CK

iwnwrt1™ -W h f r r -

T10112NONUCCllO

711110 M K R t r 1

ra\iA6 tiffliM ~710210

OUAO C IT I E S 2

M W ™ -T 4 0 T0 1

I2114

rui

i10

10

1912

1C—r

ir

6

2

TF""T "

19

t i11

_____ MOTOi20

T ri

H "

741221'DUANE i m ID

790201 IR0HN M I I Y 2 tiflKJL.

20

~ r20

- rT

11

t r19

20 F>

0 10

I ?

791101MATCH I

791211 I10HN ffftRV 3

770101 WUMSUC* 1770110

HATCH 2__________ 790909RUSWIl’illHl 1 | 010600

222 2

2011

“io n i12 t in* n *i

JH—J 1 7

419

169

r ~ m o1 41 2 0

J - J j ' 96 . 1*

0U0«0•1*

1 .9 *1 09* I t

2 t 1 99 .7 *6 1 1 16.1 *10 1 6 01 .9 *0 1 01.1 *

7 9 01.0 *10 91 0 .4 *

7 C9 ,1 *16.0 *1

9*9*09 .0 *1

.1 *EPRI data

11 .9 *

310.1*

29.9*

IN EL data

t o m EVENTS X T 219 220 H I 167 l i e u o l o c 77 63 37 29 10 2 1 6 « )H»MI ) [ U | 2) 2 ] {} 23 22 22 20 20 15 11 1C I 9 I 2 2 2 2" it* 1».I t . l t . t 6 .7 7.6 a .5 » .) 5.* 3 .1 9.7 1.7 1.1 2 .0 .9 .9 J.O 4 .5 2.9! '• 0(« 7.91 6.01 9 .TO 1.12 ! ,H 9.90 t . t ? 4.01 2.90 3 .23 J.tC 3.0* 2.39 .90 .71 l . t l .71 2.12cun mm u . i 11.2 11.3 i c . i «.7 *.1 t.7 ».» 1. ) >.c 1,9 7.7 7.6 7.9 7.9 7.9 7.* . . . . . . .CWI S I C 0I * 7.91 7 . 3 2 6 . « 0 6 . 9 1 6 . 4 0 6 . 2 9 6 . 1 2 6 . 0 3 9 . 4 0 9 . t 2 S . « C 9 . 1 C 9 . ( 0 9 . 1 3 9 . t t 9 . 0 3 9 . I I 9 . 1 1 9 . 1 1 9 . 0 2 9 . 9 2

1 1 0 10121 1 0 2 9 1 .2 0.0 1*0 .0 7 .2 900 •00 .0 0• 4 7 .4 7 .411 9 .0 2 9 .0 2

Figure 4. EPRI and INEL BWR transient event data.

4.2 Data Sources 4.3 Data Categorization and Combination

Unlike the data gathering effort of EPRI, direct access to the utilities was not available. Therefore, use was made of the public documents available concerning the operational history of commercial nuclear power plants. The primary data source was the USNRC Graj Books for the years 1974 through 1983. These monthly reports provide status summary data on the operation of licensed nuclear reactors. For years prior to 1974 and as a supple­ment to the Gray Books, there were three secon­dary sources: the USNRC’s Nuclear Power Plant Operating Experience Annual Reports, the individual plant USNRC Dockets and the Depart­ment of Energy’s (DOE’s) Operating History for 1977.23

There are several limitations associated with the use of these documents as data sources. First, there are inconsistencies between the reports about shut­downs to the USNRC and the utilities records. Some scrams occur during planned outage testing and are not required to be reported to the USNRC. This became apparent when the EPRI transient event data file was compared to the Gray Book, Annual Reports, and Docket information for cor­responding time periods.

Secondly, the event descriptions in the Gray Books and Annual Reports are, of necessity, brief and may not give enough information to unam­biguously categorize the event. The detail of event descriptions varied considerably from plant to plant with the terse, one-line descriptions leaving much to be desired.

Third, the information in the Gray Books and the Annual Reports is a summary of what occurred. Direct access to plant records would allow the com­plete chain of events of a transient to be analyzed.

Fourth, not all documents listed as being in the plant dockets were available to the authors. Conse­quently there are gaps in the pre-Gray Book infor­mation concerning plant transient events to use as a comparison to the EPRI event dates/descriptions.

These are just a few of the limitations of the data sources used for this report. Every effort was made to accurately interpret the reported data in order to correctly categorizc each event.

After the data were collected each transient was reviewed and categorized. Some events required fur­ther research for proper categorization. At least two engineers independently classified each event. Dif­ferences were resolved by discussions and further research on the events. A further discussion of cer­tain categorization problems is contained in Section 3.1.

In order to obtain the EPRI PLUNGE program22 and the EPRI data in the format used by PLUNGE, a license agreement was completed between EG&G Idaho and EPRI.24' 2 ' The PLUNGE code was modified to accommodate the additional plants and reactor years covered by the * new data. A new data file in the PLUNGE format was formed containing both the new event infor­mation contained on the data sheets and the EPRI data.

The EPRI outage data reside in FORTRAN DATA statements in the PLUNGE program. PLUNGE has an output option (not used in NP-2230) to condense the plant operating years by filtering out 24-h and longer outages. However, the new outage data were not entered into the PLUNGE program due to time constraints. Instead, the new outage data were transferred to a data tape for storage and possible future use.

In summary, the data base was expanded to include all but two commercial power reactors. A format was used that provides virtually the same information that is in the EPRI data base. The events were categorized, reviewed, and then entered into the PLUNGE program and data files to await statistical analysis.

4.4 Data Display and Analysis

With the composite data base complete, the data file containing the transient event information was processed using the PLUNGE computer program. Tables for all transients combined and for each transient category were produced for both types of plants. The results of the PLUNGE analysis of the combined data base for PWR and BWR data are given in Appendices D and E, respectively.

The tables in Appendices D and E describe the total number of occurrences of each type of tran­sient in each year of operation of 50 PWR and 26 BWR plants. Transients occurring at low power levels and those that occurred as a result of delib­erate tests, maintenance, or other scheduled shut­downs are included. In addition to transient counts, the updated PLUNGE tables also contain mean and standard deviation statistics that are described in Appendices D and E.

A preliminary data analysis for each PWR and each BWR transient category was performed in order to identify upper bounds for the occurrence rates that reflect variation among plants as well as across reactor years.3 The PLUNGE tables of Appendices D and E describe 407 full plant-years of PWR experience and 239 full plant-years of BWR experience, respectively. These can be re­garded as samples from a population of possible plants and reactor ages. Since each observation describes one year of the experience of one plant, each observation is an estimate of an annual occur­rence r;1 e. The use of the sample mean (X) and standaiu deviation (s) of the set of counts for each transient for each plant type to obtain upper bounds is described in the following paragraphs.*5

Three analyses were performed for each PWR transient and each BWR transient. The first two analyses were based on the hypothesis that the observed number of occurrences in a year at a facili­ty has a Poisson distribution with an occurrence rate, A, per year, which itself varies between plants and time periods. The cumulative statistics, x and s, are measures of a compound distribution reflect­ing both variation in the frequency A and in the con­ditional Poisson sampling distributions. An upper bound for A, based just on its variation among plants and time, is desired. The mean and variance of a Poisson distribution for occurrences in a time period of length 1 (one) (here, one year) are both equal to the occurrence rate or frequency. Thus, x

a. Partitioning the data into reactor years for each plant per­mits one to consider variations over the life o f a plant’s opera­tion, as it ages.

b. x and s are, respectively the CUM MEAN and CUM STD DEV values for the 23rd reactor year from the Appendix D tables and for the 21st reactor year from the Appendix E tables. If this mean when rounded to the nearest hundredth is zero, the actual number of occurrences divided by the number of cells in the table it used.

is an estimate of the sampling variance as well as the frequency. The estimated variance of the underlying marginal distribution reflecting variation in A is found by subtracting the sampling variance estimate from the total variance estimate (s2).28

In the first two analyses, bounds on A were ob­tained by fitting iognormal and gamma distribu­tions, respectively, to the estimated mean and variance described above for the underlying A distribution. In cases where the variance estimate was negative, the total variance (s2) was used. The choice of the lognormal distribution was motivated by the wide use of lognormal uncertainty distribu­tions in reliability analysis where frequencies are likely to vary by orders of magnitude. The gamma distribution includes densities with much greater skewness than the lognormal. For both of the den­sities, 95 ^ percentiles were computed as upper bounds. In most cases, bounds based on the gam­ma distribution were 20 to 50% greater than those based on the lognormal distribution.

The third analysis for each transient was to com­pute the traditional occurrence rate upper 95% con­fidence bounds using tables of the chi-squared distribution. As opposed to the above methods, this approach assumes that the populations are homogeneous and occurrence rates do not vary among plants and time periods. The total data base, including periods of less than a year of operation, was used for this analysis. As expected, bounds calculated in this analysis were generally much lower than the first two methods. However, in cases where there are very few occurrences, the data may not be sufficient to reject the homogeneous population hypothesis and these bounds exceed those of the other methods. For transients that have not oc­curred, s2 is 0 (zero) and this is the only applicable method among the techniques considered.

Appendix F provides further details on the calculation of these three upper bounds. For each transient, the largest of the three frequency bounds was selected as the best 95% bound estimate.

For this preliminary analysis, no attempt was made to separately assess differences among plants or plant ages. All the full-year data were combined into an aggregate population whose variation was then modeled. Section 6 discusses a more detailed data analysis method that could be applied to pro­vide more insights from the data.

5. DATA SUMMARY

With the tasks of gathering, categorizing, and inputting the new data completed, the EPRI and the INEL data files were combined to produce the composite data base used in this report. As a result of the expansion and update efforts, the number of PWR transients rose from the 2093 events oc­curring during 213 reactor years at 36 plants reported in NF-2230 to 3574 events occurring during 423 reactor years at 50 plants. The BWR transients rose from the 903 events occurring during 101 reactor years at 16 plants reported in NP-2230 to 1832 events during 251 reactor years at 26 plants. These added data represent an 80% increase in the total number of transients reported, a 115% in­crease in the total number of reactor years of data, and a 46% increase in the number of plants covered. A sample of the one-line event descriptions of these data, including such features as the plant status be­fore and after the events, is contained in the tables of Appendix C. The descriptions are listed ty tran­sient category and plant, and by plant and event date, all by plant type. A complete record of the INEL data is contained on microfiche in the pocket on the inside back cover of this report.

A comparison of the EPRI and the combined data files was made to further validate the EPRI data and reveal any changes in the nature of the transients occurring at commercial nuclear power plants. To that end, the data files were used to com­pare the transient occurrence counts and average category downtimes of the NP-2230 and the com­bined data. The methods and results of those com­parisons are the subject of this section. In addition, upper bounds for the occurrence rates based on the combined data are presented, the effects of power level and scheduled scrams on the transient event data base are investigated, and overall rates as a function of time are presented.

5.1 New Transient Initiating Event Frequencies

Tables 8 and 9 contain the average transient event frequency estimates derived from the com­bined data base, together with three sets of upper bounds. As indicated in Subsection 4.4, the max­imum bound, marked in the tables, is recom­mended.

The tables also contain a column with average transient frequency estimates from NP-2230. Com­paring this column to the updated frequency estimates show an overall decrease in the average transient event annual frequency, particularly for BWRs. This could possibly be attributed to the fact that, since data for all plants were gathered for 1981, 1982, and 1983, a smaller percentage of the added events occurred during the first year of a reactor’s operation when scrams are likely to be more prevalent. For the EPRI data (both plant types), M 6% of the reactor years studied were reac­tor year 1; while only 6% of the added PWR obser­vation time and 5% of the added BWR reactor years were first years.

For the combined data, the estimated annual oc­currence rates for PWR Categories 2, 5, 7, 10, 13,29, 32, and 38 were at least 40% low er than the cor­responding NP-2230 estimates. On the other hand, Categories 16, 21,22,28, 31, 33, 34, 35, and 37 had 40% higher occurrence rates. For BWRs, Categories 2, 4, 5, 9, 10, 15, 19, 21, 22, 25, 27, 28-31, and 37 had lower rates, while Categories 6, 7,18, 23, 32, and 34 were higher. Overall, these dif­ferences are less than a half order of magnitude and are not believed to be significant for most applica­tions.

5.2 Dominant Transients Comparison

To determine the relative occurrence of tran­sients, the EPRI and combined data files were sorted by transient category, the number of events in each category was counted, and the categories were ranked in descending order to determine which transients were the largest contributors to the overall number of events.

The PWR categories having >2% of the total number of events are ranked and compared in Tables 10 and 11. Table 10 leaves out the spurious trip, no out-of-tolerance transients (PWR catego­ries 38, 39, and 40), while Table 11 includes them. The two tables show there is only a slight shift in the ranking of the transients having the highest oc­currence rates. Figures 5 and 6 show the number of occurrences of all PWR transients for the EPRI and combined data files, respectively.

The BWR transient categories having >2% of the total number of events are shown ranked and compared in Tables 12 and 13. Again, Table 12 leaves out the spurious trip, no out-of-tolerance transients (BWR Categories 35, 36, and 37), while Table 13 includes them. Like the PWRs, the BWRs also showed no significant shift in the relative occur­rences of the transients having the highest occur­rence rates. Only two transient categories are not listed on both the NP-2230 and combined lists. Figures 7 and 8 show the relative occurrences of all BWR transient categories for the old and the com­bined data, respectively.

5.3 Transient Outage Time Comparison

The average outage or down times for the various PWR and BWR transient categories were also calculated from the category sort mentioned in the previous section. Every effort was made to deter­mine the down time associated just with the tran­sient occurrence and to exclude any time due to unrelated repairs or maintenance. However, the category averages still contain some bias in that respect. Furthermore, some transient events in the data file have no down time listed for them; these events were excluded from the calculations. The tables show the number of events out of the total in the category that have outage times listed in order to give the user an estimate of how representative the average times are. The results of the outage time comparisons are given in Tables 14 and 15 for the PWRs and BWRs, respectively.

Overall, the average outage times for the com­bined data are shorter than the times of the EPRI data. Large variations in the outage time for a par­ticular transient still exist so the averages should only be considered gross estimates. However, they do give an idea of how long a plant will be off-line when a transient occurs.

5.4 Transient Downtime Impact on Operation

Because of the limited transient event descriptions available, no in-depth analysis of transient event sequences could be made. The primary recovery action for all recorded transients was a reactor scram. Two transients for which the automatic scram system failed were observed in the time period

studied (through 1983) but all plants, save one, escaped damage from a transient serious enough to require an indefinite shutdown. The one exception, of course, is Three Mile Island Unit 2.

How long a reactor is shut down following a tran­sient is dependent upon many factors. Among them are the type of transient that has occurred and the sequence of events that followed the transient. With no resources available to describe and analyze tran­sient event sequences, alternate means must be used to investigate the total impact of recovering from a given transient.

One indirect measure of the total impact of re­covering from a given transient is the total down­time for that transient, which depends both on the number of occurrences and the average downtime per occurrence. It is possible for a recurring tran­sient to require only a short downtime and an in­frequently occurring one to keep the reactor down for a long time.

Tables 16 and 17 explore the impact of each tran­sient on the total estimated downtime using the combined data base PWR and BWR number of oc­currences and average down times, respectively.

While not surprising, it is interesting to note that of the seven PWR categories whose individual con­tribution to total transient downtime is >5% , all but one, Category 35, are also among the dominant transients by number of occurrences. The same holds true for the BWRs where all five of the categories contributing most to downtime also dominate in numbers of occurrences.

5.5 The Effects of Power Level and Scheduled Scrams

Two issues developed by EPRI and utilized by PLUNGE as search words are the effects of power level on .the severity of a transient and the effects of deliberate, scheduled scrams on the transient event frequencies. The individual effects of these two issues and their combined total effect on the event counts at all plants are discussed by both plant and transient category. This will allow the PRA analyst some flexibility in tailoring the transient in­itiating event frequencies of this report to specific applications.

In Subsection 4 .1.2 of NP-801, EPRI argued that “ below some non-zero power level, transients not

initiated by a reactivity insertion should not have significant consequences even if the scram system fails.” They assumed this non-zero power level to be 25% and used it to derive further transient initiating event frequencies in the tables of both NP-801 and NP-2230. The transient initiating event frequencies presented in this section also exclude transients occurring at or below 25% power in order to focus on events with potentially greater impact on the plants.3

As EPRI gathered the utility data to produce the NP-801 and NP-2230 data bases, any scram that was a result of deliberate tests, maintenance, or other scheduled shutdowns was flagged with a T in the data file (Reference 22, p. 3-6). Gray Book data specifically indicates whether scrams are forced or scheduled. This flag is utilized by the PLUNGE transient search word option TEST to exclude these scrams from the table counts when desired.

Table 18 is a summary of the effects of low power transients, scheduled scrams and their combination on the event counts at PWRs. An event may both be scheduled and occur at low power; the last col­umn of Table 18 describes the combined total effect of one or both of these conditions being present. Overall, low power and/or scheduled scrams ac­count for 27% of all recorded events. Except for Three Mile Island Units 1 and 2, Sequoyah 2 and St. Lucie 2, which have low commercial operating time and thus few refueling outages or periodic tests, the individual plant low power/scheduled scram effects range from 6% at Maine Yankee to 55% at H. B. Robinson 2.

Table 19 is a summary of the effects of low power transients, scheduled scrams, and their combination on the event counts at BWRs. Like the PWRs, low power and/or scheduled scrams account for ~30% of all events recorded at BWRs. Except for Dresden 1 and Big Rock Point where M 2 yr of ear­ly data is unavailable, and Susquehanna 1 which has low commercial operation time, the low power/scheduled scram individual plant effects range from 10% at Dresden 3 to 52% at Pilgrim 1.

Table 20 is a summary of the effects of low power and scheduled scrams on the PWR event counts by transient category. As expected, the transient categories that have startup or shutdown in their

a. Note that, in cases where the power level in unknown, it is assumed to be > 2$ty.

definition (Category 21), or would be involved in scheduled tests and/or shutdowns (Categories 33 and 40), have higher effects than most others. Overall, the low power transients account for 23% of all events and the scheduled scrams make up 6% of the total. In addition, Categories 2, 6 , 7, 8, 14, 15, 19, 20, 22, 23, 27, 31, and 36 have low power effects that are higher than the overall average, while Categories 25 and 35 have scheduled scram effects that are higher than the average of the in­dividual class scheduled scram effects. The com­bined low power and/or scheduled scram effects range from 0% for Categories 10, 12, 18, 24, 26,30, 32, and 41 to 85% for Category 21.

Table 21 is a summary of the effects of low power and scheduled scrams on the BWR event counts by transient category. The BWRs exhibit behavior similar to PWRs. The categories that are defined for low power (Categories 25, 26, and 28) and the categories most likely to involve testing (Categories 3 and 36) have the highest effects in these areas. However, Categories 5, 7, 10, 11, 12, 21, 27, 29, 35, and 36 have a higher than average incidence at low power. The one event in Category 4 occurred at low power so there are no high power counts for this category at all. No categories, except for Category 36 as expected, have an effect higher than the average for scheduled scrams.

Time and space do not permit further investiga­tion of the effects of low power and testing on the transient frequency occurrence rates. The data base developed is available for future use and enough information is provided in these tables and the tables of Appendix G to allow the PRA analyst to pursue the issue further if desired.

5.6 Transient Event Rate Time Trends

Beyond determining the overall average transient rate for nuclear power plants, it is of interest to con­sider how the rates change with time. The follow­ing two time reference point options are possible: measuring the time of each occurrence from the date of initial commercial operation of the respec­tive plant, or measuring it from some fixed refer­ence point in the past that does not change among plants.

The EPRI PLUNGE program is designed primarily to display transient occurrence rates using the initial commercial operation dates as reference

points. With these reference points, each occurrence time is the age of the respective plant at the time of the event. Measuring these ages in years and rounding up produces a variable that EPRI calls “ reactor year;” column means at the bottom of the PLUNGE output tables in Appendices D and E show changes in the rates by reactor year for the total of all transients and for each separate tran­sient category.3 NP-2230 contains plots showing “ learning curve” effects for the first nine years based on these data from the two EPRI data “ total of all transients” tables. The data added in this study have not produced any substantial changes in these trends. As with the EPRI data, the rates for the first reactor year tend to be high. Table 22 includes partial years of data and illustrates this point. A statistical approach for further study of these trends is described in the next section.

Using for trend analysis the option involving a fixed reference point in time that does not change among plants is accomplished by considering the event dates themselves. Changes in plant designs, operating procedures, and technical specifications over a period of years may result in changes in average rates of occurrence of transient events. While it is beyond the scope of this study to attempt any statistical correlation of the data with such casual factors, Table 23 shows annual transient occurrence rates for PWRs and BWRs from 1961 through 1983.*5

a. Note that the term reactor years includes periods when the plants are shut down as well as when they are critical.

b. The BWR data do not include data from Big Rock Point and Dresden I due to lack of early data from these plants.

This table exhibits fluctuations in the rates prior to 1968, with some very high PWR rates and some very low BWR rates. However, these fluctuations are based on only a few plants. The pattern that plants tend to have higher transient occurrence rates in their first few years of operation than they do in later years affects some of these rates. The table shows a steady decline in the yearly rates for both plant types since 1980, with a PWR peak in 1974 and BWR peak in 1977. The 1974 PWR peak may be due to the addition of seven new plants in that year and the BWR peak may be environmental in nature because a corresponding increase in event counts occurs for PWRs also in that same year.

Table 23 also shows rates based on the number of critical years (of plant operation) during each calendar year. Although 23% of the transients for both plant types occurred at power levels <25%, only 8.4% of the events occurred at zero power. That is, as expected most scrams occur when the plants are critical. For this reason, rates per unit of critical time are of interest. Table 23 shows that these rates exhibit the same general pattern as do the rates per total plant year.

The data for Table 23 are taken from the tables in Appendix H. The Appendix H tables give tran­sient event counts by plant and calendar year and critical hours by plant and calendar year. The critical hours and calendar hours from these tables are converted to years for ease in determining the yearly rates found in this section. The Appendix H tables are provided to allow the PRA analyst to make further refinements to the transient event rates given in this report.

PWRCMegorf

T2345

6789

10

1112131415

16 17 l«192D

2122232425

2627282930

3132333435

Total AverageNumber o f Frequency

Title Occurrences (per year)

Loss of RCS flow (1 loop) 117 0.28Uncontrolled rod withdrawal 5 0.01CRDM problems and/or rod drop 205 0.50leakage from control rods 7 0.021-eakage in primary system 20 0.05

Low pressure pressurizer 11 0.03Prcssurizer leakage 2 0.005High Pressurizer Pressure 15 0.03Inadvertent safety injection signal 22 0.05Containment pressure problems 2 0.005

Containment pressure problems ' 12 0.03Pressure, temperature, powet imbalance—rod position error 52 0.13S u n u p of inactive coolant pump 1 0.002Total loss of RCS flow 13 0.03Loss or reduction in feedwaler flow (1 loop) 628 1.50

Total loss o f feedwaicT flow (all loops) 71 0.16Full or partial closure o f MSIV (1 loop) 70 0.17Closure o f all MSIV 15 0.04Increase in feedwater flow (1 loop) 184 0.44Increase in feedwater flow (all loops) 9 0.02

Feedwater flow instability—operator error 127 0.29Feedwaler flow instability—miscellaneous mechanical causes 143 0.34Loss of condensate pumps (1 loop) 27 0.07Loss o f condensate pumps (all loops) 4 0.01Loss o f condenser vacuum 61 0.14

Steam generator leakage 13 0.03Condenser leakage 15 0.04Miscellaneous leakage in secondary system 35 0.09Sudden opening of steam relief valves 9 0.02Lois o f circulating water 22 0.05

Loss of component cooling 8 0.02Loss o f service water system 2 0.005Turbine trip, throttle valve closure, EHC problems 502 1.19Generator trip or generator caused faults 193 0.46Loss o f all offsite power 60 0.15

Combined Data

95*3> Upper Bounds0 EPRIStandard AverageDeviation Gamma Lognormal Chi-Squared Frequency

0.63 0.97* 0 .85 0.32 0.400.10^ 0.004 0.03e 0.02 0.021.57 2.89* 1.91 0.54 0.680.19 0.04 0.07* 0.03 0.020.26 0.28* 0.19 0.07 0.09

0.16** 0.17* 0.11 0.04 0.030.07*1 0.004 0.02* 0.01 0.010.27 0.07 0.11* 0.05 0.030.27 0.30^ 0.19 0.07 0.060.10 0.004 0.02* 0.01 0.01

0.20 0.17* 0.12 0.05 0.040.55 0.77* 0.50 0.15 0.170.05 0.001 0.01* 0.009 0.010.19 0.17* 0.11 0.05 0.032.17 5.10* 4.53 1.58 1.81

0.51 0.78* 0.58 0.20 0.140.60 0.92* 0.64 0.20 0.260.24 0.23* 0.15 0.05 0.041.17 2.28* 1.62 0.49 0.68 0.18 0.07 0.08* 0.04 0.02

0.76 1.34* 1.02 0.35 0.150.86 1.59* 1.20 0.39 0.220.30 0.34* 0.25 0.09 0.090.lOd 0.004 0.03* 0.02 0.010.43 0.57* 0.46 0.18 0.20

0.20 0.53* 0.43 0.05 0.040.24 0.23* 0.15 0.05 0.050.31 0.24* 0.23 0.11 0.080.18 0.07 0.08** 0.04 0.050.30 0.27* 0.19 0.07 0.06

015 0.11e 0.08 0.03 0.00.07** 0.004 0.02* 0.01 0.011.56 3.42* 3.21 1.28 0.380.88 1.59* 1.40 0.51 0 ’.A0.44 0.58* 0.48 0.17 0.14

Combined Data

Total Average 95% Upper Boundsc EPRIPWR Number of Frequency*1 Standard Avenge

Category Tiile Occurrences (per year) Deviation Gamma Lognormal Chi-Squared Frequency*’

36 Pressurizer spray failure 12 0.03 O.IT* 0.1 le 0.11 0.05 0.04J7 Loss of power to necessary plant systems 49 0.11 0.40 0.54e 0.40 0.15 0.0938 Spurious trips—cause unknown 34 0.08 0.38 0.47* 0.31 0.11 0.1539 Auto trip—no transient condition 592 1.42 1.90 4.39* 4.03 1.50 1.6340 Manual trip—no transient condition 198 0.47 0.96 1.83* 1.53 0.52 0.6241 Fire within plant 7 0.02 U.1S 0.1le 0.08 0.03 0.03_ -------

Total o f all transients 3574 S.J 7.9 23.11* 21.97 8.69 9.9

a. Data in this table are based on the 422.95 reactor years of the Appendix D transient event tables.

b. Bawd on occurrences in full reactor years o f data.

c. The three column headings refer to the distributions used in computing the bounds.

d. The prior matching moments method was used (see Appendix F).

e. Denotes the recommended bound.

Total AverageBWR Number of Frequency*9

Category Title Occurrences (per year)

1 Electric load rejection 112 0.452 Electric load rejection with turbine bypass valve failure 1 0.00*3 Turbine trip 214 0.874 Turbine trip with turbine bypass valve failure 1 0.0045 Main suam isolation valve closure 67 0.27

6 Inadvertent closure o f one MSIV 51 0.217 Partial MSIV closure 14 0.068 Loss o f normal condenser vacuum 102 0.419 Pressure regulator fails open 20 0.08

10 Pressure regulator fails dosed 26 0.10

II Inadvertent opening o f a safety/relief valve (stuck) 33 0.1412 Turbine bypass fails open 9 0.0413 Turbine bypass or control valves cause increased

pressure (ckncd)103 0.42

14 Redrculacoa control failure—increasing flow 44 0.18IS Rearculatioo control failure—decreasing flow 13 0.05

16 Trip o f one recirculation pomp 14 0.0617 Trip o f all recirculation pumps 9 0.0318 Abnormal startup of idle recirculation pump 4 0.0219 Redrenbooo pomp seizure 1 0.00420 Feedwatcr—increasing flow at power 36 0.14

21 Loss o f feedwatcr heater 7 0.0222 Loss o f all feedwater flow 16 0.0723 Trip o f one feedwater pump (or condensate pump) 51 0.2024 Feedwaier—low flow 118 0.4923 Low feedwater flow during startup or shutdown 28 0.12

26 High feedwater flow during startup or shutdown 11 0.0427 Rod withdraw at power 3 0.0128 High I h s due to rod withdrawal at startup 12 0.0529 Inadvertent insertion o f rod or rods 15 0.0630 Detected fault in reactor protection system 15 0.05

31 Loss o f off site power 19 0.0832 Loss o f auxiliary power (loss o f auxiliary transformer) 6 0.0233 Inadvertent startup o f HPC1/HPCS 2 0.01

Combined Data

StandardDeviation

' 95% Upper Boundsc EPRIAverage

Frequency**Gamma Lognormal Chi-Squared

0.80 1.33* 1.23 0.52 0.68O.OS1* — 0.01 0.02* 0.011.28 2.65* 2.43 0.95 1.030.04s — 0.01 0.02* 0.010.66 1.1 <f 0.89 0.32 0.49

0.52 0.71* 0.63 0.25 0.190.27 0.28® 0.21 0.09 0.050.74 L IS ' 1.08 0.48 0.450.36 0.46* 0.30 0.11 0.180.38 0.51* 0.36 0.14 0.18

0.48 0.7J* 0.51 0.17 0.220.21 0.17* 0.14 0.06 0.060.86 1.55* 1.33 0.48 0.44

0.53 0.81* 0.63 0.22 0.230.28 o . x f 0.19 0.08 0.11

0.25 0.16* 0.15 0.08 0.070.17** 0.11* 0.11 0.06 0.030.16 0.11* 0.08 0.03 0.0O.Od* — 0.01 0.<K* 0.010.39 0.36* 0.34 0.19 0.16

0.14** 0.0S 0.07* O.OS O M0.25** 0.42* 0.27 0.09 0.140.48 0.55* 0.52 0.25 0.150.85 1.46* 1.35 0.54 0.490.38 0.44* 0.38 0.15 0.21

0.2f f i 0.2t f 0.15 0.07 0.0$0.11 0.06* 0.04 0.03 0.020 .22*1 0.26* 0.19 0.08 O M0.26 0.23* 0.20 0.09 0.120.15 0.26* 0.18 0.09 0.09

0.27* 0.48* 0.31 0.11 0.130.14** 0.05 0.07* 0.05 0 M0.09“* 0.003 0.03* 0.02 001

Combined Data

BWRCategory Title

Total Number of Occurrences

Average Frequency1* (per year)

StandardDeviation Gamma

95 S Upper Bounds'

Lognonnal

c

Chi-Squared

EPRIAverage

Frequency^

34 Scram due to plant occurrences 152 0.58 0.88 1.45* 1.40 0.69 0.3835 Spurious trip via instrumentation, RPS fault 276 1.11 1.23 2.33* 2.31 1.21 1.16

36 Manual Scram—no out-of-tolerance condition 212 0.87 1.47 3.20= 2.73 0.94 1.0437 Cause unknown 15 0.06 0.30 0.35* 0.23 0.09 0.12

------ "

Tou> af all transients 1831 7.4 5.82 17.39* 17.07 7.58 8.9

a. D au in ibis table art based on 251.28 reactor years o f ihe experience described in the Appendix E transient event tables.

b. Based on occurrences in full react Of years of d au .

c. The three column headings refer to the distributions used in computing the bounds.

d. The prior matching moments method was used (see Appendix F>.

e. Denotes the recommended bound.

EPRI PWR Data Combined PWR Ddta

Category

15

33

19

3

1

34

17

22

25

12

21

Title

Loss or reduction in feedwater flow (1 loop)

Turbine trip, throttle valve closure, EHC problems

Increase in feedwater flow (1 loop)

CRDM problems and/or rod drop

Loss o f RCS flow (1 loop)

Generator trip or generator caused faults

Full or partial closure of MSIV (1 loop)

Feedwater flow instability- miscellaneous mechanical causes

Loss o f condenser vacuum

Pressure/temperature/power imbalance—rod position error

Feedwater flow instability— operator error

Total

Total transients^

Numberof

Events

402

295

148

138

84

81

50

44

43

34

32

1351

1601

Category

15

33

3

34

19

22

21

1

16

17

25

35

Title

Loss or reduction in feedwater flow (I loop)

Turbine trip, throttle valve closure, EHC problems

CRDM problems and/or rod drop

Generator trip or generator caused faults

Increase in feedwater flow (1 loop)

Feedwater flow instability- miscellaneous mechanical causes

Feedwater flow instability— operator error

Loss o f RCS flow (I loop)

Total loss o f feedwater flow (all loops)

Full or partial closure of MSIV (1 loop)

Loss o f condenser vacuum

Loss o f all offsite power

a. The transients included have >2% of the total

b. Excluding Categories 38-40.

Total

Total transients*’

number of PWR transients excluding Categories 38, 39, and 40.

Numberof

Events

628

502

205

193

184

143

127

117

■ 71

70

61

60

2361

2750

EPRI PWR Data Combined PWR Data

Category

IS

39

33

19

3

40

I

34

17

Title

22

25

Loss or reduction in feedwster flow (I loop)

Auto trip—no transient condition

Turbine trip, throttle valve closure, EHC problems

Increase in feedwater flow (1 loop)

CRDM problems and/or rod drop

Manual trip—no transient condition

Loss of RCS Dow (I loop)

Generator trip or generator caused faults

Full or partial closure o f MSIV (I loop)

Feedwater flow instability- miscellaneous mechanical causes

Loss of condenser vacuum

Total

Total transients

Numberof

Events

402

330

293

148

138

132

84

81

50

44

43

1747

2092

Category ______________Title_____________

IS Loss or reduction in feedwater flow (1 loop)

39 Auto trip—no transient condition

33 Turbine trip, throttle valve closure, EHC problems

3 CRDM problems and/or rod drop

40 Manual trip—no transient condition

34 Generator trip or generator caused faults

19 Increase in feedwater flow (1 loop)

22 Feedwater flow instability—miscellaneous mechanical causes

21 Feedwater flow instability— operator error

1 Loss of RCS flow (I loop)

Total

Total transients

Numberof

Events

i 628

592

S02

205

198

193

184

143

127

117

2889

3574

a. The transients included have > 20/0 of the total number of PWR transients.

Num

ber

of ev

ents

EPRI PWRcategor

Figure 5. Transient event occurrences by category for EPRI PWR data.

5 6332

c©>©

©•QE

IN EL data

EPRI data

2 2 4 0_ 9 10 0 4 18 0 7 !22640 20 8 36| 6 95 99 10 3 18 5 4 18 0 _9_ 8 0 207|l12 31 4 30 5 26266) 2

84 4 [138 5 18 7 2 6 12 2 8 34 1 6 402 31 50 7 148 3 32 44 17 1 43 8 11 17 9 13 0 2 29981 29 8 19 29330132 5 1 1 15 6333

Figure 6. Transient event occurrences by category for combined PWR data.

EPRI BWR Data

Numberof

Category ______________ Title______________ Events

3 Turbine trip 107

I Electric load rejection 69

24 Feedwater—low flow 53

5 Main steam isolation valve closure 48

8 'Loss o f normal condenser vacuum 46

13 Turbine bypass or control valves 43 cause increased pressure (closed)

34 Scram due to plant occurrences 38

14 Recirculation control failure— 23 increasing flow

11 Inadvertent opening of a safety/ 21 relief valve (stuck)

25 Low feedwater flow during startup 21 or shutdown ,

6 Inadvertent closure of one MSIV 18 (reset open)

9 Pressure regulator fails open 17

10 Pressure regulator fails closed 17

20 Feedwater—increasing flow at power 16

23 Trip o f one feedwater pump 14(or condensate pump)

Total 551

Total transients** 662

Combined BWR Data

Numberof

Category ______________ Title______________ Events

3 Turbine trip 214

34 Scram due to plant occurrences 152

24 Feedwater—low flow 118

1 Electric load rejection 112

13 Turbine bypass or control valves 103 cause increased pressure (closed)

8 Loss o f normal condenser vacuum 102

5 Main steam isolation valve closure 67

6 Inadvertent closure o f one MSIV 51 (reset open)

23 Trip of one feedwater pump 51 (or condensate pump)

14 Recirculation control failure— 44 increasing flow

20 Feedwater—increasing flow at power 36

11 Inadvertent opening of a safety/ 33 relief valve (stuck)

25 Low feedwater flow during startup 28 or shutdown

Total 1111

Total transients*’ 1329

a. The transients included have >2V» of the total number of BWR transients excluding Categories 35, 36, and 37.

b. Excluding Categories 35-37.

EPRI BWR Data

Numberof

C a t e g o r y ______________ Title______________ Events

35 Spurious trip by way of 123 instrumentation, RPS fault

3 Turbine trip 107

36 Manual scram—no out-of-tolerance 107 condition

I Electric load rejection 69

24 Feedwater—low flow 53

5 Main steam isolation valve closure 48

8 Loss o f normal condenser vacuum 46

13 Turbine bypass or control valves 43 cause increased pressure (closed)

34 Scram due to plant occurrences 38

14 Recirculation control failure— 23 increasing flow

II Inadvertent opening of a safety/ 21 relief valve (stuck)

25 Low feedwater flow during startup 21 or shutdown

Total 717

Total transients 903

a. The transients included have 2% of the total number of

Combined BWR Data

Numberof

C a t e g o r y _____________ Title______________ Events

35 Spurious trip by way o f 276 instrumentation, RPS fault

3 Turbine trip 214

36 Manual scram—no out-of-tolerance 212 condition

34 Sciam due to plant occurrences 152

24 Feedwater—low flow 118

I Electric load rejection 112

13 Turbine bypass or control valves 103 cause increased pressure (closed)

8 Loss of normal condenser vacuum 102

5 Main steam isolation valve closure 67

6 Inadvertent closure o f one MSI V 51 (reset open)

23 Trip of one feedwater pump 51 (or condensate pump)

14 Recirculation control failure— 44 increasing flow

Total 1502

Total transients 1832

Appendix BWR transients.

Num

ber

of ev

ents

EPRI BW R categories5 6331

Figure 7. Transient event occurrences by category for E PRI BW R data.

250 -

200 -

c®>«o 150 —o■OE3Z

100

2 ' 3 , 4 ' 5 , 6 , 7 , 8 I 9 '10' 11 'I2 'l3 *14 *15' 16117'18' 19 '20' 21122' 23' 24'25 '26* 27'28‘ 29'30'31'32'33,34,35, 36'37EPR! BW R categories

INEL data 43 0 ,107 0 19 33 4 56 3 9 12 3 60 21 3 6 5 4 0 20 3 3 37 65 7 4 1 3 3 7 7 5 1 114jl5310Sj 4

EPRI data 69 1 107 1 48 18 10 46 17 17 21 6 43 23 10 8 4 0 1 15 4 13 14 53 21 7 2 9 12 8 12 1 1 38123107111

5 6328

Figure 8 . Transient event occurrences by category for com bined BW R data.

EPRI PWR Data

Outage Times in Hours

Transient Number o f Number o f EventsCategory Events with Outage Tunes Minimum Maximum Average

I 84 72 1 2527 992 4 3 6 9 83 138 77 1 308 364 5 5 12 506 2035 18 17 15 1241 141

6 7 5 7 20 117 2 1 184 184 1848 6 6 3 13 79 12 8 2 191 57

10 2 2 19 37 28

11 8 8 2 60 1912 34 21 1 192 2313 1 1 867 867 86714 6 5 6 79 23IS 402 .148 1 1238 23

16 31 29 1 113 1117 50 48 1 534 3518 7 5 3 150 3419 148 126 1 610 1920 3 2 8 28 18

21 32 32 1 594 3122 44 27 2 123 19

23 17 16 2 172 24

24 1 1 279 279 27925 43 35 1 149 18

26 8 8 34 3407 64727 II 11 10 156 7328 17 17 3 376 37

29 19 7 4 376 67

30 13 13 3 34 12

Combined PWR Data

Outage Times in Hours

Standard Number of Number o f Events StandardDeviation Events with Outage Times Minimum Maximum Average Deviation

328 117 104 1 2527 92 2838 5 3 6 9 8 8

64 205 143 1 592 39 91266 7 7 12 508 183 236315 .20 19 15 1241 140 302

12 11 9 7 20 12 13184 2 1 184 184 184 184

7 15 15 3 676 76 19589 22 18 2 206 44 7729 2 2 19 37 28 29

25 12 12 2 169 31 5347 52 39 1 192 18 37

867 1 1 867 867 867 86736 13 11 5 236 42 7892 628 569 1 1465 27 115

23 71 68 1 333 27 5887 70 68 1 534 35 8567 15 13 3 190 35 6870 184 162 1 610 17 6220 9 8 2 36 16 21

110 127 125 1 594 18 6i530 143 125 1 337 26 6147 27 26 2 172 18 38

279 4 4 7 279 77 13933 61 53 1 404 25 63

1276 13 13 19 3407 507 100692 15 15 10 156 70 8793 35 35 2 991 70 191

143 9 7 4 376 67 14316 22 22 3 1273 99 307

EPRI PWR Data Combined PWR Data

Outage Times in Hours Outage Times in Hours

Transient Number of Number of Events Standard Number of Number of Events StandardOnegory Events with Outage Times Minimum Maximum Average Deviation Events with Outage Times Minimum Maximum Average Deviation

31 0 0 __ _ _ 8 8 10 468 114 20332 2 2 10 105 57 74 2 2 10 105 57 7433 295 245 1 2865 44 211 502 450 1 2865 45 20034 81 72 I 1270 56 183 193 181 1 1270 57 15735 29 19 I 830 101 247 60 50 1 3432 158 523

36 8 6 9 107 48 62 12 10 9 107 40 5237 19 17 1 280 42 94 49 47 1 280 26 6138 29 21 2 20 8 9 34 26 2 83 11 1939 330 223 1 386 25 55 592 483 1 440 22 5140 132 101 1 716 67 137 198 156 1 1468 80 18641 5 4 8 286 114 158 7 6 8 286 131 162

Table 15. Comparison of EPRI data a id combined data BWR average transient outage times

EPRI BWR Data Combined BWR Data

Outage Times in Hours Outage Times in Hours

Transient Number of Number o f Events Standard Number of Number of Events StandardCategory Events with Outage Times Minimum Maximum Average Deviation Events with Outage Times Minimum Maximum Average Deviation

1 69 54 1 438 51 97 112 97 1 1436 68 1822 1 1 86 86 86 86 1 1 86 86 86 863 107 83 1 496 35 80 214 189 1 496 28 614 1 1 1 1 1 1 1 1 1 1 1 15 48 36 3 332 40 76 67 56 3 332 41 69

6 18 15 7 112 32 42 51 48 2 267 42 697 10 10 5 51 16 21 14 14 5 170 29 508 46 35 3 169 24 42 102 91 3 169 32 479 18 16 6 228 37 64 20 18 6 228 39 63

10 17 16 4 211 29 57 26 25 1 211 29 51

EPRI BWR Data

Outage Times in Hours

TransientCategory

Number of Events

Number of Events with Outage Times Minimum Maximum Average

StandaiDeviati*

11 21 19 4 176 44 6012 6 5 10 42 19 2213 43 37 1 93 29 3914 23 19 5 151 19 37IS 10 8 2 168 31 60

16 8 8 10 744 119 26417 4 2 6 28 17 2018 0 0 0 0 0 019 1 1 44 44 44 4420 16 16 4 73 18 25

21 4 4 11 66 38 4422 13 9 2 142 33 5923 14 13 4 73 26 34

24 53 48 1 263 31 5225 21 16 1 88 20 32

26 7 5 2 81 20 3627 2 2 12 52 32 37

28 9 5 8 84 31 41

29 12 11 3 79 13 25

30 8 7 3 185 57 89

31 11 10 2 687 119 232

32 2 2 50 500 287 357

33 1 1 67 67 67 67

34 38 33 3 1395 n o 272

35 123 105 1 335 33 64

36 107 99 1 437 86 12937 II 9 3 404 58 135

Combined BWR Data

Outage Times in Hours

Number o f Number o f Events StandardEvents with Outage Times Minimum Maximum Average Deviation

33 30 4 176 54 689 8 1 43 21 25

103 97 1 213 32 4844 40 5 151 20 3113 11 7 168 45 69

14 14 9 744 82 2039 7 6 40 25 274 4 2 57 21 301 1 44 44 44 44

36 36 4 137 26 41

7 7 11 66 30 3616 12 2 142 31 5351 50 4 450 40 78

118 113 1 263 29 4628 22 1 216 37 64

11 7 2 81 23 343 3 12 52 37 41

12 8 7 84 23 3315 14 3 95 18 3315 14 3 185 39 65

19 18 2 687 99 1856 6 4 500 119 2102 2 11 67 39 48

152 145 2 1395 106 259276 256 I 335 32 54212 177 1 503 84 124

15 13 3 404 57 118

PWRCategory

Number of Occurrences

AverageDowntime

(h)

TotalDowntime

<h)

Contributior to Total

Downtimem

I 117 92 10764 7.152 5 8 40 0.033 205 39 7995 5.314 7 183 1281 0.855 20 140 2800 1.86

6 11 12 132 0.097 2 184 368 0.248 15 76 1140 0.769 22 44 968 0.64

10 2 28 56 0.04

11 12 31 372 0.2512 52 18 936 0.6213 1 867 867 0.5814 13 42 546 0.3615 628 27 16956 11.26

16 71 27 1917 1.2717 70 35 2450 1.6318 15 35 525 0.3519 184 17 3128 2.0820 9 16 144 0.10

21 127 18 2286 1.5222 143 26 3718 2.4723 27 18 486 0.3224 4 77 308 0.2025 61 25 1525 1.01

26 13 507 6591 4.3827 15 70 1050 0.7028 35 70 2450 1.6329 9 67 603 0.4030 22 99 2178 1.45

31 8 114 912 0.6132 2 57 114 0.0833 502 45 22590 15.0034 193 57 11001 7.3135 60 158 9480 6.30

36 12 40 480 0.3237 49 26 1274 0.8538 34 II 374 0.2539 592 22 13024 8.6540 198 80 15840 10.5241 7 131 917 0.61

Total 150586 100.00

}i

Contribution

BWRCategory

Number of Occurrences

AverageDowntime

(h)

TotalDowntime

(h)

to Total Downtime

(Vo)

1 112 68 7616 8.662 1 86 86 0.103 214 28 5992 6.814 1 1 1 0.005 67 41 2747 3.12

6 51 42 2142 2.447 14 29 406 0.468 102 32 3264 3.719 ?0 39 780 0.89

10 26 29 754 0.86

11 33 54 1782 2.0312 9 21 189 0.2113 103 32 3296 3.7514 44 20 880 1.0015 13 45 585 0.67

16 14 82 1148 1.3117 9 25 225 0.2618 4 21 84 0.1019 1 44 44 0.0520 36 26 936 1.06

21 7 30 210 0.2422 16 31 496 0.5623 51 40 2040 2.3224 118 29 3422 3.8925 28 37 1036 1.18

26 11 23 253 0.2927 3 37 111 0.1328 12 23 276 0.3129 15 18 270 0.3030 15 39 585 0.67

31 19 99 1881 2.1432 6 119 714 0.8133 2 39 78 0.0934 152 106 16112 18.3235 276 32 8832 10.04

36 212 84 17808 20.2537 15 57 855 0.97

Total 87936 100.00

TotalTransients

Low Power Transients

ScheduledScrams

Low Power and/ or Scheduled

Transients

Plant Number w Number W Number (%)

Yankee Rowe 93 26 28 2 2 27 29Indian Point 1 266 0 0 45 17 45 17San Onofre 1 51 14 27 7 14 21 41Haddam Neck 88 19 22 3 3 19 22R. E. Ginna 40 4 10 1 2 5 12

Point Beach 1 54 14 26 .5 9 19 35H. B. Robinson 2 194 104 54 3 2 106 55Palisades 107 36 34 5 5 38 36Point Beach 2 42 16 38 5 12 18 43Turkey Point 3 116 21 18 3 26 24 21

Surry 1 136 51 37 2 1 52 38Maine Yankee 50 2 4 1 2 3 6Surry 2 97 34 35 0 0 34 35Oconee 1 81 19 23 1 1 20 25Indian Point 2 210 8 4 7 3 15 7

Turkey Point 4 103 21 20 5 5 24 23Prairie Island 1 57 10 18 9 18 17 30Zion 1 124 42 34 15 12 52 42Kewaunee 79 17 22 4 5 19 24Ft. Calhoun 34 5 15 0 0 5 15

TMI 1 6 0 0 0 0 0 0Oconee 2 50 13 26 2 4 15 30Zion 2 154 56 36 13 8 68 44Oconee 3 42 6 14 0 0 6 14Arkansas 1 55 6 11 3 5 8 15

Prairie Island 2 59 6 10 6 10 11 19Rancho Seco 44 13 30 1 2 13 30Calvert Cliffs 1 73 9 12 1 1 10 14Cook I 52 8 15 4 8 10 19Millstone 2 79 17 22 6 8 22 28

Trojan 75 24 32 6 8 25 33Indian Point 3 66 14 9 2 3 15 23Beaver Valley 1 111 29 26 4 4 31 29St. Lucie 1 52 8 15 6 12 13 25Crystal River 3 64 15 23 0 0 15 23

Calvert Cliffs 2 51 7 14 1 2 8 16Salem 1 75 15 20 3 4 17 23Davis Besse 1 62 14 23 5 8 18 29Farley 1 82 25 30 0 0 25 30North Anna 1 40 7 17 2 5 8 20

TotalTransients

Low Power Transients

ScheduledScrams

Low Power and/ or Scheduled

Transients

Plant Number W Number (*> Number W

Cook 2 44 11 25 2 5 13 30TMl 2 2 0 0 0 0 0 0Arkansas 2 62 15 24 0 0 15 74North Anna 2 31 11 35 0 0 11 35Sequoyah 1 24 12 50 0 0 12 50

Farley 2 22 3 14 0 0 3 14Salem 2 28 7 25 1 4 8 ?9McGuire 1 36 5 14 6 17 7 19Sequoyah 2 7 3 43 0 0 3 43St. Lucie 2 4 0 0 0 0 0 0

Total 3574 822 23 197 6 973 27

PlantTotal

Transients

Low Power Transients

ScheduledScrams

Low Power and/ or Scheduled

Transients

Number m Number m Number W

Dresden l 17 1 6 2 12 3 18Big Rock Point 13 7 54 0 0 7 7Humboldt Bay 43 4 9 2 5 6 14Nine Mile Point I 80 29 36 6 7 33 41Oyster Creek 57 7 12 4 7 10 18

Dresden 2 102 20 20 13 13 32 31Millstone i 86 25 29 1 1 25 29Monticello 60 12 20 5 8 13 22Dresden 3 81 6 7 3 4 8 10Vermont Yankee 53 19 36 3 6 20 38

Pilgrim 1 113 45 40 30 27 59 52Quad Cities 1 82 12 15 6 7 16 20Quad Cities 2 68 12 18 5 7 13 19Cooper Station 63 13 21 7 11 17 27Peach Bottom 2 58 10 17 7 12 17 29

Browns Ferry 1 123 23 19 25 20 45 37Peach Bottom 3 51 13 27 9 18 19 37Duane Arnold 53 10 19 4 8 14 27Browns Ferry 2 117 33 28 20 17 49 42FitzPatrick 55 7 13 5 9 9 16

Brunswick 2 126 38 30 9 7 43 34Hatch 1 120 36 30 10 8 39 32Browns Ferry 3 79 12 15 16 20 26 33Brunswick 1 74 18 24 7 9 23 31Hatch 2 50 12 24 3 6 13 26Susquehanna 1 8 (> 0 1 12 ____ 1_ 12

To:al 1832 424 23 203 11 560 31

LowPower and/or

Low Power Scheduled ScheduledEPRI PWR - Transients Scrams Transients

CategoryNumber Title

TotalTransients Number ( * ) Number ( * ) Number ( * )

« Loss of RCS flow |! loop) 117 14 12 5 4 19 162 Uncontrolled rod withdrawal 5 2 40 0 0 2 403 CRDM problems and/ or rod drop 205 25 12 4 2 27 134 1 w i r y from control rods 7 1 14 0 0 1 145 Leakage in primary system 20 4 20 0 0 4 20

6 Low pressurizer pressure 11 4 36 0 0 4 367 Pressurizer leakage 2 1 50 0 0 1 508 High pressurizer pressure 15 4 27 0 0 4 27V Inadvertent safety injection signal 22 4 18 1 5 5 23

10 Containment pressure problems 2 0 0 0 0 0 0

II CVCS malfunction—boron dilution 12 1 8 0 0 1 812 Pressure/temperature/power imbalancc-rod position error _>_ 12 23 0 0 12 2313 Startup of inactive coolant pump 1 0 0 0 0 0 014 Total loss of RCS flow 13 5 38 1 8 5 3815 Loss or reduction in feedwater flow (1 loop) 628 180 29 3 <1 181 29

16 Total loss o f feedwater flow (all loops) 71 13 18 1 1 14 2017 Full or partial dosure of MSIV (1 loop) 70 6 9 2 3 8 1118 Closure o f aQ MSIV 15 0 0 0 0 0 019 Increase in feedwater flow (1 loop) 184 64 35 2 1 66 3620 Increase in feedwater flow (a'l loops) 9 5 56 0 0 5 56

2122

Feedwater flow instability—operuor error Feedwater flow instability—mwofllaneous mechanical

127 108 85 0 0 108 85

causes 143 53 37 0 0 53 3723 Loss o f condensate pumps (1 loop) 27 2 27 0 0 2 2724 Loss of condensate pumps (all loops) 4 0 0 0 0 0 025 Loss o f condenser vacuum 61 II 18 4 7 15 25

26 Steam generator leakage 13 0 0 0 0 0 027 Condenser leakage 15 6 40 0 0 6 »28 Miscellaneous leakage in secondary system 35 5 14 0 0 5 14

Sudden opening of steam relief valves 9 1 11 0 0 1 ; i30 Loss o f circulating water 22 0 0 0 0 0 0

m

250

301623

25no

1517570

27

[%)

140

2210030

1636232035

Low Power ScheduledTransients Scrams

TitleTotal

Transients Number W Number ( * )

Loss of component cooling 8 2 25 0 0Loss of water system 2 0 0 0 0Turbine trip, thronle vahe dosure, EHC problems 502 110 22 62 12Generator trip or generator caused faults 193 23 12 8 4Loss of all offsite power 60 II 18 4 7

Pressun/er spray failure 12 3 25 0 0Loss of power to necessary plant ‘.vstems 49 2 4 2 4Spur. >l , trips—cause unknown 34 5 15 0 0Auto trip—no transient condition 592 91 15 12 2Manual trip—no transient condition 198 44 22 86 43Fire within plant 7 0 0 7 0

3574 822 23 197 6

Effects of low power and scheduled scrams on BWR event counts by transient category

Low Power ScheduledTransients Scrams

TitleTotal

Transients Nur .her ( * ) Number (* >

Electric load rejection 112 9 8 7 6Electric load rejection with turbine bypass valve failure 1 0 0 0 0Turbine irip 214 27 13 24 11Turbine trip with turbine bypass valve failure 1 1 100 0 0Main steam isolation valve closure 67 17 25 5 7

Inadvertent closure o f one MSIV 51 6 12 2 4Partial MSIV closure 14 5 36 0 0Loss o f normal condenser vacuum 102 23 23 0 0Pressure regulator fails open 20 4 20 0 0Pressure tegulator fails closed 26 9 ; 5 0 0

EPRI BWR Category Number Title

TotalTransients

11 Inadvertent opening o f t safety/relief valve (stuck) 3312 Turbine bypass fails open 913 Turbine bypass or control valves cause increase pressure

(closed)103

14 Rccirculation control failure—increasing flow 4415 Recirculation control failure—decreasing flow 13

16 Trip o f one recirculation pump 1417 Trip of all recirculation pumps 918 Abnormal startup o f idle recirculation pump 419 Recirculation pump seizure 120 Feedwater—increasing flow at power 36

21 Loss o f feedwaier heater 722 Loss o f alt feedwacer flow 1623 Trip o f one feedwater pump (or condensate pump) 5124 Feedwater—low flow 11825 Low feedwater flow during startup or shutdown 28

26 High feedwaier flow during startup or shutdown 1127 Rod withdraw at power 328 High flux due to rod withdrawal at startup 1229 Inadvertent insertion of rod or rods 1530 Detected fault in reactor protection system 15

31 Loss o f offsite power 19

32 Loss o f auxiliary power (loss o f auxiliary transformer) 6

33 Inadvertent startup o f HPCI/HPCS 2

34 Scram due to plant occurrences 152

35 Spurious trip via instrumentation. RPS fault 276

36 Manual scram—no out-of-tolerance condition 212

37 Cause unknown 15

All Transients 1832

Low Power and/or

Low Power Transients

ScheduledScrams

ScheduledTransients

Number < * ) Number ( * ) Number ( » )

14 42 2 6 15 454 44 0 0 4 44

21 20 0 0 21 20

3 7 0 0 3 71 8 1 8 2 15

3 21 1 7 3 212 22 1 11 3 330 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

3 43 0 0 3 433 19 0 0 3 199 18 0 0 9 18

11 9 0 0 11 928 100 0 0 28 100

10 91 1 9 11 1001 33 0 0 1 33

12 100 0 0 12 1005 33 0 0 5 333 20 0 0 3 20

2 11 0 0 2 111 17 0 0 1 170 0 0 0 0 0

34 22 11 1 40 2667 24 2 7 68 2584 40 146 69 176 83

2 13 0 0 2 13

424 23 203 11 560 31

EPRI Data

Number of Number of Rate PerEvents Plant Years Year

For PWRs

First reactor year 624 35.3 17.7Second reactor year 424 34.5 12.3Remaining years 1045 143.6 7.3

Total 2093 213.4 9.8

For BWRs

First reactor year 267 15.7 17.0Second reactor year 144 15.0 9.6Remaining years 492 70.8 6.9

Total 903 101.5 8.9

Combined Data

Number of Number o f Rate PerEvents Plant Years Year

874 48.6 18.0553 47.6 11.6

2147 326.8 6.6

3574 423.0 8.4

355 23.6 15.0215 23.0 9.3

1262 204.7 6.2

1832 251.3 7.3

Table 23. Calendar year transient rate estimates

For PWRs

Number Number ofYear of Events Plant Years

1961 5 0.501962 2 1.251963 64 2.001964 58 2.001965 26 2.00

1966 23 2.001967 21 2.001968 38 4.00 I960 28 4.00 1970 32 4.53

§5 1971 83 6.821972 93 8.341973 157 \3.921974 259 20.001975 346 26.72

1976 286 30.241977 339 35.261978 290 39.061979 261 39.48 1960 293 39.62

1981 313 42.231962 305 45.441963 252 40.37

Number of Rate PerRate Per Plant Years Critical

Plant Yezr of Criticalii> Plant Year

10.0 0.44 11.4 1.6 0.83 2.4

32.0 1.43 44.829.0 1.39 41.713.0 1.40 18.6

11.5 1.57 14.610.5 1.73 12.19.5 3.14 12.17.0 3.49 8.07.1 3.16 10.1

12.2 5.78 14.411.2 6.22 15.011.3 9.29 16.912.9 14.79 17.512.9 20.94 16.5

9.5 21.51 13.39.6 27.55 12.37.4 29.81 9.76.6 26.25 9.97.4 26.43 11.1

7.4 32.55 9.66.7 31.14 9.85.4 31.22 8.1

a. Dresdan 1 and Big Rock Point are no< included due to unavailability o f early data.

For BWRs3

Number Number of Rate Pero f Events Plant Years Plant Year

4 0.42 9.55 1.00 5.02 1.00 2.0

I 1.00 1.03 1.00 3.06 1.00 6.0

10 1.10 9.1 43 3.56 12.1

48 5.43 8.853 7.17 7.496 10.70 9.0

106 12.44 3.7117 17.35 6.7

169 19.50 8.7199 20.63 9.6189 21.00 9.0153 21.32 7.2180 22.00 8.2

168 22.00 7.6135 22.00 6.1113 22.56 5.0

Number of Plant Years

of Criticality

0.340.890.80

0.890.910.930.962.60

3.985.448.229.01

11.84

14.3115.6417.0616.84 15.69

15.4015.3614.53

Rate Per Critical

Plant Year

6. DEVELOPMENT OF A TRANSIENT EVENT DATA ANALYSIS METHODOLOGY

The PLUNGE output discussed in the previous section summarizes the transient occurrence data as categorized by various classification factors such as plant type (PWR or BWR), vendor, transient cate­gory, plant, plant age, etc. Of interest is the signifi­cance of such factors in explaining transient occurrence rates. To this end development of a methodology for statistical analysis and comparison of the occurrence frequencies within various clas­sifications is presented below. The method will pro­duce transient event frequencies and bounds for use in probabilistic risk assessments that are more tai- io ie d to specific applications.

In order to investigate the effect, if any, of classification categories such as plant type (PWR or BWR), plant, transient category, etc., as well as time factors (e.g., reactor age, critical hours, oper­ating days between transients) on the frequency of occurrences of transients leading to a reactor scram, one must use the classification factors as a basis for subdividing the transient data into homogeneous subgroups. However, there is a drawback with this approach. Subdividing into homogeneous groups leads quickly to a scarcity of data within certain cell combinations. Also, there may net be any data for certain cells because of a lack of operating ex­perience for various combinations of the factors. Incomplete data hampers the application of many statistical methods; the problem of incomplete data stiucture can lead to biased results unless satisfac­tory precautions are taken.

In the following sections, a general approach is presented that deals with this problem on two levels. The first is ihat it allows one to evaluate the homo­geneity of the data and pool it wherever possible. Pooling reduces (he incomplete data problem because the daia arc summed across subgroups. The second level is the use of an algorithm for the data analysis that adequately deals with the incomplete data structure caused by missing combinations of certain levels of the factors. This discussion is pro ceded by a review of EPRI data analysis methods.

6.1 EPRI Data Presentation and Analysis

The NP-2230 analysis focuses on displaying the data in tables like those in Appendices I) and E with

additional tables broken down by nuclear steam supply system (NSSS) vendor and power level. The formal statistical analysis in the report is limited and takes two forms beyond what is presented in the data tables. Both of these involve pooling transient data across classification factors to produce broad estimates. In the first analysis, the total number of transients associated with all the PWR plants within each year of reactor operation was used to calculate the means and standard deviations of transient oc­currence frequencies for each reactor year. Using normality assumptions, the respective means and standard deviations were used to calculate S and 95% confidence bounds on the means (NP-2230, Table 4-3, p. 4-5). Figure 4-1 of the NP-2230 report is a plot of the means and confidence bounds as given by Table 4-3, and shows a “ learning curve” that is indicated by a decrease in the mean number of transients versus years of plant operation. The statistical analysis methodology presented here also deals with such trends.

In the second calculation, the number of tran­sients occurring within each vendor plant type (e.g., Wcstinghouse) classification was used to estimate > the transient occurrence rate and 5 and 95% con­fidence bounds by assuming an exponential distri­bution for transient occurrences (NP-2230, Table 4-5, p. 4-7 is an example). As will be shown, the use of an exponential distribution to generate confidence bounds probably does not apply to the majority of the data. The resulting bounds are useful only for very gross comparisons.

The NP-2230 analysis defines plant age with respect to the initial day of commercial operation. “ The first day of commercial operation and subse­quent 364 days define year one for a reactor. Thus, all data is aligned to a similar time point," and the data presentations are made in terms of reactor years (NP-2230, pp. 3 3 and 3-4). This basic idea of comparing plants according to initial operation appears to be a meaningful one.

Another factor deserving consideration is the ef­fect of plant outage, since a significant scram cannot occur when the plant is shut down. The analysis described in NP-2230 does not consider this issue, although EPRI’s PLUNGE program has some capabilities in this area.

The issues of underlying distributional assump­tions, choice of variables for presentation, and how to treat outages will be explained in the subsequent discussion using a general statistical analysis methodology that has less restrictive assumptions than the EPRI analysis. For example, it is not necessary to assume that the time between occur­rences is exponentially distributed. Instead, it is possible to investigate the plausibility of such an assumption; and, if the exponential assumption holds then it is simply a special case that is encom­passed by a general methodology.

6.2 Typical Transient Data

In order to develop and illustrate a statistical analysis methodology, consider the transient data presented by Table 24. The information of Table 24 was extracted from Table A8-1, NP-2230, p. A-193, and describes all transients recorded in the EPRI data base occurring between 26 and 110% power for Combustion Engineering plants. The data for the Combustion Engineering plants were not selected because of a particular interest in them, per se, but to reduce the size of the illustration since only four plants and five reactor years are involved.

Table 24 exhibits basic features that are charac­teristic of the NP-2230 transient data. Namely,

1. There are unequal numbers of transients within various factor combinations or cells leading to an imbalance in the factorial ar­rangements of the classification factors. The circumstances and characteristics that result in the imbalance are of primary in­terest and must be appropriately dealt with in the analysis.

2. There is incomplete data structure. For ex­ample, the vatious plants operate for dif­fering numbers of reactor years, and there are partial years of operation for some plants. Table 24 indicates that the EPRI analysis transients for partial years were not counted in computing reactor year totals.

3. There are some cells with zero transients. For example, in the case of Millstone 2 there are no transient occurrences for reac­tor year 4.

A satisfactory statistical analysis methodology must be able to deal with such data characteristics.

Table 24 indicates that the total number of tran­sients is 133 in 15.42 plant-years. Table 4-6 of the (NP-2230 p. 4-8) study uses this summary informa­tion to estimate a transient occurrence rate of 8.63a transients per plant-year with 5 and 95% confidence bounds of 7.42 and 9.95, respectively. The suitabili­ty of this rate estimate and its confidence bounds depend on the method of estimation, which depends on at least the following:

1. The estimate used (that is, the ratio of the number of transients to the number of plant-years)

2. The assumed distribution (exponential)

3. The exact manner of specifying the denominator, which in this case is the number of plant-years and includes partial years.

Because other choices can be made in these three areas, variations from the EPRI estimates are possi­ble. Some of these other possibilities are discussed below. Of immeuiate initial concern is the specifica­tion of study variables such as plant age and reac­tor year.

6.3 Transient Study Variables

Three study variables of interest are, reactor age, reactor year, and time between occurrences. In this study as with EPRI’s, reactor age will be measured from the initial day of commercial operation. Split­ting the reactor age axis into yearly increments pro­vides reactor years. The NP-2230 report equates reactor age with reactor year but never explicitly uses the time between occurrences. Because the sequence of actual event dates provides more infor­mation than counts of events for fixed time periods, time between occurrences is considered here.

The event dates for the data in Table 24 were obtained as part of the EPRI data base that accom­panied the PLUNGE program . Tables 25

a. Differences in rounding account for difference* in this figure •nd the 8.62 in Table 24.

through 28 present the transient occurrence dates for each of the four plants. These dates can be used to determine the number of days between transients. The first transient date is referenced to the date of initial commercial operation. The number of days between transients is provided in the respective Tables 25 through 28.

In addition, reactor age in days can be computed by referencing each transient occurrence date to the initial date of commercial operation. The reactor ages (i.e., age at the time of each transient occur­rence) are also presented in Tables 25 through 28 for the respective plants.

Of course, relationships exist between reactor age and time between transients. The difference between the successive reactor ages yields numbers of days between transients. Conversely, the sum of the times between transients equals the reactor age for the last transient in a sequence for sequences starting at time 0 .

Two additional aspects of the transient study variables are discussed below.

6.3.1 Plant Outage Correction. It is desirable to account for plant outage since a transient causing a scram generally cannot occur when a plant is shut down. For example, Table 24 shows that Millstone 2 had no transients for reactor year 4;a but for how much of that time was the plant operating?

Tables 25 through 28 indicate plant outage start and stop dates that can be used to determine the number of outage days. This information comes from DATA statements contained within EPRl’s PLUNGE program. The time between transients can then be decreased by the number of outage days to yield the critical time between transients. Reac- ior critical age can then be computed as the sum of respective critical times between transients. The results of such calculations arc provided by Tables 25 through 28. For example, Table 27 shows that Millstone 2 had 132 plant outage days (between 79/01/14 and 79/12/05) during year 4. In other words, the plant was shut down for over 1 /3 of the year.

a. Note that, sinec Millstone 2 began commcrdal operation on December 26,1975, its reactor year 4 is from December 26,1978 to December 25. 1979.

Because of plant outage, critical days between transients is a more meaningful variable than simply days between transients. Correcting for outage eliminates bias since plants with high outages are likely to have fewer transients (i.e., longer times be­tween transients) than plants with more critical time. The EPRI study does not specifically account for this issue, and the resulting estimates must be increased for analyses that are restricted to reactor critical time. However, this issue was considered in the EPRI work and the original PLUNGE program has options that are related to this (see NP-2301). The example analysis presented below is done both with and without this correction.

6.3.2 Cumulative Number of Transients. Tables 25 through 28 can be used to determine the total (i.e., cumulative) number of transients occurring be­tween the commercial power date and any specified reactor age for each of the four plants. That is, one can use them to evaluate

n(t,x) = observed number of (1)transients occurring between time 0 and time t under the conditions described by x

where

x = classification vector used to identify transient occurrence categories or cells.

The classification vector contains a component for each level of each discrete factor under consider­ation. Factor levels could be plants, types of tran­sients, or groupings of power levels of the reactor at the time of the transient. Fot' this example, x just differentiates between the plants. Thus, there is an element in the classification vector corresponding to each level of the plant factor. Since there are four CE plants in this example, the plant factor has four levels. More specifically, for this example there are four possible classification vectors, each with four components. The four elements in each classifica­tion vector are each zero or one depending on which of the four plants applies. Additional factors (e.g., transient category type) would add more elements to the classification vector.b

b. When no subscript is used with x, the notation refers to a general classification vector. For this example, there are four specific classification vectors; for Maine Yankee, f ° r Calvert Cliffs I , Xj for Millstone 2, and *4 for Calvert Cliff* 2.

Table 29 contains n(t,jr) values for each of the four CE plants. The observed cumulative number of transients functions are step functions with jumps at the reactor ages where transients occur. That is, for the successive times {tsl where tran­sients have occurred for, say, the j*" plant

n(tj,xj) = i (2)

for i = 1,2......m(xj). Here, m(xj) is the total num­ber of transients observed for the plant indexed by

A sequence of transient occurrence times {tj} for selected conditions x and its corresponding cumu­lative number of transients function n(t,x) are a realization of a counting p r o c e s s The transient occurrences are to some extent random phenomena and could have occurred on other dates. A count­ing process is uniquely characterized by

process. That is, one may assume that the follow­ing axioms hold:

1. The times between occurrences are independent

2. They are identically distributed

3. Events may not happen simultaneously

4. T he probability that an event will occur in any specified time interval is strictly be­tween 0 and k.

In this case, the times between transients are ex­ponentially distributed with the density function

where

N(t,x) = number of transients occurring (3) in (0,t] for conditions indexed by x.

In contrast to Equation (1), N(t,x) is a random integer-valued variable for each t. The four n(t,xj) functions described in Table 27 are samples from the corresponding four counting processes [N(t,Xj)].

Figure 9 shows the cumulati' e number of tran­sients versus reactor age from Table 29 for each of the four plants. For convenience, the points de­scribed by Equation (2) are connected rather than plotted as a step function. Figure 9 indicates that the Calvert Cliffs 1 and 2 plants have similar be­havior. At the same time, Millstone 2 has the highest number of transients, while Maine Yankee the lowest. Figure 10 shows similar type results using reactor critical age instead of reactor age.

The cumulative curves presented by both Figures 9 and 10 indicate basic differences between the respective plants. For example, the curves for Maine Yankee, Calvert Cliffs 1, and Calvert Cliffs 2 are approximately linear, while the curve for Millstone 2 is not. The implication of such dif­ferences with respect to parameter estimation will now be considered.

0 = expected value of the time between transients

A = transient occurrence rate.

Furthermore, the number N of transients in an in­terval (0,t] is distributed according to a Poisson distribution with density

g(n) = Prob [N = n] = e 'M (At)n / n! (5)

for n = 0,1,2, ... The expected value of N is At.

To test whether the data of Table 29 is a Poisson proccss, first note that the N of Equation (5) when regarded as a function of t is the counting process N(t,x). Since for each t,

E[N(t)] = At, (6)

the counting process function N(t,x) has a line through the origin as its expected value. The sam­ple realizations of N(t,x) given in Figures 9 and 10 show that, particularly for Millstone 2, this condi­tion apparently does not hold.

Furthermore, for exponential data the following estimation methods for A should producc similar results:

6.4 Preliminary Data Analysis 1. Determine the mean time § between tran­sients for each x and estimate A as

The simplest way to analyze occurrence data is ' ' I ato assume that the counting process is a Poisson *1 = or * • W

2. Using the least squares method, fit a line through the origin for each of the sample counting processes N(t,x) and observe their slopes [see Equation (6)]. Using the plotted points as data, this method pro­duces a second A estimate for each x

m(x)tj • n(tj,x)

i= 1

/m(x)

i = l

(8)

where n, tj, xand m are as defined in Equations (1) and (2).

Table 30 shows the results of applying both of these methods to the four sample counting processes plotted in Figure 9. The time between transient totals of Tables 25 through 28 provide the summa­tion totals required to estimate 0 for Equation (7). Such totals for a given plant are equivalent to the age for the last transient in the sequence; conse­quently, it is not necessary to have each individual transient time to obtain this estimate. For example,0 for Maine Yankee, not corrected for outage, is obtained by dividing the reactor age for the last transient from Table 25 (1142 days) by the number of transients (17) from Table 24.

Table 30 also contains parameter estimates com­bined across plants. For Method 1, the four cumulative reactor ages (sums of times between transients) are summed and divided by the 133 total transients to estimate 0 . For Method 2, the plot­ted [tj, n ( t j ,X j) ] points from all four of the count­ing processes are pooled in Equation (8).a The com­bined kj from the second method is used as the slope in plotting the solid, heavy line shown on Figure 9.

Similar calculations can be performed using reac­tor critical age instead of reactor age For exam­ple, Maine Yankee’s outage-corrected 0 is based on dividing the reactor critical age (887 days) by the 17 Maine Yankee transients in Table 25. These values are also reflected in Table 30 and in the dashed line plotted on Figure 10.

Table 30 shows that for Method 1, Aj = 8.93 trniiMonts per year for the combined and uncor- rccted data. This value differs slightly from the 8.62

value of Table 24. The difference is due to the fact that the data ending dates and last transient occur­rence dates differ for the Millstone 2 and Calvert Cliffs 2 plants; this difference leads to 15.43 years (i.e ., 5632 days) instead of 14.89 years (i.e., 5435 days) as used in Table 30. Consequently, the EPRI value of 8.62 represents a Type I censored estimate.*3 On the other hand, the 8.93 estimate is Type II censored0; it is based on exactly 133 times between transients. Both estimates show the effects of using partial years in the denominators of the estimates.

The Method 2 estimation in conjunction with Figures 9 and 10 shows that the sample transient occurrence data do not indicate a Poisson process. For example, neither the solid, heavy line plotted in Figure 9 nor the one in Figure 10 provides a very good representation of the Millstone 2 or Maine Yankee data. The Millstone 2 observed counting process in particular is not linear.

Figure 11 further illustrates this point. The points plotted are the transient occurrence rates for each full reactor year for the four plants and the overall average rate for each year. The plant rates are numbers of occurrences divided by occurrence time (one year) for the plants; the overall rates are the averages of the plant rates for each reactor year; both of these are from Table 24. The variation apparent in Figure 11 is similar to that shown in the EPRI learning curve plots on pp. 4-5 and 4-6 of NP-2230, but it shows to an even greater extent plant-to-plant differences. Such results point out difficulties in combining data across plants and in assuming the exponential and homogeneous Poisson distributions.

In evaluating the applicability of the four Poisson process axioms listed at the start of this section, one might question whether the times between occur­rences are independent. However, the axiom that deals with identically distributed times between transients regardless of the reactor age appears to be the major obstacle to the sample transient data being a Poisson process. Relaxing this assumption results in a nonhomogeneous Poisson process (Reference 28, pp. 118-125). This process, discussed further below, provides a cornerstone in the theory used to develop a transient analysis methodology.

•i. Thai is, (lie four numerators from lunation (8) (for the four x plant vector*) arc summed and di'-ded by tiic sum of ihc four corresponding denominators.

b. Type I cci nrcd data has a time constrain!; data is collected for a fir.ed. r determined length of lime.

c. In Type II censoring, data i* collected until a predetermined number of esenis are observed.

6.5 Development of Nonhomogeneous Poisson Process

The goal of the statistical analysis is to provide as much information as possible about the transient occurrence rate, A. The Poisson process examina­tion in Subsection 6.4 analyzed a constant A. Figure 11 carried the analysis further by consider­ing rates averaged over one-year periods. In this sec­tion an expression for A as a continuous function of t is presented.

For any specified time period, say (tj,t2). an average occurrence rate can be estimated as the slope of the chord connecting the two correspond­ing points of the n(t,x) curve defined by Equation (1). That is,

number of occurrences .in (t j ,i2)

n(t2,x) - n(t | ,x)= £ 7 ] •

For example, an alternate way of obtaining the rates plotted on Figure 11 is to partition the reactor age axis of Figure 9 into reactor year intervals and thereby bracket the shape of each curve in each in­terval. Differences in cumulative transient counts produce incremental counts for the numerator of A. For Figure 11, the denominators for the plant rates are in each case one year.

In Equation (10), E is the expectation operator; H(t,x) is the mean value function for the counting process.30 Under the assumptions of a nonhomogeneous Poisson process, H(t,x) is a con­tinuous function, and (Reference 29, p. 138)

A(t’X) = “5t H(t,#) • (ID

If the process is Poisson, H(t,x) = At (see Equa­tion (6)] and a constant A(t,x) = A is produced from Equation (11). Various functional forms for A(t,x) leading to typical reliability functions (e.g., normal, exponential, gamma, Weibull, and rectangular) arc considered by Von Alven.^1 Since Figure 9 pro­vides preliminary evidence of a high initial transient occurrence rate, the U-shaped or bathtub-shaped occurrence rate curves are of particular interest. Such curves allow for a high initial transient occur­rence rate, a region of more or less constant tran­sient occurrence rate, and a final so called wear out region with an increasing rate. Consequently, Equation (11) provides flexibility that includes con­stant occurrence rates but also provides a general basis for investigating various transient occurrence rates and learning curve trends.

In summary, the essence of the proposed method is to estimate H(t,x) uswig the data and then dif­ferentiate the resulting expression. This will product time-varying A estimates for each classification vec­tor (x).

6.6 Estimating the Mean Value Function

The plant trans:ent occurrence rates of Figure 11 could be considered for intervals other than one reactor year. The one year segment intervals on Figure 9 arc somewhat arbitrary and either larger or smaller intervals could be considered. Smaller in­tervals are of particular interest. The difference quotient format of Equation (9) suggests that in­stantaneous occurrence rates considering the limit as t2 - t) approaches 0 could be obtained as derivatives of n(t,x).

However, both n(t,x) and the counting process N(t,x) that it represents are integer-valued functions of t. Consider the function

H(t,x) * E(N(t,x)) . (10)

Since there is just one observation of each coun­ting process (N(t,x)J, namely n(t,x), any estimate of the expected value of N(t,x) must be based on the observed n(t,x). One might thus consider

H(t,x) = n(t,x) + ci(t,x) (12)

where ei(t,x) is a residual error accounting for the fact that the observed cumulative number of tran­sients for a given t and x docs not exactly equal its expected value.

However, there are two problems vith this approach. One is that H(t,x) is a continuous func­tion rather than a step function. Furthermore, a

smooth function is needed in order to obtain occur­rence rates. The second drawback is that Equation (12) provides no means for an integrated analysis using the entire data set to provide infor­mation for specified classifications (x).

These problems are resolved by forming a smooth model, n(t,x), for the cumulative transient count data such that

n(t,x) = n(t,x) + e2(t,x) (13)

where e2 is an error term similar to e j . Substituting Equation (13) for n in Equation (12) produces

H(t,x) = n(t,x) + e(t,x)

where e is the total error term.

(14)

The remainder of this section deals with the choice of a model for n and the resulting calcula­tions. The model below is a polynomial in t, thus providing a form that can be easily differentiated. By making it cubic, the resulting occurrence rate function is quadratic and thus capable of describ­ing both increasing and decreasing occurrence rates. The requirement that H(0,x) be zero (no events occur at time t = 0) means that the model must have no constant term. Finally, the classification vector x is included in the first order terms. The resulting model is

n(t,x) = (BjX| + ...+ 84x4)1

+ ll5 t2 + B6 t3

(15)

where

B |..... Bft -- model parameters

x j ..... X4 = dummy variables taking thevalues of 1 or 0 .

The model parameters B|, B2, B3. and B4 arc associated with plants (e.g., Maine Yankee, Calvert Cliffs 1, Millstone 2, and Calvert Cliffs 2, respec­tively). A dummy variable takes the value 0 ! 1 v nen the level of the factor (i.e., a particular r 'an t) is present, and is otherwise 0. For the example case of x = X| in Equation (15),

Thus, the dummy variables are the elements in the classification vector x.

Equation (15) provides a particular model func­tional form for R(t,x). In vector notation, Equation (15) can be expressed as

ft(t, x) = z(t,x)' B

where

*(t, x ) ' = transpose of a vector consisting of tx (four components) plus the com­ponents t2 and t^

B = vector of six parameter estimates.

The model applies to every observation; thus

y = X B

where

y = vector of the n(t,x) values

X = design matrix, whose rows are the cor­responding *(t,x)' defined above.

The B parameters in the model must be estimated from the data. Using the method of least squares, the B solution is

B = (X 'X )-l X 'y . d o )

xj = (X|, X2, X3, X4) = (1,0, 0, 0 )

Equation (16) is a general formation that depends on the specification of the design matrix, X. The design matrix can be specified for models other than that given by Equation (15). In the following sub­sections issues related to obtaining the least squares solution [Equation (16)] are discussed.

6.6.1 Generation of the Design Matrix. A design matrix can be generated by noting that the respec­tive matrix columns correspond to the independent variables in the model, Equation (15), while the rows correspond to respective observations. A design matrix can be generated manually; however, the generation logic can also be programmed for computer generation since respective columns arc defined by terms in the model. The respective elements across a row depend on the presence or absence of *sach factor level as indicated by the classification vector, x, and t. The elements in the classification vector correspond to the l and 0 values of the dummy variables. The respective x and

t appropriately correspond to each given n(t,x) data value. A capability for computer generation of the design matrix is advantageous for models with many factors and their interactions, and for situa­tions where there are a large number of data observations.

The model formulation of Equation (IS) results in a design matrix for which the X ' X matrix is full rank. If the X 'X matrix were nonfuii rank, the matrix inverse (X 'X )"1 would not exist and Equation (16) could not be used to obtain a solu­tion for B.

In general situations involving several factors and their interactions, it is necessary to impose reparameteri/.ation constraints in formulating the model and design matrix. Chapter 11 of G r a y b i l | 3 2

extensively discusses the theory of reparameteriza­tion giving theorems and corollaries. The implemen­tation of the theory is fairly straightforward if the design matrix is properly structured. The structure of the design matrix depends on both the model and the data so that incomplete data with unequal numbers of observations make reparameterization difficult. However, a practical implementation of reparameterization and the estimation of B can be accomplished using orthonormalization.

6.6.2 Orthonormalization. Orthonormalization is discussed from a geometrical point of view by Davis.33 Orthonormalization has many uses such as linear programming and Davis and RabinoTvitz^4 discuss some of them. In another paper,35 Davis and Rabinowitz recognized practical advantages of orthonormalization for statistical computation such as analysis of variance. R. C. Bose of the Univer­sity of North Carolina developed very general and elegant analysis of variance procedures that have been incorporated in Scheffe' 36 and which can be implemented using orthonormalization.

R. C. Burton of Brigham Young University developed an orthonormalization computer pro­gram for generalized analysis of variance. The basic program has been updated for operation on the !NEL CYBER Computers using FORTRAN V. The orthonormalization computer program auto­matically rcparameterizes the design matrix to give a full-rank matrix. Linear combinations of the estintated 0 s can be used to obtain unique best estim ates (e .g ., see Corollary 11.8.1 of Reference 32, p. 237).The orthonormalization pro­

gram automatically scales the data and offers good control over the loss of significant figures in the computation.

6.6.3 Model Evaluation. The design matrix and data vector were input to thr orthonormalization program and the Bs were estimated. An evaluation of the results showed that the data from Millstone 2 (45 of the 133 data points) dominated. In fact, use of the model [i.e., Equation (15)1 for the combined plant data (e.g., Table 29, Figure 9) led to un­satisfactory results because the characteristics of the Millstone 2 data are markedly different than for the other plants. Consequently, it was necessary to con­sider Millstone 2 separately.

Therefore, Fquation (15) was modified by deleting the B3 X3 term and considering only the data for the three remaining plants. The elements of the design matrix and parameter estimation are illustrated in Appendix I tor the modified model and the appropriate data of Table 29. Of primary interest are the model coefficients (i.e., coefficients of Vector 1, Appendix I).

Table 31 prpvides model coefficients for both reactor age and operating age using the indicated variations of the model of Equation (15). Coeffi­cients for Millstone 2 are i.lso provided. One can reconstruct n(t,x) for each x [and thus the estimate H(t,x)) as cubic polynomials in t using these coefficients.

6.7 Occurrence P.ute Estimation

From Equations (ll)and(14), Equation (!5)can be differentiated with respect to t to estimate A(t,x). That is

A(t,x) = § | xj + ... + §4 X4 + 265!

+ 3B6t2. (17)

With the modified model, Equation'(17) is used with B3 = 0 for the fitted model given in Appendix 1 and with B], B2, and B4 as zero with the separate Millstone 2 model. Equation (17) reduces to a con­stant occurrence rate for the plant if B5 and B5 arc zero, but allows for the possibility of learning curve effects if Bj and Bg are nonzero. Furthermore, plant effects are indicated by the respective B |, . . . ,B 4 (and Bs and B$, especially for

Millstone 2). A base curve or average X(t) across plants is given by

4= 1/4 E Bi + 3/4 [fi(t)]

i= 1

+ 1/4 [fm(t)J (18)

where f(t) is 2Bgt + 3Bgt^ with B5 and Bg from the Appendix I model for fj an i from the Millstone 2 model for fm.

Figure 12 is a p’ot of the reactor-age-based occurrence rates produced for this sample analysis. The constant rate (0.0245/day) from Table 30 is also plotted for comparison. The effect of Bj, B2, and B4 in determining the location of the estimated occurrence rate curve for Maine Yankee and the Calvert Cliffs plants is apparent. The behavior of the Millstone 2 estimate is more striking. In fact, it is pathological, since the quadratic polynomial produced by Equation (17) is negative for t ’s between reactor year 2 and reactor year 3.

The cause for the behavior of A(t^3) is easily seen from an examination of the Millstone 2 observed counting process, as shown in Figure 9. The n(t,x) are nondecreasing functions of t, and so are many cubic polynomials. However, due to the steepness of the n(t,X3) curve for t values between 0 and 300 days and the lack of data points for n(t,X3) for t values in the ranges from 500 to 800 days and from 1000 to 1500 days, the least squares fit to this curve has a local maximum in the first range of no data and a local minimum in the second.

There are several possible remedies to this situa­tion. One possibility is to constrain the least squares optimization procedure to accept only nonde­creasing cubic polynomials.

A second possibility is to change the set of data input to the model. The data used in Appendix 1 and for the Millstone 2 analysis consists of those points [t,n(t,x)] where a transient occurred. Since the n(t,x) function increases by one at such points and elsewhere is constant, the values processed by the least squares/orthonormalization software are weighted on those parts of the curve where it is

steepest. Since the goal in Equations (13) and (14) is to fit the entire curve, the least squares software could be given a set of points [t,n(t,x),x] evenly spaced along the time axis. For example, an analysis of the Millstone 2 data using 55 data points evenly spaced with times 30 days apart produced a flatter occurrence rate curve. A more dense sampling would be required to produce the desired strictly increasing fitted mean value function.

In considering this second possibility, one should note that no set of data p ints input to the model is independent. Although the times between tran­sients may be independent, n(t,x) values for suc­cessive transient occurrences are highly correlated. This fact makes error terms appearing in the Ap­pendix I computer output not applicable. No attempt is made in this study to quantify the error terms in Equations (12) through (14).

A third possibility to avoid the problem shown by the estimated occurrence rate function of Millstone 2 is to consider other functional forms for the model. A drawback of a quadratic expression for the occurrence rate is its required symmetry; there is no reason to expect the learning curve to decrease at the same rate as wear-out phenomena cause it to increase. Rather, the local behavior of the sample counting processes seems to dominate. Therefore, the use of spline functions would repre­sent an improvement to the methodology.

Any of the above suggestions would produce A estimates that are positive. However, it is beyond the scope of this study to apply these modifications to the sample problem data. As shown in Figure 12, the occurrence rate is taken to be zero for the inter­val for which Equation (17) produced unrealistic results.

Figure 13 is like Figure 12 except that it applies to reactor critical age, corrected for plant outages, instead of reactor age. Comparing Figures 12 and 13 shows that the correction has the largest effect for Millstone 2. This is as expected, since its availability over the time frame of the data (0.72) was lower than that of the other plants (availabilities for Maine Yankee, Calvert Cliffs 1, and Calvert Cliffs 2 were, respectively, 0.78, 0.86, and 0.90). However, applying an overall correction by dividing the Figure 10 occurrence rates by the availabilities to convert counts per reactor year to counts per reactor critical year does not produce the transient data shown in Figure 13. Nor does the further cor­rection of shrinking the Figure 12 time axis scale

by 72%. Since the Figure 13 analysis is based on individual outages, which do not occur at a con­stant rate, it provides better information for calcula­tions based on reactor critical time than the use of an overall correction provides.

6.8 Summary

The statistical methodology of this section is based on less restrictive basic assumptions than the NP-2230 analysis and provides a capability for deal­ing with general occurrence rate functions (e.g., learning curve effects) and multiple classification factors and their interactions. The orthonormaliza­tion program provides an efficient implementation of calculations including computerized reparame­terization in dealing with incomplete data structure.

The methodology was illustrated for the data of Table 24. Figures 12 and 13 indicate that a constant occurrence hazard rate is inconsistent with this set of transient data. They also show that marked dif­ferences may exist between plants. Thus, an analysis method that allows for variation in time and retains plant-specific information is desirable. Further­more, because the learning curve effects illustrated by Figure 9 are similar in principle to those indi

cated by NP-2230 Figures 4-1 and 4-2 (NP-2230, pp. 4-5, and 4-6), it is likely that such capabilities are needed for the broad base of data.

Occurrence rates per unit of reactor critical time can be estimated from reactor age-based rates by dividing by the plant availability over a period of time. However, because occurrence rates do vary in time, modeling the plant outage correction as indicated can produce significantly better estimates for use in analyses based on reactor critical time.

A comprehensive transient analysis using statistical methodology similar to that illustrated in this report would indicate which classification fac­tors are important and would also provide a sum­mary of pertinent occurrence rate trends. However, refinement of the method to include other forms of models for the mean value function, to evaluate the variance of the estimates, and to standardize the model evaluation process is needed. Also, addi­tional effort is required to develop software for per­forming time between transient occurrence and plant outage correction calculations such as those illustrated by Tables 25 through 23 and for gener­ating the complex design matrix input to the or­thonormalization program. T’nese efforts and a comprehensive analysis considering a variety of fac­tors were beyond the resources of the present study.

Table 24. Sample NP-2230 data table8

Reactor Year

Plants 1 2 3 4 5 Total

Maine Yankee 4 5 6 2 — 171.5b

Calvert Cliffs 1 14 8 9 7 8 46l l b

Millstone 2 35 2 3 0 5 455.2b

Calvert Cliffs 2 13 9 3b — — 2512

Total events 66 24 18c 7C 0C 133d

Plant years 4 4 3 2 0 15.42

Meane 16.5 6.0 6.0 3.5 0 8.62

a. Table contains counts from EPRl’s data base of the total of all transients occurring between 26 and 110% power at Combustion Engineering plants.

b. Partial years in months.

c. Transients not counted for partial years.

d. Transients counted for partial years.

e. Transients/year.

Reactor Outage

TransientOccurrence

Date®Day of

Year

TimeBetween

Transients(Days)

ReactorAge

(Days)

Dates

Start StopNumber of

Days

Critical Time Between

Transients*3 (Days)

Reactor Cri Age

(Days)

72/12/28c 362 _ _ _ _73/01/11 11 15 15 — — — 15 15— — — — 73/02/03 73/02/04 2 — —

— — — — 73/02/17 73/02/18 1 — —

— — — — 73/02/19 73/03/12 21 — —

73/03/17 76 65 80 — — — 41 5673/03/28 87 11 91 — — — 11 87

— — 73/05/04 73/05/06 2 — —

73/'05/19 139 52 143 — — — 50 117— — — — 73/06/29 73/08/03 35 — —

— — — — 73/08/24 73/08/27 3 — —

— — — — 73/09/07 73/09/20 13 — —

— — — — 73/10/06 73/10/07 1 — —

— — — — 73/10/23 73/10/25 2 — —

— — — — 73/12/28 74/01/01 4 — —

■'4/02/14 45 271 414 — — — 213 230— — — 74/03/05 74/03/08 3 — —

74/04/05 95 50 464 74/04/05 74/04/07 2 47 37774/04/08 98 3 467 — — — 1 378

— — — 74/06/03 74/10/10 102 — —

74/11/06 310 212 679 — — — 110 48874/11/15 319 9 688 — — — 9 497— — — — 75/01/16 75/01/22 6 — —

75/03/01 60 106 794 — — 100 597— — "5/05/03 75/06/28 56 — —

75/06/03 181 121 915 — — — 65 66275/08/10 222 41 956 — — — 41 70375/11/05 309 87 1043 — — — 87 79075/11/06 310 ! 1044 — — — 1 791— — — — 75/11/15 75/11/17 2 — —

75/12/26 360 50 1094 __ __ __ 48 83976/01/13 13 18 1112 — — — 18 85776/02/12 43 30 1142 — — — 30 887

Total 1142 887

a. Reactor power between 26 and 110%.

b. Time between transients corrected for plant outage times.

c. Initial date o f commercial operation.

TransientOccurrence

Date8

75/05/08c75/05/1075/05/12

75/06/1375/06/1475/07/08

75/07/1475/08/04

75/09/15

75/09/2975/10/0275/11/1975/12/1776/01/0376/04/02

76/06/0576/09/1776/09/2576/09/29

77/04/0277/04/2277/04/2477/05/02

77/06/2877/06/2977/07/2577/10/2477/10/2677/12/24

78/04/0778/04/0778/04/13

78/05/11

78/07/20

78/10/1078/11/1678/12/1378/12/17

79/01/22

Reactor OutageTime

Between .Reactor Day of Transients Age

Year (Days) (Days)

Dates

Start Stop

128130132

164165 189

195216

258

272 275 323 351

393

157261269273

921121141?.?.

179180 206 297 299 358

9797

103

131

201

283320347351

22

321

24

621

42

143

48 28 17 90

64104

84

185202

571

26912

59

10406

28

70

8237274

36

3637 61

67

130

144147195223240330

394498506510

695715717725

782783 809 900 902 961

106510651071

1099

1169

1251128813151319

1355

75/05/10

75/05/1375/06/07

75/07/12

75/08/0575/08/12

75/09/24

76/04/11

76/12/31

77/05/18

77/12/2478/01/23

78/04/18

78/05/20

78/07/21

78/12/18

75/05/11

75/05/1875/06/08

75/07/14

75/08/0775/08/23

75/09/27

Number of Days

76/04/21

77/04/01

77/05/21

77/12/2578/04/06

78/04/20

78/05/26

78/07/22

79/01/18

10

91

173

2

6

1

31

Critical Time Between

Transients'5 (Days)

261

24

421

29

113

48281790

54104

84

9420

28

541

2691 2

59

10406

26

64

813727

4

Reactor Critical Age

(Days)

2930 54

5879

108

119122170198215305

359463471475

569589591599

653654 680 771 773 832

936936942

968

1032

1113115011771181

1186

Reactor Outage

Time CriticalTransient Between Reactor Dates Time Between Reactor Critical

Occurrence Day of Transients Age Number o f Transients^ AgeDate3 Year (Days) (Days) Start Stop Days (Days) (Days)

_ 79/04/21 79/07/13 8379/07/26 207 185 1540 — — — 102 128879/08/10 222 15 1555 — — — 15 130379/09/06 249 27 1582 — — — 27 133079/10/06 279 30 1612 — — — 30 136079/10/25 298 19 1631 — — — 19 137979/11/11 315 17 1648 — — — 17 139680/03/01 61 111 1759 — — — 111 150780/03/25 85 24 1783 — 24 1531

Total 1783 1531

a. Reactor power between 26 and 110%.

b. Time between transients corrected for plant outage times.

c. Initial date of commercial operation.

Table 27. Millstone 2 plant transient occurrence and outage data (calculation of timebetween transients and reactor age)

Reactor Outage

Time CriticalTransient Between Reactor Dates Time Between Reactor Critical

Occurrence Day of Transients Age Number of Transients*’ AgeDate3 Year (Days) (Days) Start Stop Days (Days) (Days)

75/12/26c 36075/12/27 361 1 1 — — — 1 175/12/31 365 4 5 — — — 4 576/01/01 1 1 6 76/01/01 76/01/02 1 1 6

— — — — 76/01/28 76/01/29 1 — —

76/02/12 43 42 48 76/02/12 76/02/16 4 40 4676/02/17 48 5 53 — — — 1 4776/02/26 57 9 62 76/02/26 76/03/01 3 9 5676/03/13 73 16 78 — — — 13 6976/03/14 74 1 79 — — — 1 7076/03/14 74 0 79 — — — 0 7076/03/23 83 9 88 76-03/23 76/04/03 11 9 7976/04/09 100 17 105 76/04/09 76/04/10 1 6 8576/04/13 104 4 109 — — — 3 8876/04/23 114 10 119 — — — 10 9876/05/01 122 8 127 — — — 8 10676/05/04 125 3 130 — — — 3 109

— — — — 76/05/08 76/05/09 1 — —

76/05/10 131 6 136 76/05/10 76/05/14 4 5 11476/05/24 145 14 150 — — — 10 12476/05/25 146 1 151 — — — 1 1257r/06/03 155 9 160 — — — 9 13476/06/07 159 4 164 — — — 4 13876/06/08 160 1 165 — — — 1 13976/06/10 162 2 167 — — — 2 141

Reactor Outage

TransientOccurrence

Date®Day of

Year

TimeBetween

Transients(Days)

ReactorAge

(Days)

Dates

Start StopNumber of

Days

Critical Time Between

Transients*5 (Days)

Reactor Crii Age

(Days)

76/06/19 171 9 176 _ _ ___ 9 15076/06/21 173 2 178 — — — 2 15276/07/21 203 30 208 76/07/21 76/08/01 n 30 18276/08/10 223 20 228 76/08/10 76/08/12 2 9 19176/08/13 226 3 231 — — 1 19276/08/24 237 11 242 — — — 11 20376/09/19 263 26 268 — — — 26 22976/09/21 265 2 270 — — — 2 23176/10/22 296 31 301 — — — 31 26276/10/27 301 5 306 — — — 5 26776/11/17 322 21 327 — — — 21 28876/12/03 338 16 343 76/12/03 76/12/04 1 16 30476/12/07 342 4 347 — — — 3 307

— — — — 76/12/19 77/01/13 26 —

77/01/14 14 38 385 — — — 12 31977/04/20 n o 96 481 — — — 96 415

— — — — 77/04/21 77/04/26 5 — —

— — — — 77/05/08 77/06/21 44 — —

— — — — 77/06/30 77/07/09 40 — —

— — — 77/09/30 77/10/04 4 — —

— — - — 77/11/21 78/04/26 156 — —

78/05/03 123 378 859 — — 129 544— — — — 78/05/27 78/05/28 1 —

78/07/14 195 72 931 — 71 61578/07/31 212 17 948 78/07/31 78/08/01 1 17 632

— — — 79/01/15 79/01/16 1 — —

— — .... — 7 9 /0 3 /U 79/05/22 72 — —

— — — — 79/06/11 79/06/19 8 — —

— — — — 79/08/09 79/08/26 17 — —

— — — — 79/10/31 79/12/04 34 —

80/02/15 46 564 1512 _ _ _ — 431 106380/02/26 57 11 1523 _ — — 11 107480/03/12 72 15 1538 — — — 15 108980/03/21 81 9 1547 — — 9 109880/04/29 120 39 1586 — — — 39 1137

8 0 /0 5 /3 ld 152 _ — — — —

Tc'.al 1586 1137

a. Reactor power between 26 and 110%.

b. Time between transients corrected for plant outage times.

c. Initial date o f commercial operation.

d. Data ending date.

Reactor Outage

TransientOccurrence

Date®Day of

Year

TimeBetween

Transients(Days)

ReactorAge

(Days)

Dates

Start StopNumber of

Days

Critical Time Between

Transients*5 (Days)

Reactor Cri Age

(Days)

77 /04 /0 l c 91 _ _ _ __ _ _ _77/04/15 105 14 14 — — — 14 1477/04/15 105 0 14 — — 0 1477/04/17 107 2 16 — — — 2 16

— — — — 77/05/02 77/05/17 15 — —

77/06/14 165 58 74 — — — 43 59— — — — 77/06/18 77/06/19 1 — —

77/08/05 217 52 126 — — — 51 110— — — — 77/08/06 77/08/07 1 — —

77/08/26 238 21 147 — — — 20 130— — — — 77/08/21 77/08/22 2 — —

77/09/04 247 9 156 — 7 13777/09/14 257 10 166 — — 10 147

— — — — 77/10/08 77/10/16 8 — —

77/12/30 364 107 273 — — 99 24678/01/03 3 4 277 — — 4 25078/02/2) 52 49 326 — — — 49 29978/03/14 73 21 347 — — 21 32078/03/30 89 16 363 — — — 16 33678/04/11 101 12 375 — — 12 34878/04/13 103 2 377 — 2 35^78/06/28 179 76 453 — — — 76 42678/07/04 185 6 459 — — — 6 432

— — — — 78/07/05 78/07/09 4 — —

— — — — 78/07/15 78/07/18 3 —

78/07/23 204 19 478 _ _ — — 12 444

78/08/14 226 22 500 _ _ — — 22 46678/09/07 250 24 524 — — 24 490

— — — — 78/09/16 78/10/28 42 — —

— — — — 78/11/18 78/11/19 1 — —

79/01/20 20 135 659 — — — 92 582— — — — 79/01/21 79/01/27 6 — —

79/03/01 60 40 699 _ _ — — 34 61679/05/07 127 67 766 — — 67 683

— — — — 79/07/29 79/08/03 5 — —

79/09/08 251 124 890 — — 119 802— — — — 79/09/09 79/09/13 4 — —

79/10/12 285 34 924 — — — 30 83280/03/25d 85 — — — — — — —

Total 924 832

a. Reactor power between 26 and 110%.

b. Time between transients corrected for plant outage times.

c. Initial date of commercial operation.

d. Data ending date.

Reactor Age (t) (Days)

12456

1415163637 48

536162677478

7980 88 91

105109

119126127130136143

144 147150151 156 160

164165166 167 176 178

Calvert CalvertMaine Yankee Cliffs 1 Millstone 2 Cliffs 2

Reactor Age (t) (Days)

195208223228231240

242268270273277301

306326327 330 343 347

363365c375377385394

414453459464467478

481498500506510524

659679688695699715

Maine YankeeCalvert Cliffs 1

11

12

13

Millstone 2Calvert Cliffs 2

14

67

89

15

16

1718

19

20

Reactor Age Calvert Calvert(t) (Days) Maine Yankee Cliffs 1 Millstone 2 Cliffs 2

717 - 21 — —725 — 22 — —730c ________________________________________________________________766 - - — 23782 — 23 — —783 - 24 — -

794 10 — — —809 — 25 — —859 — — 38 —890 — — — 24900 — 26 — —902 — 27 — —

915 11 _ — —924 - — _ 25931 - — 39 —948 — — 40 —956 12 - — _961 - 28 — —

1043 13 - — _1044 14 - —_________________ _ 1065 — 30 —_________________ — 1071 — 31 —_________________ — 1094 15 _ —_________________ - 1095c

1099 - 32 — -1112 16 - — —1142 17 — — —1169 - 33 — -1251 — 34 — —1288 — 35 — —

1315 - 36 — —1319 - 37 — —1355 — 38 — -1460° ________________________________________________________________1512 — — 41 -1523 — — 42 -

1538 - — 43 -1540 — 39 — -1547 - _ 44 -1555 - 40 — -1582 - 41 — -1586 - - 45

Reactor Age Calvert Calvert(t) (Days) Maine Yankee Cliffs 1 Millstone 2 Cliffs 2

1612 1631 1648 1759 1783 1825c

Total 17 46 45 25

4243444546

a. Numbers in the table are cumulative numbers of transients occurring in the interval 0 to t.

b. Dash symbol indicates that there were no transient occurrences at this particular reactor age; however, the cumulative number of transients to this point is indicated by the immediately preceding numerical value in the column.

c. The solid lines separate the data into reactor years.

Is

Reactor year

500 1000 Reactor age(day)

1500

5 6325

Figure 9. Plant cum ulative num ber o f transients versus reactor age.

Cum

ulat

ive

num

ber

of tr

ansi

ents

Reactor critical age (day)

Figure 10. Plant cumulative number of transients versus reactor critical age.

S 6329

Table 30. Exponential and Pois^on parameter estimation___________________________________________ X \ __________________________________________________________________________/

Not Corrected Correctedfor Outage for Outage

Plant Parameter Method la

Maine Yankee © (days)c A (per day)^ A (per year)e

67.180.01495.44

Calvert Cliffs 1

© (days)A (per day) A (per year)

38.760.02589.42

Millstone 2 © (days)A (per day) A (per year)

35.240.0284

10.37

Calvert Cliffs 2

0 (days)A (per day) A (per year)

36.960.02719.89

Combined Across Plants

0 (days)A (per day) A (per year)

40.860.02458.93

a. Method 1 is based on Equation (7).

b. Method 2 is based on Equation (8).

c. Mean time between transients (MTBT) in days.

d. Transient occurrence rate per day, A = 1/0.

e. Transient occurrence rate per year.

Method 2^ Method 1 Method 2

74.63 52.18 56.180.0134 0.0192 0.01784.89 7.01 6.50

?6.36 33.28 31.250.0275 0.0300 0.0320

10.04 10.95 11.68

26.46 25.27 18.350.0378 0.0396 0.0545

13.80 14.45 19.89

31.06 33.28 28.090.0322 0.0300 0.0356

11.75 10.95 12.99

35.46 32.98 29.070.0282 0.0303 0.0344

10.29 11.06 12.56

V ON»

1 Maine Yankee2 Calvert Cliffs 13 Millstone 24 Calvert Cliffs 25 Average across plants6 Combined rate

(Method 1, Table 30)

5 6330

Figure 11. Transient rate versus reactor year.

0.0822

0.0548

0.0274

Tran

sien

t ra

te

(per

da

y)

Model [Equation (15)]

Excluding Millstone 2

Maine Yankee (Bj)

Calvert Cliffs 1 (B2)

Calvert Cliffs 2 (B4)

t2 (B5)

t3 (B6)

Millstone 2 Only

Millstone 2 (B3)

t2 (B5)

t3 (B6)

Model Coefficientsa

Reactor Age

2.95 x 10' 2

4.55 x 10' 2

4.38 x 10‘2

-2.46 x 10' 5

7.82 x 10-9

1.47 x 10' 1

-1.67 x 10' 4

5.79 x 10' 8

Reactor Critical Age

3.44 x 10-2

5.17 x lO' 2

4.98 x 10’2

-3.20 x 10-5

1.21 x 10-8

1.76 x 10-1

-2.51 x 10-4

1.15 x IQ'7

a. These coefficients apply when t is measured in days.

Occ

urre

nce

rate

, A

(t,

x) (p

er

year

)

Reactor age (t) (day)

5 6326

Figure 12. Comparison of occurrence rates for reactor age data.

Occ

urre

nce

rate

, A

(t,

x) (p

er

day)

Occ

urre

nce

rate

A

(t, x

) (p

er

year

)

Reactor critical age (t) (day)

5 6327

Figure 13. Comparison of occurrence rates for reactor critical age data.

Occ

urre

nce

rate

A

(t, x

) (p

er

day)

7. FINDINGS AND RECOMMENDATIONS

This study has demonstrated the validity of the EPRI data for use as a basis for expanding and up­dating the transient event data base. The IiPRI categories have been shown to be adequate for use with the new data, but they require changes to ful­ly capture the data and to allow the PRA analyst greater flexibility than is now possible. A one-line computer file of the added transient events has been created and is included in this report for use in future studies. A computer file of all transient data is also available for future use. New transient in­itiating event frequencies and upper bounds have been developed for use in PRAs. Also, dominant transients are identified and transient impact on operation, the effects of low power and scheduled scrams on transient event counts, and time trends in overall transient occurrence rates are* explored.

Tables 32 and 33 summarize the information derived from this project for each transient category and rank the categories by number of occurrences. Overall, the new transient initiating event frequen­cies are lower than the EPRI estimates. However, the differences are less than a half order of magnitude and therefore are not believed to be significant for most applications.

Based on the work reported herein, further study of initiating events is recommended. This study should focus on getting more information from the utilities on past events in order to reduce the uncer­tainties associated with data categorization. Furthermore, consideration should be given to developing improved categories for these events, using the transient categories suggested herein as a starting point, in order to capture the events in more detail and provide the PRA analyst with more flex­ibility. The past data as well as the ongoing data now being received through the new Licensee Event Report S y s te m ^ should be combined in a common format to facilitate further analysis. The Data Sum­mary section of this report gives an overview of some areas where further analysis is desirable; and many other classification factors such as plant ther­mal power ratings, interactions between calendar year effects and reactor year effects, and differences in individual utility licensees also deserve investiga­tion. Tools such as those suggested in Section 6 should be refined for such studies and applied. Because of the increasing number of events per year and plants in the population, an on-going effort should be established to maintain, analyze, and periodically publish an update of these studies.

EPRI PWR Transient Category Title

1 Loss of RCS flow (1 loop)2 Uncontrolled rod withdrawal3 CRDM problems and /or rod drop4 Leakage from control rods5 Leakage in primary system

6 Low pressurizer pressure7 Pressurizer leakage8 High pressurizer pressure9 Inadvertent safety injection signal

10 Containment pressure problems

11 CVCS malfunction—boron dilution12 Pressure/temperature/power imbalance—rod position

error13 Startup of inactive coolant pump14 Total loss o f RCS flow15 Loss or reduction in feedwater flow (1 loop)

16 Total loss o f feedwater flow (all loops)17 Full or partial closure of MSIV (1 loop)18 Closure of all MSIV19 Increase in feedwater flow (1 loop)20 Increase in feedwater flow (all loops)

21 Feedwater flow instability—operator error22 Feedwater flow instability—miscellaneous mechanical

causes23 Loss of condensate pumps (1 loop)24 Loss of condensate pumps (all loops)25 Loss of condenser vacuum

Number of Transients

Transients/Year

UpperAverage Bound

AverageOutageTime

(h)

Category Ranking

by Number o f Occurrences

117 0.28 0.97 92 105 0.01 0.03 8 36

205 0.50 2.89 39 47 0.02 0.07 183 34

20 0.05 0.28 140 22

11 0.03 0.17 12 302 0.005 0.02 184 38

15 0.03 0.11 76 2322 0.05 0.30 44 202 0.005 0.02 28 39

12 0.03 0.17 31 2852 0.13 0.77 18 15

1 0.002 0.01 867 4113 0.03 0.17 42 26

628 1.50 5.10 27 1

71 0.16 0.78 27 1170 0.17 0.92 35 1215 0.04 0.23 35 24

184 0.44 2.28 17 79 0.02 0.08 16 31

127 0.29 1.34 18 9143 0.34 1.59 26 8

27 0.07 0.34 18 194 0.01 0.03 77 37

61 0.14 0.57 25 13

EPRI PWR TransientCategory _______________________ Title

26 Steam generator leakage27 Condenser leakage28 Miscellaneous leakage in secondary system29 Sudden opening o f steam relief valves30 Loss o f circulating water

31 Loss o f component cooling32 Loss o f service water system33 Turbine trip, throttle valve closure, EHC problems34 Generator trip or generator caused faults35 Loss o f all offsite power

36 Pressurizer spray failure37 Loss o f power to necessary plant systems38 Spurious trips—cause unknown39 Auto trip—no transient condition40 Manual Trip—no transient condition41 Fire within plant

All Transients

Number o f Transients

Transients/Year

AverageUpperBound

AverageOutageTime

(h)

Category Ranking

by Number o f Occurrences

13 0.03 0.53 507 2715 0.04 0.23 70 2535 0.09 0.24 70 179 0.02 0.08 67 32

22 0.05 0.27 99 21

8 0.02 0.11 114 332 0.005 0.02 57 40

502 1.19 3.42 45 3193 0.46 1.59 57 660 0.15 0.58 158 14

12 0.03 0.11 40 2949 0.11 0.54 26 1634 0.08 0.47 11 18

592 1.49 4.39 22 2198 0.47 1.83 80 5

7 0.02 0.11 131 35

3574 8.5 23.1

EPRI BWR Transient Category Title

1 Electric load rejection2 Electric load rejection with turbine bypass valve failure3 Turbine trip4 Turbine trip with turbine bypass valve failure5 Main steam isolation valve closure

6 Inadvertent closure of one MSIV7 Partial MSIV closure8 Loss o f normal condenser vacuum9 Pressure regulator fails open

10 Pressure regulator fails closed

11 Inadvertent opening o f a safety/relief valve (stuck)12 Turbine bypass fails open13 Turbine bypass or control valves cause increase pressure

(closed)14 Recirculation control failure—increasing flow15 Recirculation control failure—decreasing flow

16 Trip o f one recirculation pump17 Trip o f all recirculation pumps18 Abnormal startup of idle recirculation pump19 Recirculation pump seizure20 Feedwater—increasing flow at power

21 Loss o f feedwater heater22 Loss o f all feedwater flow23 Trip o f one feedwater pump (or condensate pump)24 Feedwater—low flow25 Low feedwater flow during startup or shutdown

Number of Transients

Transients/Year

UpperAverage Bound

AverageOutageTime

(h)

Category Ranking

by Number of Occurrences

112 0.45 1.33 68 61 0.004 0.02 86 35

214 0.87 2.65 28 21 0.004 0.02 1 36

67 0.27 1.10 41 9

51 0.21 0.71 42 1014 0.06 0.28 29 23

102 0.41 1.15 3220 0.08 0.46 39 IT26 0.10 0.51 29 16

33 0.14 0.71 54 149 0.04 0.17 21 28

103 0.42 1.55 32 7

94 0.18 0.81 20 1213 0.05 0.30 45 25

14 0.06 0.16 82 249 0.03 0.11 25 294 0.02 0.11 21 321 0.004 0.02 44 37

36 0.14 0.36 26 13

7 0.02 0.07 30 3016 0.07 0.42 31 1951 0.20 0.55 40 11

118 0.49 1.46 29 528 0.12 0.44 37 15

EPRI BWR TransientCategory _______________________ Title

26 High feedwater flow during startup or shutdown27 Rod withdraw at power28 High flux due to rod withdrawal at startup29 Inadvertent insertion of rod or rods30 Detected fault in reactor protection system

31 Loss of offsite power32 Loss o f auxiliary power (loss o f auxiliary transformer)33 Inadvertent startup of H PC I/H PCS34 Scram due to plant occurrences35 Spurious trip via instrumentation, RPS fault36 Manual Scram—no out-of-tolerance condition37 Cause unknown

All Transients

Number o f Transients

Transients/Year

AverageUpperBound

AverageOutageTime

(h)

Category Ranking

by Number o f Occurrences

11 0.04 0.20 23 273 0.01 0.06 37 33

12 0.05 0.26 23 2615 0.06 0.23 18 2015 0.05 0.26 39 21

19 0.08 0.48 99 186 0.02 0.07 119 312 0.01 0.03 39 34

152 0.58 1.45 106 4276 1.11 2.33 32 1212 0.87 3.20 84 3

15 0.06 0.35 57 22

1832 7.4 17.4

8. REFERENCES

1. A. S. McClymont and B. W. Poehlrnan, ATWS: A Reappraisal, Part 3: Frequency o f Anticipated Transients, NP-2230, January 1982.

2. U.S. Nuclear Regulatory Commission, Operating Units Status Reports, Licensed Operating Reac­tors, NUREG-0020, 1974-1983.

3. D. C. Oliver and R. K. Neff, LOGLIN 1.0 Users Guide, September 1976.

4. U.S. Atomic Energy Commission, Nuclear Power Plant Operating Experience During 1973, OOE-ES-004, December 1974.

5. U.S. Nuclear Regulatory Commission, Nuclear Power Plant Operating Experience 1974-1975, NUREG-0227, April 1977.

6 . U.S. Nuclear Regulatory Commission, Nuclear Power Plant Operating Experience 1976, NU REG-0366, December 1977.

7. M. R. Beebe, Nuclear Power Plant Operating Experience—1977, NUREG-0483, February 1979.

8. M. R. Beebe, Nuclear Power Plant Operating Experience 1978, NUREG-0618, December 1979.

9. R. L. Scott, D. S. Queener, and C. Kukielka, Nuclear Power Plant Operating Experience-1979, NUREG/CR-1496, ORNL/NUREG/NSIC-180, May 1981.

10. G. T. Mays et al., Nuclear Power Plant Operating Experience—1980, NUREG/CR-2378, ORNL/NSIC-191, October 1982.

11. USNRC Regulatory Guide 1.16: Reporting o f Operational Information—Appendix A Technical Specifications, August 1975, p. 1.16-14.

12. F. L. Leverenz et al., ATWS: A Reappraisal, Part III, Frequency o f Anticipated Transients, NP-801, July 1978.

13. N. C. Rasmussen et al., Reactor Safety Study, an Assessment o f Accident Risks in U.S. Commer­cial Nuclear Power Plants, WASH-1400 (NUREG-75/014), October 1975.

14. G. J. Kolb, Interim Reliability Evaluation Program: Analysis o f the Arkansas Nuclear One-Unit 1 Nuclear Power Plant, NUREG/CR-2787, SAND82-0978, June 1982.

15. S. E. Mays et al., Interim Reliability Evaluation Program: Analysis o f the Browns Ferry, UnitI, Nuclear Plant, NUREG/CR-2802, EGG-2199, July 1982.

16. A. A. Garcia et al., Crystal River-3 Safety Study, NUREG/CR-2515, SAND81-7229, December 1981.

17. J. J. Curry et al., Interim Reliability Evaluation Program: Millstone Point Unit 1, SAI-002-82-BE, January 1982, Preliminary Draft Report.

18. Philadelphia Electric Company, Probabilistic Risk Assessment, Limerick Generating Station, September 1982.

19. Commonwealth Edison Company, Zion Probabilistic Safety Study, September 1981.

20. Consumer Power Company, Probabilistic Risk Assessment, Big Rock Point, March 1981.

21. Science Applications, Inc., Technical Support fo r the Utility Group on ATWS, SAI-011082-LJ, December 1981.

22. B. W. Poehlman, PLUNGE: A Computer Program fo r Transient Event Analysis, NP-2229, January 1982.

23. U.S. Department of Energy, Operating History o f U.S. Central Station Nuclear Power Plants 1977.

24. C. A. Moore, private communication, EG&G Idaho, Inc., Idaho Falls, ID, February 28, 1983.

25. D. E. Erickson, private communication, Electric Power Research Institute, Palo Alto, CA, April 19, 1983.

26. C. D. Gentillon, private communication, EG&G Idaho, Inc., Idaho Falls, ID, May 16, 1983.

27. L. G. Rayes, private communication, Science Applications Inc., Palo Alto, CA., June 30, 1983.

28. J. K. Shultis et al., Bayesian Analysis o f Component Failure Data, NUREG/CR-1110, KSU-2662, November 1979.

29. E. Parzen, StoichasticProcesses, San Francisco: Holden-Day, Inc., 1962.

30. L. J. Bain, Statistical Analysis o f Reliability and Life Testing Models, Theory and Methods, New York: Marcel Dekker, Inc., 1978, pp. 26, 109.

31. W. H. Von Alven, Reliability Engineering, Englewood Cliffs: Prentice-Hall, Inc., 1964, pp. 72-73.

32. F. A. Graybill, An Introduction to Linear Statistical Models, Volume I, New York: McGraw-Hill, 1961, pp. 223-239.

33. P. J. Davis, Interpolation and Approximation, New York: Blaisdell Publishing Company, 1963, Chapter 8.

34. P. J. Davis and P. Rabinowitz, Advances in Orthonormaiizing Computation, in Advances in Com­puters, Volume II, F. L. Alt (ed.), New York Academic Press, 1961.

35. P. Davis and P. Rabinowitz, “ A Multiple Purpose Orthonormaiizing Code and Its Uses,” Jour­nal o f the Association fo r Computing Machinery, I, 1954, pp. 183-191.

36. H. Scheffe', The Analysis o f Variance, New York: John Wiley and Sons, Inc., 1959.

37. U.S. Nuclear Regulatory Commission, Licensee Event Report System, NUREG-1022, September 1983.

A-l

A statistical technique known as log-linear modeling was used to provide guidance for selecting a sample of EPRI data for validation purposes. The goal in selecting the sample was to examine outliers among the EPRI data; i.e., unusual sets of EPRI data—either sets having more data than what might be expected or sets having less data.a Since the EPRI data is grouped by plant and reactor year,*3 the selection process focused on plants and plant/reactor-year combinations that might be o f interest. The reactor year factor by itself was not used because a known higher incidence of scrams in the first few years was not considered unusual.

Because of variations among reactor years and differing time periods of data for each plant, a statistical technique was sought to aid the identification process. The selected technique, log-linear modeling, describes scram occurrence rates as functions of factors such that the terms are linear on a log scale. More specifical­ly, a two-factor situation such as the initiating event data where one would expect the overall scram occur­rence rate to change according to the plant involved and its age would be described by

Ay = A c*j ftj yjj (A-l)

where

Ay = scram occurrence rate for i1*1 plant in its j 1*1 reactor year

A = geometric mean o f the scram occurrence rate

aj = factor for i1*1 plant

Pj = factor for reactor year

yjj = interaction factor for the effect of plant and reactor year factors combined.

The crj, Pj, and yjj are uniquely defined by constraints

n a. = n p. = n y „ (for each j) = « y.. (for each i) = 1. i i j J i U j U

In these equations, the products over i for each j and conversely are over the range of available data. Where there are no occurrences the corresponding factors are taken to be 1. Equation (A-l) implies that

log Ajj - log A + log aj + log Pj + log yij . (A-2)

The terms on the right are called additive effects (respectively, they are the main, piant, year, and interac­tion effects). Log-linear analysis provides maximum likelihood estimates of these effects based on a fixed scram occurrence rate for each plant/reactor-year combination. The model permits variation in the rates from one year to the next and between plants, and accounts for partial years of data.

The model of Equation (A-2) is saturated; that is, it has enough parameters to fit the data exactly. Log- linear models that smooth the data and are useful in predicting future rates are possible; for example, one

a. No statistical inference is implied by this use o f the term outlier.

b . Reactor years are years of time measured from a plant’s initial commercial operation date.

may take all the interaction terms in Equation (A-2) to be zero, fit the resulting model to the data, and make inferences about whether the plant and reactor year sources o f variation in the rates are independent. Such tests for the EPRI data show that these factors are not independent. However, for the purpose of qualitatively identifying outliers, the use o f Equation (A-2) for prediction and smoothing is not necessary. The benefit of the saturated model is that it allows the structure of the data to be examined with plant and reactor year effects separated from the individual plant/reactor-year combined effects.

To identify outliers, the model o f Equation (A-2) was applied to the first 10 years o f data from both o f the total fo r all transients tables in EPRI-2230.^‘1 The resulting additive effect estimates are presented for PWRs and BWRs in Tables A-l and A-2, respectively. With the saturated models, these estimates were calculated by a technique known as mean rem ovaft'^A-'i and fit the data exactly. They have no degrees o f freedom.

As an example, in interpreting the additive effect estimates, consider the values in Table A-l for the last plant and its last reactor year (Cook 2, year 3). During the 6 months that this year was in EPRI’s data base, Cook 2 had three scrams. The following data are in the table (the “ “ symbol denotes estimates): log 1 = 1.91; log 035 = 0.03; log P3 = 0.01; and log 7353 = -0.16. Exponentiating3 shows that 1 = 6.75, S35 = 1.03, P3 = 1.01, and £35 3 = 0.85. Taking the product o f these four effects as shown in Equa­tion (A-l) produces A.35 3 = 6 scrams per year, as expected.

These estimates are purely descriptive. The technique provides a method for separately assessing the ef­fect of time and plants. Outliers are subjectively identified as those plants, reactor years, or (plant, year) combinations having either higher or more negative effect estimates.

The selected outlier effect estimates are marked in Tables A-l and A-2. Table A-3 summarizes the plants and plant-year combinations selected as being possible outliers.

a. The log-linear analysis software works with natural logarithms.

References

A -l. A. S. McClymont and B. W. Poehlman, ATWS: A Reappraisal, Part 3: Frequency of Anticipated Transients, Electric Power Research Institute, NP-2230, January 1982.

A-2. Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis: Theory and Practices, Cambridge, Mass.: MIT Press, 1975.

A-3. D. C. Oliver and R. K. Neff, Loglin 1.0 Users Guide, Harvard School o f Public Health, September 1976.

Main Effect (log y): 1.91

/SReactor Year Effects (log (?:):

Reactor Year®(j)

1 2 3 4 5 6 7 8 9 10

0.79 0.38 0.01 0.06 0.02 -0.31 -0.22 -0.53 -0.25 0.04

Plant Effects (log oj) and P lant/R eactor Year Interaction Effects (log y;j):

Reactor YearG)

PlantIndex

(0 PlantPlantEffect 1 2 3 4 5 6 7 __ 8__ 9 10

1 Yankee Rowe -0.74 -0.34 0.41 0.90 0.38 -0.49 0.53 -0.94 -0.64 0.70 -0.512 Indian Point 1 1.14° -0.14 f 0.60 0.44 -0.34 -0.35 0.15 0.12 0.12 -0.23 -0.37

3 San Onofre -0.66 -0.65 -0.93 -1.26 0.64 0.12 ' 0.45 0.07 0.67 0.80 0.104 Haddam Neck -0.39 0.25 0.59 0.66 0.21 -0.15 -1.22c 0.09 -l.OO0 0.52 0.055 R. E . Ginna -0.57 0.07 0,49 -1.35 -0.01 0.59 -0.33 — — -0.39 ' 0.93

6 Point Beach 1 -0.62 0.63 0.12 0.30 0.59 -0.61 -0.29 0.03 0.33 -1.04 -0.07

7 H. B. Robinson 0.90c -0.16 -0.19 0.51 -0.57 0.07 0.39 0.31 0.12 -0.36 -0.148 Palisades 0.28 0.28 -0.62 — 0.34 — — — — —9 Point Beach 2 -0.67 0.54 -0.23 0.36 0.78 -0.16 -0.93 -0.33 -0.02 — —

10 Sum, 1 0.49 0.03 0.11 0.58 0.10 -0.12 -0.71 — — — —

11 Maine Yankee -0.27 -0.81 -0.40 0.14 1.07 — — — — —

12 Surry 2 0.08 -0.58 0.04 0.49 0.35 0.19 -0.49 — — — —13 Oconee 1 0.06 0 .0 ! -0.15 0.21 -0.09 -0.38 0.64 -0.65 0.41 — —14 Indian Point 2 1.14c 0.03 0.07 0.55 0.06 -0.50 -0.55 0.33 — — —15 Prairie Island 1 -0.22 0.52 0.13 -0.32 -0.66 -0.32 0.65 — — — —

16 Zion 1 0.39 -0.04 0.72 0.17 0.20 -1.05 — — — — —17 Kewaunee 0.25 -0.38 0.51 -0.09 -0.61 0.02 0.35 0.21 — — —18 Fort Calhoun -0.58 -0.42 0.01 0.37 0.10 0.14 -0.21 — — — —

Plant Effects flog «j) and Plant/R eactor Year Interaction Effects (log 9 jj):

Reactor Year ____________________________________(j)

PlantIndex

(i) PlantPlantEffect 1 2 3 4 5 6 7 8 9 10

19 Oconee 2 -0.58 0.52 -0.32 -0.65 0.01 -0.73 - 1.02 0.76 __ _ _

20 Zion 2 0.82 0.27 -0.01 0.35 -0.61 — — — — — —

21 Oconee 3 -0.42 0.12 -0.08 -0.12 0.06 -0.41 0.43 — — __ __22 Arkansas 1 -0.41 0.20 0.07 -0.82 -0.17 -0.13 0.85 — — — —23 Prairie Island 2 -0.20 0.40 -0.47 0.07 -0.16 0.16 — — _ — —24 Rancho Seco -0.58 -0.73 -0.32 -0.65 0.40 0.60 0.71 — — —25 Calvert Cliffs 1 0.17 -0.16 -0.26 0.30 -0.07 0.19 — — — — —

26 Cook 1 -0.07 -0.55 0.42 0.09 -0.52 -0.06 0.62 _ — _ _27 Millstone 2 -0.29 1.33c -0.39 -0.54 -1.68° 1.28 — — — — —28 Trojan 0.14 -0.13 0.47 -0.67 -0.32 0.65 — — — — —29 Indian Point 3 0.57 0.00 — — — — — — — — —30 Calvert Cliffs 2 -0.12 0.06 0.13 -0.19 — — — — — — —

31 Salem 1 0.23 0.02 -0.03 0.15 -0.14 _ — _ _ _ __32 Davis-Besse 1 0.28 0.11 -0.37 -0.41 0.67 — — — — — —33 Farley 1 0.88 -0.11 -0.46 0.57 — — — — — — —34 North Anna 1 -0.37 -0.02 0.02 — — — — — — — —35 Cook 2 0.03 -0.16 0.32 -0.16 — — — — — — —

a. Based on da ta from Reference A -l.

b. The reactor year is also the reactor year index, j.c. Effect estimate selected as an outlier.

AMain Effect (log y ) : 1.85

Reactor Year Effects (log Pj);Reactor Year*5

(j)

1 2 3 4 5 6 7 8 9 10

0.79 0.38 0.01 0.06 0.02 -0.31 -0.22 -0.53 -0.25 0.04

Plant Effects (log a-t) and P lant/R eactor Year Interaction Effec ts (log fjj):

Reactor Year 0)____

ndex(i) Plant

PlantEffect 1 2 3 4 5 6 7 8 9 10

1 Humboldt Bay -0.96c 0.42 -0.02 -1.02 -0.34 0.79 -0.21 0.67 -0.54 -0.11 0.232 Nine Mile Island -0.27 0.78 0.75 0.08 0.58 -0.41 -0.05 -0.25 -0.25 0.11 -0.353 Oyster Creek -0.67 0.68 -1.41c 0.76 0.98 -0.42 0.01 -1.24c 0.64 — —4 Millstone 1 -0.17 0.49 -1.21 -0.02 -0.02 0.19 -0.48 0.98 0.28 -0.21 —5 Monticello -0.40 0.27 -0.07 -0.89 -0.49 0 .0 1 0.22 -0. II 0.85 0.21 —

6 Vermont Yankee -0.57 0.15 0.69 0.53 0.37 -1.21 -0.31 -0.23 — — —7 Pilgrim 1 0.32 0.10 -0.32 0.4) -0.36 0.10 -0.10 0.18 — — —8 Cooper Station -0.53 1.23c 0.64 -1.46c -0.37 -0.56 0.51 — — — —9 Browns Ferry 1 0.65 -0.27 — 0.37 -0.44 0.57 -0.23 — — — —

10 Duane Arnold -0.44 -0.39 0.15 0.85 -0.86 0.05 0.20 --- — — —

11 Browns Ferry 2 0.17 -2.79° 0.15 0.79 0.23 1.10= 0.43 — — —12 Brunswick 2 0.79c -0.08 0.22 0.22 -0.21 -0.16 — — — — —13 Hatch 1 0.52 0.12 0.50 -0.01 -0.56 -0.04 — — — — —14 Browns Ferry 3 0.55 -0.04 0.37 -0.33 — — — — — — —15 Brunswick 1 0.93c -0.67 -0.45 -0.28 1.39 — — — — — —16 Hatch 2 0.09 0.00 — — — — _ — —

a . Based on data from Reference A -l.

b. The reactor year is also the reactor year index, j.

c. Effect estimate selected as an outlier.

Plant Type

PWR

Outlier by Plant Effect

Indian Point 1 Indian Point 2 Robinson

Outlier by Plant-Reactor Year Interaction

Haddam Neck Reactor Year 6 Reactor Year 8

BWR Brunswick 1 Brunswick 2 Humboldt Bay

Millstone 2 Reactor Year 1 Reactor Year 4

Browns Ferry 2 Reactor Year 1 Reactor Year 5

Cooper Station Reactor Year 1 Reactor Year 3

Oyster Creek Reactor Year 2 Reactor Year 7

APPENDIX B TRANSIENT EVENT COMPARISONS FOR

OUTLIER SAMPLE PLANT/REACTOR YEAR COMBINATIONS

B-l

APPENDIX B TRANSIENT EVENT COMPARISONS FOR

OUTLIER SAMPLE PLANT/REACTOR YEAR COMBINATIONS

This appendix gives the details of transient event comparisons for selected outlier PWR and BWR plant/reactor year combinations. Tables B-l and B-2 contain comparisons between the transient event infor­mation contained in the EPRI PLUNGE data file and the information available to the general public in Gray Books, USNRC Annual Summaries of operating experience and the plant USNRC Dockets. The intent o f the comparison is to validate the EPRI data for inclusion in a transient initiating event data base encom­passing all operating United States commercial nuclear power plants. Table B-l contains results for five PWR plant results, while Table B-2 contains results for six BWR plants. A “ T ” in the category column indicates that the event was a scheduled scram.

The first page of Tables B-l and B-2 follow; the remainder of these tables are shown on microfiche located on the inside back cover of this report.

EPRI Data Other Source Data

Event Date Category Title Category Title

Haddam Neck Reactor Year 6 (1/1/73 through 12/31/73)

02-22-73 19 Increase in Feedwater 19Flow (1 Loop)

Haddam Neck Reactor Year 8 (1/1/75 through 12/31/75)

02-01-75 15 Loss o r Reduction in 15

Increase in Feedwater Flow (I Loop)

Loss o r Reduction in Feedwater Flow (1 Loop)

03-26-75 Not Listed 39

Loss or Reduction in Feedwater Flow (1 Loop)

Auto Trip—No Tran­sient Condition

Source Event Description

Manual trip on uncontrolled increase in steam generator level due to feedwater con­trol valve failure. Sources list date as 02-02-73.

During isolation of con­denser waterbox for clean­ing tube sheets, condensate pumps cavitated on low hot well level. Low feed pumps suction pressure resulted in plant trip.

Packing gland leakage from the letdown system stop valve to the valve stem leakoff header in the con­tainment in excess of administrative limits caused the plant to be removed from the line. During the manual shutdown o f (he reactor, a spurious high startup rate signal from the Nuclear Instrumentation System Channel 22 tripped the reactor.

Indian Point I Reactor Year 9 (10/1/70 through 9/30/71)

02-17-71 37

03-14-71

07-02-71

07-09-71

07-10-71

07-12-71

39

05-28-71 40 T

40 T

39

39

40 T

Loss o f Power to —Necessary PlantSystems

Auto Trip—No Tran- — sient Condition

Manual Trip—No 40 TTransient Condition

Manual T rip—No 40 TTransient Condition

Auto Trip—No Tran- 39 sient Condition

Auto Trip—No Tran- 39 sient Condition

Manual Trip—No 40 TTransient Condition

Manual Trip—No Transient Condition

Manual Trip—No Transient Condition

Auto Trip—No Tran­sient Condition

Auto Trip—No T ran­sient Condition

Manual Trip—No Transient Condition

No sources available.

No sources available.

Deliberate shutdown to locate and repair primary to secondary leakage.

Deliberate shutdown to eliminate gland seal leakage to component drain system.

Spurious scram caused by instrument setpoint drift.

Spurious scram caused by instrument setpoint drift.

Scheduled outage for steam generator repairs.

NOTE: The complete table is on microfiche located in a pouch on the inside back covet o f this report.

EPRI Data Other Source Data

Event Date Category Title

Browns Ferry 2 Reactor Year 1 (3/1/75 through 2/29/76)

03-22-75 36 Manual Scram—NoOut-of-ToleranceCondition

Category

34

Title

Browns Ferry 2 Reactor Year 5 (3/1/79 through 2/29/80)

03-18-79

03-25-79

04-27-79

05-26-79

05-28-79

05-29-79

05-30-79

06-23-79

07-29-79

08-12-79

08-31-79

09-17-79

10-29-79

10

10

36 T

28

26

25

3 T

36 T

36 T

36 T

35

Pressure Regulator Fails Closed

Pressure Regulator Fails Closed

Manual Scram—NoOut-of-ToleranceCondition

High Flux Due to Rod Withdrawal at Startup

High Feedwater Flow During Startup or Shutdown

Low Feedwater Flow During Startup or Shutdown

Inadvertent Closure of One MSIV (Rest Open)

Turbine Trip

Manual Scram—NoOut-of-ToleranceCondition

Manual Scram—NoOut-of-ToleranceCondition

Manual Scram—NoOut-of-ToleranceCondition

Main Steam Isolation Valve Closure

..purious Trip Via Instrumentation, RPS Fault

10

10

36

36

35

Scram due to Plant Occurrences

Pressure Regulator Fails Closed

Pressure Regulator Fails Closed

Turbine Trip

Manual Scram—NoOut-of-ToleranceCondition

Manual Scram—NoOut-of-ToleranceCondition

Main Steam Isolation Valve Closure

Spurious Trip Via Instrumentation, RPS Fault

Source Event Description

Cable tray fire during penetration leak test.

APRM high flux due to pressure regulator problems.

APRM high flux due to pressure regulator problems.

Listed as a manual shut­down for refueling.

Not listed in sources; unit shutdown for refueling.

Not listed in sources; unit shutdown for refueling.

Not listed in sources; unit shutdown for refueling.

Not listed in sources; unit shutdown for refueling.

Reactor scrammed on tur­bine stop valve closure due to an EHC trip during surveillance.

Listed as a manual shut­down to repair an EHC oil leak.

Reactor scram to repair an elecirohydraulic cooling system oil leak.

Reactor sccam to repair an eiectrohydraulic cooling system oil leak.

Personnel error during per­formance o f Rx Low-Low W ater Level SI caused MSIV closure.

Reactor scram due to tur­bine trip on load rejection from accidental grounding o f the sudden pressure trip circuit.

NOTE: The complete table is on microfiche located in a pouch on the inside back cover o f this report.

c-i

This appendix describes the one-line event descriptions for the transients collected by EG&G Idaho from public documents. The EPRI data used in this report are not included in the one-line event descriptions appendix because the utility responses are considered proprietary by EPRI and no descriptions beyond the coded data, i.e., raw data, are available.

The one-line event descriptions are contained in four files. The first two files are sorted by transient category, plant, and event date for PWRs and BWRs. The second two files are sorted by plant and event date for PWRs and BWRs. These four files are listed on microfiche located on the inside back cover of this report.

This discussion that follows describes the transient event coding scheme in the order in which the fields appear in the one-line event descriptions. They are in the same form as the data used by the PLUNGE^-l program with the exception that a word event description is included and the plant code number has been replaced by the facility identification code. Table C-l gives the facility identification codes for the plants by plant type, along with additional information. Tables C-2 through C-5 in this appendix show event descrip­tions in a format similar to the microfiche. Each of these tables is two pages long to allow the reader to more fully understand the coding scheme discussed here. The headings in bold type appear as the column headers on the microfiche, while those in parentheses, where different, are used in Tables C-2 through C-5 to identify the columns.

Facility Identification Code (FID)

Each o f the 36 PWR and 16 BWR plants in the EPRI data was arbitrarily assigned a plant code number. Additional numbers were assigned to the 14 PWR and 10 BWR plants added by EG&G Idaho. The new numbers were assigned alphabetically by plant type beginning with the next numbers after EPRI stopped. As mentioned above, for the one-line event descriptions the plant code number was replaced by the facility identification (FID) code, a 4-character identifier assigned to the plant by the USNRC as a part of their Licensee Event Report (LER) System.

Transient Event Date (DATE)

A six-digit field was used to record the transient event date in the form YYMMDD.

Reactor Status Before (STATUS BEFORE)

A 3-character code was used to record the operating status o f the plant at the time of the scram. The following is a list of Reactor Status Before codes and descriptions.

Code Description

REF RefuelingRUN Plant operatingSHD ShutdownSUP Startup

Reactor Power Level (POWER LEVEL)

This 3-digit field was used to record the power level o f the reactor at the time of the scram expressed as a percent of full power.

Reactor Status After (STATUS AFTER)

This is the 3-character code used to record the status of the reactor after the event and is similar to the status before the event. These codes are identical to the Reactor Status Before codes except that an addi­tional code, H OT for H ot Standby, is included.

Outage Length

A 4-digit field was used to record the length in hours of the outage caused by the transient. This field was left blank if the outage time was unspecified or if the sources indicated that the time was extended by maintenance unrelated to the transient recovery.

Transient Category (CATEGORY)

A 2-digit code was used to record the transient category assigned to the event, based on the event descrip­tion. These codes are explained in the Nomenclature section at the beginning of the main report.

Test

A single-character code was used to flag the scrams that were the result o f deliberate tests, scheduled maintenance, or other scheduled shutdowns. These scrams are marked with a T. Note that the T designa­tion does not refer to testing in general; unplanned scrams that occur during testing are not flagged with a T. “ TEST” is EPRI’s notation; “ scheduled” would be a better term.

Event Description

A 98-character field was used to record the event description obtained from the various data sources. This, together with the appropriate PWR or BWR transient category, provides a concise description of the event. In cases where the data source description was unclear, the description is quoted in the field to give the reader as much information as possible.

References

C -l. B. W. Poehlman, PLUNGE: A Computer Program fo r Transient Event Analysis, NP-2229, January1982.

C-2. U.S. Nuclear Regulatory Commission, Instructions fo r Preparation o f Data Entry Sheets fo r Licensee Event Report (LER) File, NUREG-0161, July 1977.

FacilityIdentification Commercial

Code Code Operation(FID) Plant Name Number Date ___Licensee

PWR

ANOl Arkansas Nuclear One 1 124 741219 Arkansas Power and Light Co.AN02 Arkansas Nuclear One 2a 143 800326 Arkansas Power and Light Co.BVS1 Beaver Valley l a 144 761001 Duquesne Light Co.CCN1 Calvert Cliffs 1 103 750508 Baltimore Gas & Electric Co.CCN2 Calvert Cliffs 2 126 770401 Baltimore Gas & Electric Co.

CRP3 Crystal River 3a 145 770313 Florida Power CorporationDBS1 Davis-Besse 1 137 771121 Toledo Edison Co.DCC1 D. C. Cook 1 135 750827 Indiana & Michigan Electric Co.DCC2 D. C. Cook 2 136 780701 Indiana & Michigan Electric Co.FCS1 Ft. Calhoun 116 740620 Omaha Public Power District

HNP1 Haddam Neck 114 680101 Connecticut Yankee Atomic Power Co.HBR2 H. B. Robinson 117 710307 Carolina Power & Light Co.IPS1 Indian Point 1 118 621001 Consolidated Edison Co.IPS2 Indian Point 2 119 730805 Consolidated Edison Co.IPS3 Indian Point 3 133 760830 Power Authorization of the State of NY

JMF1 Joseph M. Farley 1 130 771201 Alabama Power Co.JMF2 Joseph M. Farley 2a 146 810730 Alabama Power Co.KNP1 Kewaunee 113 740601 Wisconsin Public Service Corp.MGS1 McGuire l a 147 811201 Duke Power Co.MNS2 Millstone 2 115 751226 Northeast Nuclear Energy Co.

MYP1 Maine Yankee 101 721228 Maine Yankee Atomic Power Co.NASI North Anna 1 129 780606 Virginia Electric & Power Co.NASI North Anna 2a 148 801214 Virginia Electric & Power Co.NEE1 Oconee 1 110 730715 Duke Power Co.NEE2 Oconee 2 111 740909 Duke Power Co.

NEE3 Oconee 3 112 741216 Duke Power Co.PALI Palisades 102 711231 Consumers Power Co.PBH1 Point Beach 1 104 701221 Wisconsin-Michigan Power Co.PBH2 Point Beach 2 105 721001 Wisconsin-Michigan Power Co.r iN i Prairie Island 1 127 731216 Northern States Power Co.

PIN2 Prairie Island 2 128 741221 Northern States Power Co.REG1 Robert £. Ginna 123 700701 Rochester Gas & Electric Corp.RSS1 Rancho Seco 142 750417 Sacramento Municipal Utility DistrictSGS1 Salem 1 134 770630 Public Service Electric & Gas Co.SGS2 Salem 2a 149 811013 Public Service Electric & Gas Co.

SLS1 St. Lucie l a 152 761221 Florida Power & Light Co.SLS2 St. Lucie 2a 156 830808 Florida Power & Light Co.SNP1 Sequoyah l a 150 810701 Tennessee Valley AuthoritySNP2 Sequoyah 2a 151 820601 Tennessee Valley AuthoritySOS1 San Onofre 1 120 680101 Southern California Edison Co.

FacilityIdentification

Code(FID) Plant Name

CodeNumber

CommercialOperation

Date Licensee

PWR (continued)

SPS1 Surry 1 108 721222 Virginia Electric & Power Co.SPS2 Surry 2 109 730501 Virginia Electric & Power Co.TMI1 Three Mile Island 1 106 740902 Metropolitan Edison Co.TMI2 Three Mile Island 2a 153 781230 Metropolitan Edison Co.TNP1 Trojan 107 760520 Portland General Electric Co.

TPS3 Turkey Point 3a 154 721214 Florida Power & Light Co.TPS4 Turkey Point 4a 155 730907 Florida Power & Light Co.YKR1 Yankee Rowe 125 610701 Yankee Atomic Electric Co.ZIS1 Zion I 121 731231 Commonwealth Edison Co.ZIS2 Zion 2 122 740917 Commonwealth Edison Co.

BWR

BEP1 Brunswick 1 23 770318 Carolina Power & Light Co.BEP2 Brunswick 2 10 751103 Carolina Power & Light Co.BRF1 Browns Ferry 1 7 740801 Tennessee Valley AuthorityBRF2 Browns Ferry 2 8 750301 Tennessee Valley AuthorityBRF3 Browns Ferry 3 25 770301 Tennessee Valley Authority

BRP1 Big Rock Point3 26 630329 Consumers Power Co.CPR1 Cooper Station 3 740701 Nebraska Public Power DistrictDAC1 Duane Arnold 14 750201 Iowa Electric Light & Power Co.DRS1 Dresden l a 27 600704 Commonwealth Edison Co.DRS2 Dresden 2a 28 700609 Commonwealth Edison Co.

DRS3 Dresden 3a 29 711116 Commonwealth Edison Co.EIH1 Edwin I. Hatch 1 12 751231 Georgia Power Co.EIH2 Edwin I. Hatch 2 24 790905 Georgia Power Co.

HMB1 Humboldt Bay 13 630801 Pacific Gas & Electric Co.JAF1 James A. FitzPatrick3 30 750728 Power Authorization of the State of NY

MNP1 Monticello 2 710630 Northern States Power Co.MNS1 Millstone 1 1 710312 Northeast Nuclear Energy Co.NMP1 Nine Mile Point 1 9 691201 Niagara Mohawk Power Corp.OCP1 Oyster Creek 11 691228 Jersey Central Power & Light Co.PBS1 Peach Bottom 2a 31 740705 Philadelphia Electric Co.

PBS3 Peach Bottom 3a 32 741223 Philadelphia Electric Co.PPS1 Pilgrim 1 4 721201 Boston Edison Co.QAD1 Quad Cities la 33 730218 Commonwealth Edison Co.QAD2 Quad Cities 2a 34 730310 Commonwealth Edison Co.SES1 Susquehanna3 35 830608 Pennsylvania Power & Light Co.VYS1 Vermont Yankee 6 721130 Vermont Yankee Nuclear Power Corp.

a. The plant was not included in the EPRI data.

S B S O L

CAT

T E P L T A U E EA F O E A F T N G TT 0 W V T T A G O EU R E E U E G T R S

FID DATE S E R L S R E H Y L EVENT DESCRIPTION

A N 02 811025 RUN 102 HOT 9 1 LOST 1 RCP, RX TRIP ON DNBR/LPD.

A N 02 821127 RUN 50 HOT 9 1 LOSS OF MCP (SENSITIVE RELAY).

BVS1 790120 RUN 100 HOT 4 1 LOSS OF INVERTER CAUSED LOSS OF 1 MCP.

BVS1 790205 RUN 100 HOT 2 1 LOSS OF 1 MCP.BVS1 830107 RUN 100 HOT 34 1 2/3 RCP BUS

UNDER VOLT AGE.CRP3 820617 RUN 90 HOT 18 1 MCP GRND FAULT.DBS1 810512 RUN 73 HOT 24 1 LOSS OF 1 MCP.HNP1 821117 RUN 15 HOT 2 1 “ RCP BUT TRANSFER

GREATER THAN 10% POW ER.”

IPS3 800715 RUN 82 SHD 356 1 MCP ELECTRICAL SUPPLY FAULTS.

IPS3 811123 RUN 10 SHD 225 1 LOSS OF 1 MCP.MGS1 820115 RUN 90 HOT 6 1 OPERATOR TRIPPED RX ON

INDICATION OF MCP HI VIBRATION.

MGS1 820809 RUN 45 HOT 14 1 LOSS OF A MCP.MGS1 830121 RUN 50 HOT 4 1 ‘D’ RCP TRIPPED.PALI 790201 RUN 100 HOT 25 1 INADVERTANT LOSS OF 1

MCP DUE TO OPERATOR ERROR.

SGS2 811218 RUN 60 HOT 5 1 LOSS OF A RCP.SGS2 820913 RUN 78 HOT 27 1 LOSS OF A MCP.SLS1 770201 RUN 40 HOT 12 1 T LOSS OF 1 MCP FOR TESTIN(SPS1 791219 RUN 98 SHD. 298 1 GROUND FAULT ON 1 MCP.SPS1 811129 RUN 90 SHD 292 1 LOST A MCP.SPS1 820325 RUN 96 HOT 15 1 LOSS OF 1 MCP.SPS1 820413 RUN 95 HOT 25 1 LOSS OF A MCP.SPS1 821129 RUN 96 HOT 10 1 LOSS OF A MCP.SPS1 831215 RUN 95 SHD 125 1 RCP ‘C’ TRIPPED DUE TO

FAILED LEADS.TNP1 810710 RUN 10 HOT 167 I MANUAL RCP TRIP DUE TO

BAD BEARING OVERTEMP.TPS3 750826 RUN 100 HOT 3 1 LOSS OF 1 MCP.TPS3 750826 RUN 45 HOT 8 I LOSS OF 1 MCP.TPS3 751002 RUN 80 HOT 4 1 LOSS OF 1 MCP.TPS3 820519 RUN 105 HOT 2 1 LOSS OF A MCP.TPS3 820721 RUN 102 SHD 416 1 LOSS OF A MCP.TPS4 790822 RUN 15 SHD 148 1 MCP VIBRATION.

S B S O L

CAT

T E P L T A U E EA F O E A F T N G TT O W V T T A G O EU R E E U E G T R S

FID DATE S E R L S R E H Y L EVENT DESCRIPTION

TPS4 791219 RUN 45 HOT 122 1 LOSS OF 1 MCP ON OVERCURRENT.

YKR1 831005 RUN 100 HOT 17 1 LOSS OF Z-126 HIGH LINE, LOST A FEED PUMP AND AN RCP.

DBS1 831217 RUN 105 SHD 2 RODS PULLED ON LOSS OF Y l, HIGH FLUX TRIP.

ANOl 820926 RUN 78 HOT 22 3 ROD CONTROL PROGRMR FAILED, GR 6 RODS IN­SERTED, MAN SCRAM.

AN02 800707 RUN 90 HOT 14 3 OPERATOR ERROR DURING CRD CONTROL TESTING.

AN02 800724 RUN 95 HOT 12 3 DROPPED CONTROL ROD (DUE TO PCB FAILURE).

AN02 810115 RUN 98 HOT 26 3 . DROPPED ROD.AN02 810718 RUN 48 HOT 5 3 DROPPED ROD (NO REASON

GIVEN).AN02 810808 RUN 20 HOT 4 3 DROPPED ROD (NO CAUSE

GIVEN).AN02 811025 RUN 20 HOT 11 3 DROPPED ROD, TRIP ON

DNBR.AN02 811214 RUN 100 HOT 5 3 TRIP ON LOW DNBR DUE TO

CEAC #2 PENALTY FACTOR- CAUSE UNKNOWN.

AN02 820727 RUN 90 HOT 138 3 DROPPED ROD (FAIL OF THE CRDM UPPER GRIPPER COILS).

AN02 821211 RUN 85 HOT 131 3 DROPPED ROD (FAIL OF UP­PER GRIPPER COIL)

BVS1 761002 SUP 0 SHD 92 3 T ROD DROP TEST.BVS1 770525 RUN 90 HOT 7 3 DROPPED ROD,BVS1 771207 SUP 0 HOT 8 3 DROPPED CONTROL ROD.BVS1 811012 RUN 58 HOT 9 3 DROPPED ROD.BVS1 820827 RUN 10 SHD 345 3 T APPARENT DROPPED ROD.BVS1 831227 RUN 100 HOT 9 3 #1 CRDM MG SET TRIPPED.CCN1 800421 RUN 70 HOT 16 3 VOLTAGE CHANGES ON

CRDM MG SET.CCN1 821208 RUN 102 HOT 13 3 LOW VOLTAGE TO CONTROL

RODS.CCN2 820417 RUN 105 HOT 13 3 TWO DROPPED RODS.CRP3 770404 RUN 40 HOT 22 3 FAILED CRDM MOTOR.CRP3 770420 RUN 50 HOT 7 3 LOSS OF CRD PROGRAMMER

POWER.

S B S O L

CAT

T E P L T A U E EA F O E A F T N G TT O W V T T A G O EU R E E U E G T R S

FID DATE S E R L S R E H Y T EVENT DESCRIPTION

BEP2 801118 RUN 70 HOT 38 1 POWER LOAD IMBALANCE.BEP2 830602 RUN 100 HOT 54 1 LOAD REJECT.BRF1 800506 RUN 93 HOT 24 LOAD REJECTION.BRF1 800527 RUN 80 HOT 11 1 LOAD REJECTION.BRF1 800924 RUN 97 HOT 13 1 LOAD REJECTION.BRF1 820404 RUN 100 HOT 14 1 LOAD REJECTION.BRF2 810731 SUP 0 SHD 398 1 LOAD REJECTION.BRF2 830918 RUN 80 HOT 15 1 GENERATOR LOAD REJECT.BRF2 831007 RUN 100 HOT 17 1 GENERATOR LOAD REJECT.BRF3 800515 RUN 100 HOT 15 1 GENERATOR FIELD GROUND.BRF3 800607 RUN 98 HOT 13 1 LOAD REDUCTION.CPR1 820320 RUN 98 HOT 65 1 GENERATOR TRIP DUE TO VR

BEING SWITCHED FROM AUTO.

CPR1 831223 RUN 80 HOT 62 1 FIRE IN NORMAL STATION TRANSFORMER.

DAC1 820509 RUN 50 HOT 53 1 LOSS OF GENERATOR FIELD.DRS2 701207 SUP 0 SHD 465 1 MAIN TRANSFORMER

FAILURE.DRS2 720806 RUN 95 HOT 3 1 LOW EHC OIL PRESS CAUSED

LOAD REJECTION SCRAM.DRS2 721202 RUN 95 HOT 7 1 GENERATOR TRIP ON LOSS

OF FIELD.DRS2 740903 RUN 15 HOI 14 1 GEN-TURBINE MISMATCH.DRS2 780427 RUN 100 HOT 27 1 UV ON GENERATOR OUTPUT

DUE TO OPENING UNIT 2-3 CROSSTIE.

DRS2 780625 RUN 90 HOT 27 1 LOAD REJECTION.DRS3 720626 RUN 28 HOT 4 1 TURBINE TRIP ON LOAD

REJECTION.DRS3 730711 RUN 100 HOT 15 1 GENERATOR LOAD

REJECTION.DRS3 730718 RUN 100 HOT 20 1 LOSS OF GENERATOR FIELD

EXCITATION.DRS3 781212 PUN 20 SHD 476 1 Ll a D REJECT DUE TO FIRE

IN MAIN TRANSFORMER.DRS3 790223 RUN 95 SHD 1436 1 F, vULT IN MAIN GEN

TRANSFORMER CAUSED FIRE.

DRS3 830604 RUN 90 HOT 14 1 LOSS OF GEN. FIELD.E1H1 810623 RUN 80 HOT 14 1 GEN RUNBACK CAUSED

HIGH PRESSURE.

S B S O L

CAr

T E P L T A U E EA F 0 E A F T N G TT O W V T T A G 0 EU R E E U E G T R S

FID DATE S E R L S R E H Y T EVENT DESCRIPTION

JAF1 760623 RUN 100 HOT 12 1 LOAD REJECTION.JAF1 770201 RUN 65 HOT 69 1 GENERATOR GROUND.JAF1 800428 RUN 75 HOT 21 1 GEN GROUND.

MNP1 820408 RUN 100 HOT 80 1 LOSS OF GEN EXCITATION.MNS1 820831 RUN 90 HOT 53 1 LOAD REJECTION.PBS2 750614 RUN 40 SHD 128 1 GENERATOR TRIP DUE TO

LIGHTNING STRIKE ON TRANSFORMER.

PBS2 830520 RUN 100 HOT 24 1 B PHASE TRANSFORMER LOCKOUT.

PBS3 790718 RUN 95 HOT 12 1 LOSS OF LOAD.-PBS3 801030 SUP 0 HOT 14 1 GENERATOR POWER LOAD

IMBALANCE PROTECTION.PPS1 830213 RUN 100 HOT 48 1 LOAD REJECT FROM SALT

BUILDUP.PPS1 830402 RUN 100 HOT 33 1 GENERATOR TRIP DUE TO

STATOR COOLING TEMP VALVE PROBLEMS.

Q AD 1 741008 RUN 20 HOT 8 1 LOAD REJECTION DURING TESTING.

QA D 1 750826 RUN 70 HOT 18 1 LOAD REJECTION.QA D 1 761109 RUN 100 HOT 12 1 LOSS OF GEN FIELD-LOAD

REJECTION.QA D 1 780414 RUN 80 HOT 11 1 TURB-GEN LOAD MISMATCH

DUE TO OPERATOR OPENING PT TRANSFORMER CABINET.

QAD2 771020 RUN 90 HOT 10 1 GENERATOR BREAKER OPENED.

BEP1 810924 SUP 0 HOT 28 3 TURBINE TRIPPED.BEP1 811001 RUN 70 HOT 39 3 TURBINE TRIP.BEP1 820710 RUN 70 HOT 24 3 TURBINE TRIP.BEP2 811102 RUN 70 HOT 26 3 TURBINE TRIP.BRF1 800614 RUN 95 HOT 10 3 TURBINE TRIP-HIGH

MOISTURE SEP LEVEL.BRF1 800722 RUN 83 HOT 18 3 EHC SYSTEM FAILURE.BRF1 800901 RUN 97 HOT 10 3 TURBINE TRIP FROM STOP

VALVE CLOSURE.BRF1 801003 RUN 98 HOT 10 3 SPURIOUS TURBINE TRIP.BRF1 801128 RUN 60 HOT 19 3 TURBINE TRIP.BRF1 820212 RUN 100 HOT 19 3 TURBINE TRIP.BRF1 820309 RUN 100 HOT 20 3 LOSS OF EHC OIL PRESS.BRF1 820408 RUN 100 HOT 19 3 TURBINE TRIP.

CA

S B S O L TT E P L T A V E EA F O E A F T N G TT O W V T T A G O EU R E E V E G T R S

FID DATE S E R L S R E H Y T EVENT DESCRIPTION

ANOl 800624 RUN 88 HOT 10 35 PARTIAL LOSP.ANOl 800822 RUN 80 HOT 10 15 LOSS OF A FEED PUMP.ANOl 801007 RUN 88 HOT 6 15 LOSS OF A FEED PUMP.ANOl 801208 RUN 65 HOT 20 33 SECONDARY PLANT OSC DUE

TO GOVERNOR VALVE BEING CLOSE TO BREAK OPEN POINT.

ANOl 810319 SUP 0 HOT 3 33 TURBINE TRIP.ANOl 810408 RUN 100 HOT 18 39 A POWER SUPPLY MOMEN­

TARILY CAUSED A LOSS OF POWER.

ANOl 810513 RUN 100 HOT 14 24 LOSS OF COND PUMPS CAUS­ED LOSS OF FEED PUMPS.

ANOl 810603 RUN 100 HOT 17 33 TURBINE TRIP.ANOl 810708 RUN 97 HOT 11 15 LOSS OF A FEED PUMP.ANOl 810821 RUN 95 SHD 236 14 LOSS OF 2 MCPS.ANOl 810901 RUN 50 HOT 5 8 INST. FAILURE CAUSED RX

PWR RUNBACK AND TRIP ON HI RCS PRESS.

ANOl 820805 RUN 25 SHD 320 39 FALSE IND OF LOSS OF BOTH FEED PUMPS.

ANOl 820822 RUN 95 HOT 17 33 INTEGRATED CONTROL SYSTEM (ICS) MALFUNCTION CAUSED PRESS INC.

ANOl 820926 RUN 78 HOT 22 3 ROD CONTROL PROGRMR FAILED, GR 6 RODS IN­SERTED, MAN SCRAM.

ANOl 830412 RUN 10 SHD 33 EHC MALFUNCTION.ANOl 830529 RUN 10 HOT 10 33 OPERATOR FAILED TO RESET

ANTICIPATORY TURBINE TRIP ON POWER INCREASE.

ANOl 830609 RUN 100 HOT 52 16 LOST BOTH FEED PUMPS.ANOl 830616 RUN 100 SHD 347 34 GENERATOR EXCITER

FAILED.ANOl 830814 RUN 98 HOT 21 33 TURBINE TRIP DURING

THROTTLE VALVE TESTING.ANOl 830824 RUN 98 HOT 20 17 RUPTURED AIR FILTER

CAUSED MSIV TO DRIFT SHUT.

ANOl 830831 RUN 98 HOT 23 15 LOSS OF A FEED PUMP.ANOl 830902 RUN 100 HOT 12 28 LEAK IN E-2A FEEDWATER

HEATER.

C -ll

S B S O L

CAT

T E P L T A U E EA F O E A F T N G TT 0 W V T T A G O EU R E E U E G T R S

FID DATE S E R L S R E H Y T EVENT DESCRIPTION

ANOl 830907 RUN 100 HOT 91 5 LEAKING WELD ON RCP-32C S E A L .

A N 02 800328 RUN 98 HOT 16 15 LOSS OF A FEED PU M P.A N 02 800328 RUN 10 HOT 16 12 NUCLEAR FLUX PROFILE TRIP.A N 02 800402 RUN 98 HOT 25 15 LOSS OF FEED PU M P.A N 02 800407 RUN 98 SHD 278 35 L O S P .A N 02 800424 RUN 80 HOT 18 39 LOSS OF ROD PO SITIO N

IN D IC A T IO N .A N 02 800425 RUN 30 HOT 4 39 LOSS OF ROD PO SITIO N

IN D IC A T IO N .A N 02 800611 RUN 95 HOT 14 39 SPURIOUS D N B R /LPD TR IP

(GROUND SH IELD M A L F U N C T IO N ) .

A N 02 800624 RUN 85 HOT 191 35 PARTIAL LOSP (TRANSMISSION LINE G ROUND FA U LT).

A N 02 800707 RUN 90 HOT 14 3 OPERATOR ERROR DURING CRD CONTROL TESTIN G .

A N 02 800724 RUN 95 HOT 12 3 DR O PPED CONTROL ROD.A N 02 800815 RUN 95 HOT 13 34 LOSS OF STATOR COOLING

(OPERA TO R ERROR).A N 02 800816 RUN 17 HOT 5 15 LOW SG LEVEL DUE TO FAUL­

TY CONTROL OIL FITTING.A N 02 800818 RUN 95 HOT 9 15 BLOWN FUSE IN FW CONTROL

C A B IN E T .A N 02 800821 RUN 95 HOT 26 39 RPS TRIP DUE TO HUMAN

E R R O R .A N 02 801014 RUN 102 HOT 28 19 SG LEVEL CTRL FAULT FAILED

FRV FULL OPEN - HI SG LEVEL.A N 02 801205 RUN 60 SHD 284 40 REPA IRS TO CHG PUM P

P I P I N G .A N 02 801220 RUN 20 \ HOT 45 40 REFU ELIN G W ATER TANK

(RWT) LEVEL SENSING LINE F R O Z E .

A N 02 810115 RUN 98 HOT 26 3 D RO PPED ROD.A N 02 810217 RUN 102 HOT 26 39 LOSS OF ROD POSITION P/S

DUE TO TESTING (PROBLEM WITH PR O C ED U R E).

A N 02 810310 RUN 102 HOT 26 34 GENERATOR LOW VOLT TRIP.

S B S O L

CAT

T E P L T A U E EA F 0 E A F T N G TT O W V T T A G O EU R E E U E G T R S

FID DATE S E R L S R E H Y L EVENT DESCRIPTION

BEP1 800825 RUN 40 HOT 59 34 HIGH RCS CONDUCTIVITY.BEP1 801014 RUN 90 HOT 43 12 RX SCRAM CAUSED BY HIGH

STM FLOW DURING STOP VALVE TESTING.

BEP1 810120 RUN 98 HOT 41 24 LOW VESSEL WATER LEVEL- RIP VALVE CLOSED.

BEP1 810130 RUN 80 HOT 38 23 LOSS OF A FEED PUMP.BEP1 810212 RUN 85 HOT 24 8 LOSS OF CIRC WATER FLOW

CAUSED LOSS OF CON­DENSER VACUUM.

BEP1 810329 RUN 90 SHD 251 6 MSIV CLOSED DUE TO BROKEN STEM.

BEP1 810417 RUN 60 SHD 36 T MAINTENANCE.BEP1 810924 SUP 0 HOT 28 3 TURBINE TRIPPED.BEP1 811001 RUN 70 HOT 39 3 TURBINE TRIP.BEP1 811029 RUN 98 HOT 53 22 LOSS OF 2 CONDENSATE

PUMPS.BEP1 811115 SUP 0 SHD 97 13 TURBINE STOP VALVE FAST

CLOSURE.BEP1 820218 RUN 90 HOT 58 13 CONTROL VALVE TESTING

TO GET #2 TCV TO CLOSE LESS THAN 95% OPEN.

BEP1 820419 RUN 58 HOT 16 34 LOSS OF DC POWER.BEP1 820505 RUN 55 HOT 26 35 CONDENSER VACUUM

SWITCH FAILED.BEP1 820601 RUN 70 HOT 106 8 LOW CONDENSER VACUUM.BEP1 820607 RUN 70 HOT 37 6 BLOWN FUSE TO MSIV.3EP1 820628 RUN 78 HOT 32 8 SCRAM WHILE ATTEMPTING

TO START A CIRC WATER PUMP.

BEP1 820710 RUN 70 HOT 24 3 TURBINE TRIP.BEP1 821010 SUP 0 SHD 101 11 STUCK OPEN RELIEF VALVE.BEP1 821021 RUN 50 HOT 94 13 TURBINE CONTROL VALVE

CLOSED DURING LOAD IM­BALANCE TEST.

BEP1 821211 RUN 5 REF 36 T REFUELING.BEP1 831018 RUN 80 SHD 36 T CRD OUTAGE.BEP1 831222 RUN 100 HOT 82 10 EHC FAULT CAUSE

INCREASED REACTOR PRESSURE.

BEP2 800411 RUN 20 HOT 10 34 LOSS OF TWO SAFETY SYSTMS REQUIRED SD.

BEP2 800919 RUN 20 HOT 69 37 CAUSE UNKNOWN.

S B S O L

CAT

T E P L T A U E EA F O E A F T N G TT O W V T T A G O EU R E E U E G T R S

FID DATE S E R L S R E H Y 1 EVENT DESCRIPTION

BEP2 801011 RUN 80 HOT 54 35 OPERATOR ERROR LEFT NI SETPOINTS TOO LOW.

BEP2 801028 RUN 95 HOT 23 20 HIGH REACTOR WATER LEVEL DUE TO LEVEL CON­TROL SYSTEM FAULT.

BEP2 801113 RUN 70 HOT 35 35 LOSS OF RPS POWER.BEP2 801118 RUN 70 HOT 38 1 "•OWER LOAD IMBALANCE.BEP2 801216 RUN 75 HOT 69 8 ' OF CONDENSER

VA,BEP2 801226 RUN 50 HOT 107 23 LOSS v ~EED PUMP.BEP2 810107 RUN 85 HOT 98 23 LOSS Ol- . 'E D PUMP.BEP2 810214 RUN 80 SHD 190 36 MSIV R E PA h ..BEP2 810224 RUN 50 HOT 32 36 NITROGEN P h :NG TO

DRYWELL REPAIRS.BEP2 810226 RUN 5 HOT 22 13 INTERMITTENT IN­

TERMEDIATE VALVE OPERA­TION CAUSED LARGE POWER SWINGS.

BEP2 810305 RUN 90 SHD 36 SNUBBER OUTAGE.BEP2 810412 RUN 20 SHD 125 34 HIGH PRIMARY SYSTEM

CONDUCTIVITY.BEP2 810417 SUP 0 HOT 8 34 HIGH REACTOR

CONDUCTIVITY.BEP2 810503 RUN 15 HOT 21 34 B32-F051 VALVE PACKING EX­

CESSIVE LEAKAGE.BEP2 810506 RUN 60 SHD 793 34 OYSTER SHELL GROWTH IN

SERVICE WATER SYSTEMS.BEP2 810622 RUN 80 HOT 130 16 MG SET PROBLEMS.BEP2 810703 RUN 5 HOT 33 6 MSIV CLOSURE.BEP2 810711 RUN 55 HOT 40 37 CAUSE UNKNOWN.BEP2 810804 RUN 85 HOT 68 15 “ AUX OPERATOR OPENED

WRONG CIRC WATER VALVE.” RECIRC SYSTEM AFFECTED.

BEP2 811023 RUN 55 SHD 157 36 T INSPECTION.BEP2 811102 RUN 70 HOT 26 3 TURBINE TRIP.BEP2 811218 RUN 97 HOT 57 5 FAULTY HI STM FLOW SW

CAUSED GRP 1 ISOLATION.BEP2 820113 RUN 72 HOT 39 14 RECIRC PUMP RUNAWAY.BEP2 820116 RUN 45 HOT 25 34 MAINTENANCE.BEP2 820120 RUN 65 SHD 205 35 WORKERS CAUSED VIBRA­

TION OF SCRAM DISCHARGE VOLUME.

APPENDIX DPWR TRANSIENT EVENT COUNTS BY PLANT AND REACTOR YEAR

D-l

APPENDIX D PWR TRANSIENT EVENT COUNTS BY PLANT AND REACTOR YEAR

Tables D-l through D-42 contained in this appendix were printed by EPRI’s PLUNGE computer pro­gram and were used to obtain some of the results in this report’s main body. There is a table for the total o f all transients and for each category of PWR transient. Each table gives counts o f all transients in the category according to the plant, and the reactor year of the plant, in which the events occurred. Reactor years are measured from the commercial power date of each plant, which is listed along the left side of the tables beneath each plant’s name. Thus, the tables provide an easy way to compare transient counts according to the plants’ ages. The number preceded by an asterisk below the last year of data for each plant is the number of months o f data in that last year. The data covers each plant’s history through December1983, or until removed from commercial operation, whichever occurs first.

In addition to plant/reactor year event counts, each table includes the following information for each reactor year:

1. The total number of transients (excluding partial years)

2. The number of plants that reported a full year of data

3. The observed mean and sample standard deviation of the number of transients per plant for that year

4. The observed mean and sample standard deviation of the number o f transients per plant per year based on the cumulative number of transients from year 1 to the year of interest (these are labeled the cumulative mean and cumulative standard deviation).

All of the above information is displayed along the bottom of every table. Data displayed in partial reactor years were not included in these figures.

Also included in each table is the following information displayed along the right edge:

1. The total number of transients reported for each plant (including data from partial years)

2. The total number of transients reported (all plants)

3. The total number of reactor years, including partial years (all plants)

4. The mean number of transients per plant-year.

Minor changes were required in the computer program PLUNGE received from EPRI to use it for this data base analysis. The changes included the following:

1. Minor format changes due to the computer system differences

2. Changes needed to accommodate the enlarged data

a . Formatting the output for more columns of years

b . Adding additional plants to the data statements

c . Increasing indices and dimensions of arrays

3. Changes to the calendar year option when a full year of date is available in the most recent year o f data for a plant.

One area where no changes were made was the outage data statements. Although outage information was collected along with the transient data, the PLUNGE option requiring this information was not used and adding it to the data statements was beyond the scope erf the project.

s-a

* • 1 4 * 1 0 * 1 4 * 1 4 * 4 * • ! 4 * 1 4 * 1 4 * 1 0V I 9 * 1 ••• ( « | 1 * 0 i ' l 1 * 0 0 * 0 I0* 0 * 0 * 0 * 0 * 0 * 0 * 0 * 1 4 * 2 1 * 1 I

s s * s 0* 0 * 1 0 * 9 0 * C 0 » 0 * < 0 » | 0 * 1 ( * l < " 0 •4 l * l l 9 o t i t i i i t c c t91S1

9

1

VI

•Ii t

92

11

20 2 99

0*<129

SI

1599

I«I I I

90

5 I 41 i t

ti 9*

ti ((

9«1

069

91

4 1

9*1

16 €3101210 1ft

os9119\\29

131

941

9C

09

00IS

totI k

01

•••••••••••••••••••••••••<0 * 1 0 * 1 1 * 1 1 * 0 9 * 0 4 * 0 0 * 4 l « | I H ( • ! 2 * 1 1 * 1 0 * 4 | M 0 * 1 l * ( 4 * 9 9 « 0 ( • ( { * ( • <1 01 «< 0<

• I I I *9 IS S l l l i v I t !

0 * 0 0 * 0 1*0 4 * 4 4*01 0*01 **01 0*11 4*11 |*||s * s %•% o * « i * i 1 * 1

912 H I 002 *OC 9*1

*0*9i•0*0

•**0

•0*<f9•0*110

0•0*011s

9 0 * 9I

m o i « > 1 i s o i I I 01 11 91

• I '0• f(

•9*•0*1

1i

4

<I12 01 0

•0*0•«*

9•0*10•0**•9*4

I•1*191i

012II9

I9

s9

s9

I II tl SKVIA 491991

•0*1«•0*20

•l*SS•0*09«4

10191

9

01S

14

f t

(1I I

2

2220t1 21 9

SIt4

219

02 91

t 0 12 tI4

III I

11 1*11*91 VII*01 1*11*11 I'Ol

.9 19 41 OtO

410 311 HA) M IN urn

410 OAI NVIM tM lfc i * » H SitttAI If 101

•0*99

9

11

12

91

91

12

22•4*22

(I01

2C

2241

91

SI0129

tlCl29

4

Ct

9

41

21

U99

91

9

(IItf02

fit49

41

4

C

51IIII02

IICl

4

II9

09

«

•1*000010

2 119*1 100020

m U n n m2 Mills

0 U 0 1 02 *11194

101014V W i M l K

912100 ' 1*m H itON

0210002 SfSNVJMV

0C2101 2 *SI m u i

101001___ 2 II00 9900001

102111*

m u lkmu

i» tu ' ",w ‘2 441 J9 M m 111011I A l l I f U l O ) 122101. * 11911 *H 100IO iI H I H O 011091

1 * W NVIONI 02S001 oorwi9121(42 iNJmifw 120041

1 M009004041I 44119 *4199 119041. 091J 3M9MVI 122191

1 S<SNV»iV 912191

I JJN090 114091

2 N01Z•44091

* U N O 90 20*091

L * * 1 >11M I 020091

tM O H lO 1004 109091

J u m v a i n112111

« I I I U ’ ' on 1 *SI 1 II1 V I4 104011

f U : ‘J,w*tlo ii " im

1 i»N09O lO S O Il

•22121* k*m% nm n

1M1U *"""Uw s r ‘m,o<

r u "‘ * H

1,1,0*1 N N 1

u n t i l - i •* M10M

'Lift ” “ ■'m o o l i N N u

UN914

8 iue|6 uen UM d II® |o |B)ox L Q eiqoj.

H A N T S

V M K f C R O N !410?0i

1*0u A M . l *21001 JAN OftCfRf I *•0101 NA00AN NICK *•0101 *• f . CtNNA

7 0 0 7 0 1 P O U T KACH l

7 0 1 1 2 1 M • OOIINION

7 1 0 1 0 7 ’AlISA S711111 JOINT IEACH 2 Til 001 tukkiv m. I

s w o t i721222umu7*1220

SWftV 1710501 OCONU I710719

m t m 0 7 , » 710009

T W K f t * f . 4 710007

’ 0*|ft|| IS . 1 711216

110* ]7112)1KHAUftCE740*01 FOOT CM.H0UN 740*20

1 Nil! IS. 1 740002 OCONCC 2740009

I IO N 2740017 OCONCI )74121*

AMAftSAl 1741210m int n, t741221"ancmc scco7 0 0 4 1 7 CALV. Cliff 1 7 9 0 9 0 0

CO OK 1790027 HtllSTCNE 2 79122*

trojan7*0920

1*0U N F T . STeooso OCA VC 0 V A U 1

7*1001 i t , u c i f i

7*1221 cmrsTAi riv i

770111 CUV. CUM 2 770401

S A IM l770*10

o m s - i f s s t i 771121

F A R lff I771201

NORTH AH HA 1 _ 700*0*

COO* 2700701

1 H t U I S . t 701210

AtKANSAS t00012*

NOKTH ANNA 2 001214

IfOVOTAM II10T01

f t t l f T 2010720

i A i m 2011011

OCOW lfl 1011101

t l l M T M 20*0401

ST* I K t l | 090000

t l 4 * * T 0 4

2 0 0 0 1

0 0 0 1 1

0 0 0 0 0

C 1 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 , 0 2 0 0

0 1 0 0 0

o o o o 0

0 0 0 0 0

1 2 0 1 0

0 0 0 c 1

0 0 0 0 0

0 1 1 0 0

0 0 0 0*•04

0 0 0 0 0 0

1 2 0 0 0 0

o o o o 0 0

0 1 0 0 0 0

o o o o 0 09*

0 2 0 0 0 0*

u 1 1 0 0 0•

0 1 0 0 0•

1 0 1 0 I 07*4*

0 0 1 0 1 04.14

0 2 0 0 0 0I.O *

o o o o 0 0. 4*

o o o o 17*

0 1 0 0 00*

1 0 0 0 010

2 0 2 0 014

0*o o o o 0

*•4*0 0 e o 0

0100001

0 0

2 1 0

0

0

0

0

0

0

07.0*

0*.4*

01 .7 *0S .9* 0• 9*0

• 4 40. 4 *

10110c00001c

10.1*c

9 «* 404 * 4 *01 .0 4

C• 9 «0• 04

01.0*0• * 40• I*0• 1 4

111 14 i

0 0

11.04

0 0

0 0

0 0*.0*

0 0.4*

04.04

0• 0*

17 10 14 tO 21 t l 21

1*•0*012.0*012.0*

TOTAL IV fN Tt 01AMT t t U l MIAN 1T0 O ft CUN RIANcm sic n v

t o 1040 41

• 47 *24•77 *04•47 *4t

0 040 10

•II •!*•01 .1 7•17 .1 1

• 00 • ?* *79 *00 .1 *

9 2» t 14

>10 *07>9* «t*i l l *24

7 4 4 010 I t 0 0

• 10 *11 .90 .00• 00 * 40 1.07 .00• 2 0 . 2 4 *20 . 2 4 • *1 .*4

* I I I 1 1 1•*7 *00 .0 0 I . O I .0 0 .0 0 .0 0•00 *00 * 00 .00 *00 .00 *00•to .to *t0 .14 .to .24 «t|•04 ••» •*! ,11 .41 •*! .41

00 4 U

01•00•to *to.41 *01

TAMKIC ftOMf ♦tornINDIAN P T . 1 *21001 SAN ONOMK I M0I01 MAOOA* NICK

A10101 «• f . OINNA

T00T01 POINT IIA C H 1

701*11 H | ftOHNSQN

T10SOT F A U S A K S

T U M I POINT I f ACH 2

T21001 TU lK E T 9 T , 1

T U t MSUftftV 1

r n t t tNAINC 1AM IC

T M M ISUftftV t

7)0501 OCONEE 1

710713 INDIAN M. 2

710005 TUftKEV 9 T , 4

710907 M AIR1C I S . i

711216Z1QN 1

7 1)1 )1KEWAUNEE

T40*01 fOftl CHHOUN

T40A20 i N ILE I S . I 7*090* OCOHfI 2

740909ZION 2

740917 OCQNEf 1

7*121* AftKMISAS 1

7*1219 M A t » | | tS . I

7*1221 ftANCHO SECO

T3041T c h v . a i p f i

730*01COOK 1

730A27 N IU S T O N I 2

79122*TftQJAN

7*0920 I NO IAN M . S

TA00S0 IIA VC 9 m « I

7*1001s i . t u n i

7*1221 CftTSTAl H V I

77011) ( H V . C l I M 2

770*01SA1CH 1

770*10 O A V IS -O fSSI 1

7711*1 Mlltt 1771*01

NORTN ANNA I W O O *

COOK t7*0701

i m u is. *711210

ARKANSAS 2• 0012* NMFM ANNA I

•01214 SEIUOTAM 1

•10701 f A K U T t

•10TS0S A ilN t 11101) NC0UI9I 1• 111(01 SIOUfitAN 2

•20*01 S T , 1 U C II I

•SOtOI

TOTAi H IN T S H A N T TIAftS NIAN STO 01%CUN NIAN CUH S i t M V

• 00 ••• 00 *0.00 .0 00 •*

m a c 100 0 0 0 0 0 0 0

0 0 0 0 0 0 01*09

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0*•0*

0 0 0 0 0 0 0 0• *9

0 0 1 0 0 0 09*99

0 0 0 0 0 0 0 0• 09

0 0 0 0 0 0 0I.O *

0 0 0 0 0 0 0.*9

0 0 0 0 0 0 0•I*

0 0 0 0 0 0 0•1*

0 0 0 0 0 09 , I t

0 0 0 0 0 05**9

0 0 0 0 0 0 04.99

0 0 0 0 0 0 0S.O*

0 0 0 0 0 0 0*39

0 0 0 0 0 0 0•0«

0 0 0 0 0 0T.0 9

0*.*9

VfAtSII 1* I I I* I T 10 19 20 t l 12 I t TOTAL

0• • 09

012*09012*09

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0• . t i| 9

0 0 0 0 07 .M

0 0 0 0 04 .2 «

0 0 0 0 0.29

0 0 0 07.49

0 0 0 04.19

0 0 0 0s.09

0 0 0 0.49

0 0 09.79

0 0 09.09

0 0 0*.19

0 0 1l . l *

0 0 01.09

0 0*•99

0 0*•0*

01.7*1.390

• 390• 490•4*

19

• *9

••••••••••

1 0 0 0 c 0 0 0 0 0 0 0 0IS 19 19 t l I f • 3 » 1 S 1 1 1

•OS .00 •00 *00 •oc •00 •00 • 00 •00 •00 • 00 .00 • 00 • 00• IT .0 0 •00 *00 .00 •00 .00 • 00 • 00 •00 • 00 •00 • 00 .00•01 *01 •01 .01 • 01 •Cl •01 .01 • 01 •01 • 01 •01 •01 • ot•11 .11 •11 .10 • H •to •10 .1 0 • 10 •10 • 10 • 10 • 10 • 10••••••••

0 1 .00 • 00 .01 .10

0 0 I 0 9 1 1 * 1•00 *00 *0.00 .00.01 .01 •10 *10

M*1 II*Oft* Oft*00* 00**** *00* 00**1*11* 0 IftM 0 0

• ••••l«* 1 11*1 *1*1 M M *1*1 *(*1 09*1 09*1 19*t 29*1 (9*1 99*1 * *1 «4*1 20*1 I**t i* tft* !«• II* 11* u * *ft* 21* 2ft* I t * I t * M * 9 * *ft* (9* I f *00* 00* 00* 00* 00* 00* H * 00* ft** 14* *2* 4ft* 0 * I I * 19* *9*00* 00* 00* 00* 00* 00* (1* 00* 02* 12* 10* 11* * * U * 2** 92*1 1 1 1 1 ( ( ( ( 1 21 11 ft *1 l ( I I0 0 0 0 0 0 1 0 1 1 I ft 9 ft *1 0 !

t •••! 11*1 o r t i n24* I I * I I * *1*1 _I** ft** 11M M*l t*(** I I * 11*1 '*

0* 1% I * 4*ft ftV a >i•I

«*•0

•**0

•ft*0♦«*C0

»4 * (0

•2*0

•***0•1*40

0

0

0

I

0

0

•**0

*0*1I• 1**0

•**40

•I*0

•I*0

0•0*10

•0*0

•f*0

*••10

•ft**0

« V (9•1*10

1

0

0

9

***90

*0*40

0

0

0

0

I

•0*0 0 9

•***0 0 0

•**0 0 0 0

•0*90 0 0 0

•0**t0 1 0

•0**10 Q 0 0 0 0

•0*10•1*10

• 1 * 90•0*ft0•l*ft1

0

00

00

•0*9 0 0•0*1

0

0•!•*

0

0

f

0

0

t

0

0

•0*40

t

0

0

1

*

t

0

0

0

0

0

1

I

0

I

1

I A M I I I t f l3 1 WIN M ) I Mfl Ul

1*1 NVM119 St 1*1U

S J N I A l 1 V 4 0 I

10*0(0t i»m *it1090*0

« W t O A I I t l O l l t l

1 I l M M i U l l l l

I M llf lO tiO II

I 411194 (01011

i m i o a i h *12101

I VMM N IM H 9*1009

I I9SN9MV 0(2114

I *SI H I M I104014 * MM)

1 VMM M IM ft 1®2U41 Aiivri 1111141 IS S M -U A V * 0(9044

I M l l f l10*0442 H I D * A * ) <1(044I A l l 1 9 4 U I9 I l f 194

1 u m *&t1001941 *1? A H A T H 011094

C *14 MV10M1 011094

* vro »49IS1C4

2 1M0AS11IM 42I0C4

1 N003•OftOCA1 441*13 * » W ) 41*064

031$ 0H3NVI 1211*4I *11 I t l t V l t f *111*4

1 SVftttVMV 91*1*1

f 1IM030 41*0*4

< NQIZ*0*0*4

2 11M030 *0*0*4

1 *SI H IM C 0290*4

NftfM IO 1104 1090*4

SINM AlM11*114

1 MOWf t t lU1 *11 JlllUM 40*014

* *14 k IXIffli *01014

2 *14 IV IQ N I 1140(4

1 33N030 10(014

* a im s1*21*4

31MNVA INIfM 222114

1 AIMS*121*4

( *44 A1NIIU 1001*42 H 3 f l« 4NI04 1(2114

S U V S I IV I 401014

NOfM HOI I H 1211041 H 3 fl* AM IQ 4104004

im n *i *i101019

m n n 4raavH 101019

t I I4 M Q w u 100129

1 *44 IV10NI 104019

iA O l HUM* A

SAW 14

dojp poj jo/pue suioiqojd w a U O •'£ Ajo Bb jb o HM d ’fr-CI B|qej[

VANKKt lO H i *10701

tffOIAfc >7. 1 621001

SAX DKCMS i *10101

MAOOAI1 NICK *10101

ft. S. (IN N A TOO701

POINT IIA C H 1 701221

H I RCItNSONt io s o t

T l l U i *01 Nf OIACN 2

7 ft0*1 T U M I t )

721214ttMftV I

721272 RA lK t ttH K tf

72122*SU M 7 2

710*01 OCQNEI 1

710719 tNOUK M , 2 7)0*09 TMKCv r r . « 710*07

M A t t l t ( S . 1 7)121*

tu r n l7 )1 2 1 1

KCVAUNH140*01

F0*7 CMNOUN 740*20

) N IL ! IS . 1

DCONIC 27 4 0 *0 9

2 ION 27 4 0 *1 7 octmtt i741216

A UK ANSAl 17 4 1 2 1 *

M A IM C 1 5 . 2 741221

MttCHC StCO 79091T

C A U . C U M 1 790906

COOK 17 9 0 *2 7

R l l l t l f lH t t 7 9 1 ¥ 2 *

TttilAM760920

INDIA" M . 3T40*l*

• (tV M VAL. 1 7*1001sr. turn i 7*1221

CRT9TII I IV I770911

C U .V . A I M t 770401

S A IIN 17706J0

O A V lS -tU S E I 771121

M H f V 1771201

NORTH M M 17*0*0*

COOK 27*0701

9 *111 t l . 2 7*1290 ARKANSAS 2*0012*

NORTH INN* 2 *01214

9E0U0VAH 1omoifMltf **107)0

SALIH 2*1101) N ttU lM 1

*11201 S I6 U 0 7 A M C*20*01 S T. IU C I I 2

*90001

0060000000000900000000*9*00

0

0

00

0

04.0*

2 ) 4 9 * 7 9 10 11

0 0 0 0 0 0 0 0 0

0 0 0 0 c

0 0 0 0 0 0 0 * 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 c

0 0 0 0 0 0 0 0 0 0

0 c 0 0 0 0 0 * 0 0

0 0 2 * 0 6 0 0

c 0 0 0 0 0 0 0 e

0 0 0 6 0 0 * 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 * 0 0 0 0*.19

9 6 0 0 0 6 0 0 0 09.69

0 0 0 0 0 0 0 0 04.9*

0 0 0 0 0 0 0 0 0 C).* 9

6 6 0 0 0 0 6 0 0 C• 99

0 0 0 0 0 0 0 0 0.0*

0 0 0 0 0 0 0 0 07*09

6 9 0 6 0 0 0 0 0*•49

0 0 0 0*«*•

0 A 0 0 0 0 0 03.79

6 0 ft 61.99

0 0 0 0 0 0 0 0 0• 9*

0 0 0 0 0 0 0 0 0• 49

0 0 0 0 0 0 0 0 P• 49

0 0 0 0 0 0 0 0— * .9 *

0 0 0 0 0 0 0 07.1*

0 0 0 0 0 0 0 04,29

0 0 0 0 0 0 0 0• 2*

) 0 0 0 0 0 07.4*

0 0 0 0 0 0 04.19

0 0 0 0 0 0 03.0*

0 0 0 0 0 0 0.49

0 0 0 0 0 09*79

0 0 0 0 0 09.09

0 0 0 0 0 0*•19

0 0 0 0 0 01. 1*

0 0 0 0 0 01.09

0 0 0 0 0*•99

0 0 0 0 06.0*

0 0 04.26

0 0 0•*•

M 1* 1* 1* 17 U 19 20 21 22 2 ) T O IA l

0000000

0

09.0*

0•*•0«)•0•1*

0 0 0 0

01.09

0 0 0 012.09

0 0 0 012*09

0 0*•0*

0 0• 99

09.99

0• 06

0*•0*

07.0*

0*•0609.160t.6*0l.O*

total HINTS UANT TIAOSMAM STO DIV Clm NIM cm s tc ocv

9 0 0 24* 47 49 41 4

• 0* • 00 • *0 • 09 .0. « ) • 00 • 00 • 11 .1• 0* •0) •01 •0) .0• 4) .11 • 1* • 27 .2

1 0 0 0 C1) 19 29 10 12

.0 ) • 00 •00 •00 •00• 17 • 00 •00 •00 •oe• 02 • 02 •02 •01 •02• 29 • 22 •21 •20 • 20

0 0 0 0 0 0 9 ) 1 )•00 .00 .00 *00 .00 •02 .02 .02 .02• 02• 20 .2 0 .2 0 .19 .19

0I.00 • 00 • 02.19

01.00.00.02.19

0 0 0 01 1 1 0

00 •00 •00 • 0000 •00 •00 • 0002 •02 • 02 • 0219 • 19 • 19 • 1*

410.1 • 01

RCACTOO TIARS* 9 * 7 0 0 10 11 11 n 1*

VANtttl ROM!• t o m

0 0 0 0 0 0 0 1 0 0 0IN O t« » 1 0 0 0 0 0 0 o t o o

*11001 1«0*SAN ONCPM 1 0 0 0 0 0 0 0 0 o o o*10101

HAOOAP HtCK 0 0 0 0 0 0 0 e o g o*■0101

R . 1 . (INNA 0 0 0 0 0 0 0 0 o oT00T01 0*0*901N1 I t t t H \ 0 0 0 0 0 0 0 Q o o o701(21 .4*

M I IOIINSON 0 0 0 0 0 0 0 0 o oT1010T *.**

R A L Ilttf S 0 0 0 0 0 0 0 0 o ot i i i u • 0*R01NT HACH 2 0 0 0 0 0 0 0 c o711001 9*0*TCtKCY h . 1 0 0 0 0 0 0 0 o oTI1214 y •ft*

SURRt 1 0 0 0 0 0 0 0 a o711122 ■ 9*

M I N I YANMCI 0 0 0 0 0 0 0 0 o711211 •1*

s v R ir i 0 0 0 0 0 0 o oT90901 0*1#

OCONtt 1 0 0 0 0 0 0 0 0710715 J tf t l

1 NO I AN f t . I 0 0 0 0 0 0 0 oT 10009 4.0*

t u r n c t m . * 0 0 0 0 0 0 0 c710*07 9«0*

M t l l l t U . 1 0 0 0 0 0 0 0 (7 1 1 IU ,9*

1 ION t 0 0 0 0 0 0 0 0711211 .0*

KWAUNCC 0 0 0 0 0 0 07*OftOl 7 .0*

FOOT CALHOUN 1 1 0 0 0 0 07*0*20 ft.**

9 N U C IS , 1 0 07*0*02 *•0*

OCONCt I o7*0000 9.7*

I ION 2 0 0 0 0 0 0 07*0*17 1.9*

OCONKI 1 0 0 0 0 0 0 07*121* .9*

ARKANSAS 1 0 0 0 0T o w n .4*

ORAtRfC IS . 0 0 0 0 0 0 0T* i2 .n • **

RANCHO SICO 0 0 0 0 0 0790417 0 .9 *

C A IV . a i M 1 0 0 0 0 0 0790900 7.0*

COON 17)0*27 *•2*

N lllS T C N I 2 0 0 0 o' 0 079122* .2*

TROCAR 0 0 0 0 07*0920 7.4*

1 NO I AO R T. 9 0 0 0 0 07*0010 *•1*

OKAVCR V A l. I 0 0 0 0 07*1001 9.0*

I T . U C I t I 0 0 0 0 07*1221 •4*

CRYSTAl I I V 1 0 0 0 0770911 0 .7*

c a i v . c u f f i 0 0 0770401 0*0*

S AIIN 1770*90 ft.l*

OAVIS*IKSSI 1 0 0 0 0771121 l . l *

F A H I T 1 0 0 0 0771201 1.0*

NORTH MNA 1 0 0 0700*0* *•0*

CQOR 2700701 *•0*

1 M i l IS* t701210 •

AOftANIAS 1 010012* 0*2*

NORTH INNA 2 0t o u t * •*♦

110VO TAN 1•10701 *

t M k I V 1 0H 0 7 I0 •

l H IN 1 0• n o n •

ACOVIRI 1 0I l l t O l •

SIOUOTAN I 0120*01 7 .0 *

I T . l l C t l 1I 10000 •

TO TA l IV IN T1 * * 1 0 0 1 0 1 0 0 0RIANT HARS *7 *1 *1 *0 10 19 10 29 10 11 0 9 1M AN •00 *00 • 01 .01 •01 •oo • 00 • 04 •00 • 00 •00 •00 •00STO 01* • •90 *40 • II •I* .1 * • 00 •00 •10 •00 • 10 •00 • 00 • 00CUN N IM • 00 »00 •00 •07 • 07 • Oft •09 • 09 • 09 •09 •09 •09 • 09CON S T ( OfV • • 10 *40 • 17 •14 • tl • 10 • I* •10 • 17 • 17 • IT • 17 • 17

19 14 I T I I <0 I I I t I I TOT

0*.0*

u * o o011.0*

0 I •00 •oo •0» ♦ I T

0 01 1•00 *00•00 .00 ,00•0* lO I «09• IT .1 T . I T

0 0 0I X 0 u t i l0 .00 *00 .00 .00 ,009 .Oft .0*T .1 1 *10• ••••••(•••••((•Ml

D IO

V M I t f ROM *10701 M O M * M . 1

*11001 IAN ONOM t 1

*00101 N M D M NICK *00101 ■ • I. «!MA

700101 r o m T N K N 1

T O l l t l M • R OIINS0I

710)07 tA U S A C fS

m mPOINT f t ACH 2

m ootTURKfV M . t

T t i t uSURRT 2

721t t t NAINC TANNIC

721220S W IT )

7)0901 OCONfE I

710719 INDIA* Ptm I

T io mTURKS V P T . 4

710907 M i d t f (S . I

711216ZION 1 7)1211KCVAUNff

740601 PORT CALHOUN

740620S N I K I S . t

740902 OCONEI 2

740909ttO N 2

740917 OCONEE )

741216 ARKANSAS 1

741219 PR A IR It I S . 2

74&211 RANCMC SECO

790417 C U V . C U F F I

790901COOK 1

790*27 H IU S TC N E 2

791224TROJAN

760920 INDIAN P T . J

7600)0 I f AVER V A l. 1

761001 ST* ib C IE 1

761221 CRYSTAL RtV 1

770 S I) CALV. C U P F 2

770401SALEH 1

7706S0 OAVIS-tESSE 1

771121 PAALC V 1

771201 NORTH ANNA 1

710606COOK 2

700701 I M l ! IS* Z

7112)0 ARKANSAS 2

100)26 NORTH ANNA 2

101214SfiUPYAH I

110701 PARLEY {

1107)0SALIH I• 1101) N CtU IR I 1•lltOl SMUOtAN 2

•10601 S T , lU C U I

M O W !

TOTAL (VENTS H A M YtARS M AN STP D M CIIN NIMIcun s n o iv••••■••••••••••a

R tK TO R TEARS 10 11 It 10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 e 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 c 0

0 0

0 0 0 0 0 0 0 . 0

0 0 0 0 0 0 0 01*04

0 0 0 0 0 0 0 0*64

0 0 0 0• )4

0 0 0 0 0 0 c 0.14

0 0 0 0 0 0 0•.1*

0 0 0 0 0 0 e9.6*

0 0 0 0 0 0 04.9#

0 0 0 0 0 0 0

0 0 0 0 0 0 0.94

0 0 0 0 0 0 0• 0*

0 0 0 0 0 07.0*

0 0 0 0 0 06.44

0.1*0 0 0 0 0 0

).7 40 0 0 0 0 0

s.9 40 0 0 0 0 0

.9*0 0 0 0 0 0

.4*0 0 0 0 0 0

• 4*0 0 0 0 0

9.9*0 0 0 0 0

T.S*0 0 0 0 0

4.2*0 0 0 0 0

• 2*0 0 0 0

7.440 0 0 0

4.1*0 0 0 0

).0 *0 0 0 0

.4*0 0 0

4 .7

17 I I 19 20 21 2 t t )

06.06

000

6*090• 49

011*04011*09

c 0 0

0 0 0

0 0 0

0 0 0

0 0 09*|4

0 0 0.69

0 06.04

0 09.14

0 0t .6 *

0 01*04

07 .0*

0010 0

6*9<06*0*

I 41

.0 4• II *09• t l

t 0 0 * 0 0 0 C 0 141 41 60 )• 19 29 !• I t • 9

00 .0 0 * 0 ) *00 • 00 • 00 • 00 • 60 •eo •20.1 6 *00 *00 .0 0 .0 0 •oc • 00 .49

04 *0) * 0 ) * 0 ) * 0 ) •ot •02 .0 1 .02 .0219 *10 *17 .1 6 .16 .1 9 • 19 .1 4 .14 .19

0)• 00 • 00 *02 *19

0I• 00>00>02.19

0I*00.00*02.19

• ■**•*••• *.••*••••• i •••••»

1 0 0 1 01 1 1 1 0

• 0 1 .00 *00 «0 •00 1*00 • 00• 0 •00 *00 *0 *00 *00 .00• 0 •0) . 0 ) .0 *02 *0) .0 )• 1 *16 *16 *! *16 • 16 • 16■••••••••••••• ••••■•••••••••••••••a*

D -ll

V M K t l ftQMC 610701

(N O U N P T . I 6*1001 SAN OtCPRf 1

A10101 HAOOA* HICK

410101 A . ( . CINNA

700701 POINT l| ACM I

701**1 N I ftOIINSON

710107 PAltSAO IS

711*11 POINT IIA C H t

711001 TUR M Y A T . )

7*1*14SURRY 1

7*1*** RA1NI H N K C t 7111*0sum *

710101 OCONCI I

710711 INOIAN A T . I

710009 T M R IT A T . A

710007 P R A IR tl | S . I

711116ZION I 711111RCVAUNCC

740*01 PORT CA1M0UN

7406*0 • HI1C I S . t

740001 OCONII |

740000tIO N *

740017 OCONCI 1

741116 ARKANSAS t

741*10 P R A tR II I S . t

7411*1 RANCHO SICO

79941T CALV. C lIP P 1

790100COOK 1

7900*7n i l i s t o n c *

791**6TOOJAN

7609*0 IROIA* P T . 1

760010ic a v c r m . i

761001 S T . m e n I

761**1 c r y s t a l RfV s

770111 C A iV . C U P P t

770401SALIH |

770610 O A V tt*t| SSf I

7711*1 PARICT 1

771*01 NORTH MINA I

710606COOK 2

710701 1 R ttC I S . *

711*10 ARKANSAS I0001*6 NORTH ANNA *

001*14 SIOUOYAM 1

010701 P AR K * t

010710S U M « • 11*1 RCOUIRI 1• 11*01 SI0UQ1AN I

1*0401 S T . L i C I I I

TOTAL IV IN T ! P lA R f tfA ftt NIAN 1T0 01%COR R IM CUR S i t M Y

000000000000000000000

4 .1 *0000000000

RCACTQt VtARS 10 11 1* 1

6.0*06.0*

0 0 0 07 . 0 *

0 0 0 06 . 4 *

0 0 0 01 * 7 6

0 0 0 01 .9 6

0 0 0 0• 9 >

0 0 0 0. 4 *

0 0 0 0. 4 1

0 0 0r . p r

0 0 0M l

0 0 0♦ .* •

0 0 0.* •

0 07 .4 *

0 0« ' l *

0 01 .0 *

0 0.4 *

4 . 7 *0

4 . 0 *0

6 . 1 *0

1 .1 *0

l . O *

00c

e

oc

00000e0••1*0

9.6*04.4*01.1*

C.9* 0 • 0*

0000000001.0*0

14 19 16 17 10 10 to *1 I* *1 TOTAl

06.0*000

4 . 0 *0. 4 *

0u.o*01*.0*

0 0 042 40 !•.00 .00 .00•00 .00 .00•01 ,01 .01

•ti .to *oo

0ff 0 *9 .00 .00 *00

.01 .01 .00***•••«•••••••■••••• aanaia •••••••••

0 Cu u.00 .00•00 *0C•01 .01•07 .01

0 0I f•00 .00•00 *00•01 *01•07 *07

0 0 I I.00 .00•01.07

0S•00•00•01•07

• 01 • 07

0 0 0I I I.00 .00 .00•00 .00 .00.01 «0I .00

»07 .0 7 .0 7••••••■•••••••••••••••••*•••••••••••••••••••■••••»«

00 410«| 00 .0

0 1 .00 •00 *00 •00 .00 •07 .0 7•••••■■••■■••••a*

ftCTOI1 TIM SIt I* 19 I t IT II II to t l t t t l to mVANKf| ftOtf|

imiu f‘!T*»* OtlCfM *?1 *•0101 HMttt atct*• (• (INNAr o o m►01 NT I f iC H 1

T O IM I " • M UNSON TIOM ' K l I I U I

M l M l f o i n K iC H {m u . ??!*!'s u m , 7 i m *m m" A lh l VAftKIE

721220SlMRY J

. . o u .7)0909rwtntt ft. «

HHM,'!}!" ZION ,

711231 KIWAUNII . . . . M O M ! fQftT CHMOUM . . 760M0* * I U IS* l

76090t OCONCI 2

760909I ION 2

760617 OCONCf )

m t uA I I IM l iS 1

7*121* M M f t l l I * . 2

7 4 t m RANCHO SCCO

79061? C A IV . C U F F 1

COOK I ” 05#* T90I27

M fUSTCN€ * 791226

TftQJAfc760920

KN01AN P I . )7601)0

ICAVtR VAL, 1 „ . T6I001

illC IE 1 761221

c m r u nv s 77011t

CALV. C U M 2 770401

SAtfN |7706)0

O A V IS -H S S f i 771121

’ A ftify i __ 771201

NORTH ANNA 1 710*04

COOK 2. M. 710701* " U f I S . t

7012)0 ARKANSAS 2

100)26 *0*7* ANNA 2 • 01IJ6 SCOUOVAH 1

•10701 * A R llY 2

•107)0SAtfN 2• n o t ) "COUlRf 1

• t l lO l SCOUOVAH 2

•20601 <7* i t t l l I

• I0I00

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 '0 0 0 0 0

0 0 / 0 0 0 0 0

0 0 0 0 0 0 0

0 0 / 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 .0 0 0 0 0 0

0 ' 0 0 0 0 0 07*06

0 ' 0 0 0 0 0 06 .6*

o ’ 06 .0*

Q 0 0 0 0 0 0a .7*

0 0 0 0 0 0 0)• )•

0 0 0 0 0 0 0• 9*

. 0 0 0 1 0 0 0• 66

0 0 0 0 0 0• 6*

0 0 0 0 0 16.9*

0 0 0 0 0 07.1*

0 0 0 0 0 06.2*

0 0 0 0 0 0• 2*

0 0 0 0 07.66

0 0 0 0 0A .1*

0 0 0 0 0).0 *

0 0 0 0 0• 6*

0 0 0 06.7*

0 0 0 0*•06

06.16

0 0 2 0l . l *

t.O *0 0 0

0000000001.060. 6*.)• 0 • 16

0006.0*0• M

0*06

012*0*0t t . o *

0 0 09 .26

0 0 0•66

0 06.06

0 05.16

0 02.6*

0

07 .0*

01.0*

TOTAL IVCNTS 2 2 9 0 1 2PLANT VI AftS M 67 6 ) 61 60 SOM AN • 06 • 06 • 12 •00 •0) • 09STO l i t • 20 • 29 • 6 ) •00 •16 • I fCUR M IN •06 • 06 •07 • 09 •09 • 09CUN STB 01V • 20 • 29 • 60 •16 • )) • S I

1 0 1 C 0 0 0 0 0 0 0 0 0) ) 29 29 12 1 9 s 1 ) 1 1 1 1

• 0 ) • 00 •06 . • 00 •00 • 00 • 00 •00 •00 .0 0 .00 •00 • 00• 17 • 00 .2 0 • • 00 •00 • 00 • 00 • 00 • 00 • 00 .00 • 00 • 00• 06 • 06 .0 6 , • 06 • 96 •06 • 06 • 06 •06 • 06 •06 • 06 • 06• SI • 10 .2 9 • • 21 • 21 • 21 • 20 • 27 • t? • 27 • 17 • 27 • 27

0 0 0 1!I I 0 610.1 ' • 00 .00 .00 .0'

•0) .0) .0)•27 .2 7 .2 7

i t * I I * 11S 0 ‘ CO* t o 1oo* eo* oo10* 00* 00* OO1

f*m o t i1 0 0 0

13* 11* 11* u* 11* 1140* 40* 40* 40* 40* •000* 00* 00* 00* 00* 0000* 00* 00* 00* 00* 001 1 I 1 10 0 4 0 0

11* 11* 11* (1* • 1* 01* 01* (1* 11* 41* I I 11* •00* 40* 40* 40* 40* <0* (0 * (0* • 0* (0* ( 0 (A * •00* (1* 00* I I * 01* 14* 61 * ♦(• 00* 11* 11 •00* (I * fl9* 11* 10* 01* 40* 00* 00* &0* (0 •1 I 11 01 61 *1 (1 0 ( 04 14 (40 1 3 1 1 1 1 0 1 1

•0*1 e

•1*10• 1*40#0**0

0

•0*110•0*110

•4*0•0*0000

4 0 *90lt io i i i i i i i oi » i t i i t « i ( i *1

•0*0•6*0•1*10•**4•«*s0• f t0

000000000009

1 II 11 IWI1 *9A 9*

•♦*0 0

•0*10 0

•1*40 0

•4*10

•1*0 0 0

0 0•10 0

a0 0

0 0

0 0

0 0

AM Ilf Ml) MIH WI9 M l aitttVIH

tITM 1N91I tlMIAI 1V101

« 11X11 'I ti o w t

I M A O ftO lf W i l l #1 111(11)11 (10110I MlftOUOUI 111*4 101010I mt i oo t i l 411100 I VMNV MINN

ow oo o* iviNvwr Otllll

1 *11 HIM I 101OilI XOO)

*04011 I VMM M1«Q« 10IU1i tnwi1I1U11 I f S M - f l A M OtOMl1 HI1VS104011I 111*19 *41*9 CU011I All 1V1I1V9 III101 1 11)01 *11 1001011 *1VA 4IAVII 0(0001 t *14 niimi

01(041M vrooi

011161 I I N J i l l l l t f

1100(11 *003

oococi1 44119 *ATf9 114041

Q»lt 1MW1 111141I *81 I l l l V l t f411141

I U tN V lH f 011141

1 11*090 11*041 I NOW*0*041

I 1M039 19*041 1 'II HIM t 014041 NftOMIO 1404 104041

UlMVAlNKIKl I HOU• u mt *tl IIVIVN 10*0(1 4 *14 UMM1 (000(1 I *1# 4V10NI (110(11 IINQ90w«u I UMSOlllll>iwm im v H H i m i H i n t4 I IH 1

( *11 AlMINIl 10QU1I N9VM 1NIB4 tf lltl

tM ftllH 101011 NOtNIIOI I H IltlOl1 H9VM IN 104 101001

vmhii *> *• 101010 V9IN IfVtffH

1010001 I I IW O N il 1001101 *14 AVI Mlm n tMQI IIANVA

|BU6|# uo|»oofu| A*©*** iueueApeu| Q A joBbjbo M/yy O l d

M U T C I YEARS 10 11 I t IS 14 IS M I T I I I ' tO t l t t tS f Q U l

V M R II ROM *1 0 7 0 1

INDIAN M . I *11001 SAN O U C fll I *00101 HAOOAP NICK *00101 R. E . t t M U

TOOTOl POINT N M N 1

T O I t t lH I M UNSON 710)07 PALISAM S1112)1 POINT t f ACM t

7 *1 0 0 1 TURRET P T . I

T t i ms u m i

721222 M INE YANKEE

T t l t t lSURRY t

7 )0 9 0 1 OCONEE 1

T s o mINOUK P T . 2

7 )0 1 0 9 TURRET P T . 4

7 I090P m i f t l t I S . 1

7 ) 1 2 1 *ZION 1

7 )1 2 )1KtUAUNIE

7 4 0 *0 1 PORT CALHOUN

7 * 0 * 2 0 ! H U E I S . I

740902 OCONEE 2

n o wMON 2

740*>1T OCONEE J

7 * 1 2 1 * ARKANSAS 1

7 *1 2 1 9 PRAIRIE I S . t

7 *1 2 2 1 RANCHO SCCO

79041T CAIV. C1IPF I

790909COOK 1

790927 M U S IC N t 2

7 9 1 2 2 *TROJAN

7 *0 9 2 0 INDIAN F T . )

7 *0 9 )0 IEAVER VAL. 1

7 *1 0 0 1 ST . LCCIE I

7 *1 2 2 1 CRYSTAi RIV )

7 7 0 ) 1 ) CAIV. C ltP P 2

7 7 0 *0 1SAICN I

7T 0M 0 0A V IS-9E SSE 1

771121 FARLEY 1

771201 north m n a 1

7 9 0 *0 *COOK 2

TOOTOl S H U E I S . 2

7 9 1 2 )0 ARKANSAS 2

9 0 0 ) 2 * n o r th ANHA 2 • 0121* SEQUOYAH 1

910T01 PARLEY 2

9 1 0 7 )0SALCH 2• 1101) RCOUtRE 1•11201 SEOUOYAH t

9 1 0 *0 1 ST . LUCIE I

9 )0 9 0 9

0*.0*0000000).0«0.*•

1.0*0 00 00 0

*.0 0 0

012.0*0lt.0*

09.M0.0*

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 07 .0 *

* .4 *0 0 0

* . ! •0 0 0 0 0 0 0

) . ! ♦0 0 0 0 0 0

) . 9 t0 0 0 0 0 0 0

.9 *0 0 0 0 0 0

.4 *0 0 0 0 0 0 0

• 4*0 0 0 0 0 c 0

«,T*0 0 0 0 0 0 0

7 .9 *0 0 0 0 0 0 0

* .2 *0 0 0 0 0 0 0

.2 *0 0 0 0 0 0

•0 0 0 0 0

•0 0 0 0

•0 0 0 0

•0 0 0 0

9.T*0 0 0 0

9 .0 *

*•1*0 0 0 0

I . ) *

1 .0*0 0 0

c9.1*

c5«A*

0*•9*

e1.9*C• 9* e .0*

.)•

•i*

o

0

0

0

0

0

07 .0 *

TOTAL EVENTS H A N T KARS MAN STO 01*CUN H IM CUN S U OtV

0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0 0 0 0*? 4 ) *1 *0 I t )1 to t l t l I t 1 9 1 1 I 1 1 1 1 1 1 0

. • 00 .0 0 .00 .0 0 •00 .0 0 .0 0 •00 .00 • 10 •00 •00 • 00 .00 .0 0 .0 0 •00 • 00 • 00 •00 •00 • 00

. • 00 .0 0 .00 .0 0 • 00 .0 0 .0 0 .0 0 •00 • 00 •00 .00 • 00 .0 0 .0 0 .0 0 •00 .00 • 00 •00 .00 .00

. .0 2 .01 .01 •0) • 01 .01 .01 •01 •01 • 01 •01 .01 •01 • 01 • II • 01 •01 •01 • 00 .00 •00 • 00. t l . I T •19 •14 • It . u •11 •11 •11 • 10 • 10 .10 • 10 .10 • 10 • 10 .1 0 • 10 •10 .1 0 • 10 • 19•■•••■•••■•••••••••••••••••••••••••••••••••••••••••••••■•■■■■•I•■•••••••

HANTS IIM TW TIMS 10 I I I t 1* 19 1* I T I I 19 to t l t t t t T01

TA N R It tO V t *10701 INOim M. 1 611001

SAM O M Cfll I *90101

H IO D O NICK ••0101 • • I . •INNA

T0 0T0 I POINT IIACM I

T O I t t l H 0 KOItNSCM

T IO M T PAL IS IBIS

T l l t l l POINT 91 ACM t

T t lO O l T M R IV P T , S

T t l t l *tto*r i

T t l t t t N AIN I YANRIE

m mSURRY 2

790901 OCONft 1

TS0T19 INDIAN PT* t

T 90009 TURRIT P T . *

790907 PRAIR tf IS* I

m mI ION I

T l l t l lRIUAUNII

7*0*01 PORT CALHOUN

T*0*t0 9 R i l l IS* I

T*0*02 OCONII t

I ION IT4 0 9 IT

OCONCf }7*1216

ARRANSAS I? * lt l*

P R A IR U IS* t 7*1221

RANCHO SICO T 9 0*17

CAIV* C U M I 790909

COOK IT9002T

N II IS IC N I 2 79122*

TROJAN760920

INDIAN M * S T*00!0

IC A V fl VAl* 1 7*1001

S T. H .C I I 1T61221

CRYSTAL RIV I TT0 S 1 )

CAIV* C lIP P 2 770*01

S A lfR I770*10

O A V IS -ttS S I I 771121

PAR IIY 1TTI201

NORTH ANNA 1 TIOftO*

COOK t7*0701

S N IIK IS* 2 7(1210

ARRANSAS 200092*

NORTH INNA 2 •0121* SIOUOTIN I

•10701 P M I I T 2

• 10TI0SHIM 2•11011 NCOUIRI I011201 IIOUOTAN t010*01 IT * U C f t 2

0 9 0 * 0 0

0 0 0 0

0 0 01 .0*

0 0 0 0

Q 0 0 0

0 0 0 1*•0*

0 C 0 0•*»

0 0 0*•9*

0 0 0 0• 0*

0 0 01.0*

0 C 0,6*

0 0 0•9*

C 0•1*

0.1*0 c

9 .* *0 0

*.♦•0 0

9 .0*0 0

•9*1 0

,0*

0*•0*012,0*012*0*

07*0*0*•*•

09%T*09*9*0

• 9*

.*»

TOTAL IVINTS PLANT YtMt MAN STD I I I CUR RIM CUR STI Off

t I 1 I 0 0 0 I*1 *1 *0 90 99 M 29 19

*09 .0 2 *09 *09 *00 *00 *00 *0*• I I *1* *1* *10 * 00 *00 *00 * 2**09 *04 *0* .0 * *09 *01 *09 *09*90 *11 « l * *19 .2 9 .2 2 ,1 1 *||

C O O 12 9 9 •00 *00 *00 *00 *09 *21

>00 *00 .01 *09 *11 *21

0 0I 9*00 *00•00 *00*09 *09*21 ,21

09*00

•00*09• tl

*09•II

0 I •00 •00 • 09 *10

0 0 0 1 1 1 0 *10. •00 *00 .00 *0 •00 .00 . 00 *09 .01 ,09 •to .to .to

T ab le D-13. PW R C a te g o ry 12: P re s s u re / te m p e ra tu re /p o w e r Im b a la n c e - r o d p o s itio n e rro r

ittmtr * » * n Mti nowi im im f t . itllM! >*» ow n i«*•*»» mca . .*0101 »• » . timt

T0»JM » « n IIKK |

H im" * MHMW »!•»> M I S t K t

t» « , k i t

'« * rlillf1 T t l » l

50**f /710)01 OtfiNCI |

T I 0 7 I I INOlAft F T , *

7)0109 T<ftRtt F T , A

TtO tO T «*l«|f | |, |I ION , » **“ *

7 AO 001 FQKT CAIHOW

TAOAIO > " I I I I t , I

otom t t7*000*

ttOM |7*0*17

0 C 0 N II )_ f o i i t o

AlttANSAS 17 * t « f

F t A l t l t I S . tw t m

ftAftCffO ) (C O7904*7

C M .* . C U F F I

rnmt fW#tf# COOK 1790017

N t llS T f in i t

TROIAN7A092O

IN O U M f t . sw m•CAVI0 VAl» ft

7*1001 S T . I b C If |

t W I T M A IV 1 77011)

U » , C l IF F tm « o x

t o n * j

• A V t f -M U l ’ l

'« * mlVVc o o , ,

700701 I " I I I I t , Im/MA M M I l f IIM IMnootm jm a t

# 0 I « A M O W * 1

OftOTOI F A i l f f |

0107)0 tA lt O J*11011 " C O tit lf I

011*01 t«0 V 0 tJtf IItOM) tT* I I K H t

0)0000

T O IA I f f t N T t F lA O t TCABt M A H t i t 01V CIM M M C M t T I M V• H H »P* M M M M N M i

.H

t•IAC

10c* TCAOI

I t 1 ) I t

0 0 0 0 0

0 1 0 01.0*

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0O.0A

0 0 0 0 0

0 0 0 0t . t t

0 0 0 0•0»

0 0 0),0 *

0 0 0•OA

0 0 0.) •

0 0 0.1*

0 0I*

0 0A*

0 0I*

0 0*«

0 0.9*

1 0 c.0*

0 07.0*

0 0I . M

0 01.7*

0 0) . » •

0 0.» •

0 0. « «

0 0• A*

I I 10 I T 1 0 I t to t l I I I t T0TA

0,0*t t

11.0*0 0 It.O*

0tm&7 .0*0«.t*0

.* •

A .t*00.0*

I t 10 A t t 1 0 1 1 1 0 0 0 0 0 o o o*1 A t A t AO tO t t t t 19 10 I I 0 9 1 1 t 1 1 1

• t t . I t •to •1) *10 • 0 ) .00 .OA •00 .1 7 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 •to• II l . t t . ' 0 • tt .0 0 .1 7 •00 •10 •IA • t t •00 .0 0 .0 0 • 00 .0 0 .0 0 .0 0 .0 0 • 00• It *11 • 10 • It « t o . U • tl • IA • IA »|A • It • It • It .1 1 • It . I t .1 1 • I t • It•AT *01 •71 •00 ,0 9 • OA • 01 • tt • 90 #99 ,9 7 .9 7 .1 7 .9 0 .9 0 •to •9A .9 * .9 0

01,00 ,00 , ! » • ft

0I•00 • 00.11 .1)

•to .t o

0o a u *i .00 ,00

T a b le D-14. PW R C a te g o ry 13: S ta r tu p o f In a c tiv e c o o la n t p u m p

VMRIt ROMoiotoi

IM U K RT. I*m m i

SAN ONOM I I 000101

maooa m e * *meiI , I . I I W A

700701 MINT MUM I

T0 1 IM H • CQItNSOM

T1090Tr u t i iM t

m mM IN T H A C K I

rti m iT U t M t 9 U I

m mSUM Y I

T t l t t t MINI MNMC 7 N « f

SURtt I710 M l

KONVt 1tsons m m m . ir»Mi

T W K I1 M . * TS000T

M A t R t t I I . 1? i t n *

tfCN 1711 M I

KtVAVNtf7*0*61

f O i l C At MOW 7*0*10

I M t t I t . 1 T*0*0t

O tO N ft I7*0*0*

I ION t7*0*17

OtDNIt |7*1*1*

ARKANSAS 1t*in*

f R A IR t l IS* *m m

RANCNO }ltOm*irCALV* a i M i

79*901COOK 1

7*01*7 NILISTONI *

791*1*TROJAN

7*01*0 INDIAN R T . I

7*0110 K A V f * V A l. 1

7*1001 S T . L tC IC I

7 * lt* l CRYSTAL R i» }

770111C A iv . c l i m i

770*01SALfN 1

r m i o I H I ! * N U ( 1

7711*1 R A R lIT 1

771*01 NORTH MNA 1

COOK t7**7*l

> N i l * f » . | TOItSO

ARKANSAS I•Mtt*

NORTH MNA |• 01*1* IfOUOYAN 1

•10701 PMUV I•torso

S A ilN I•non

N C O tflif I•11*01

S IO V O TM Iorooot St. men *• M M l

TOTAt IVINTS WARS

NfAN STO MV CUR NIMrm ite mv

ItACTOR 10 U TSARSI t “ » I* " !• W 10 t l t t

0 « 0 0 00 0 0 01.0*0 0 0 0 00 c 0 0 00 e 0 0 9

*•0*0 0 0 0 0

.*♦0 c 0 0*•*«

0 c 0 0• 0*0 0 0

1.0*0 0 0

•**0 0 0

•1*0 0 0

.1*0 0••1*0 0

9.**0 0*•**

0 01.0*

0 0•5*

0 0•0*

0lt.0*0l t .0 *

0T ,0 *0*•**

e1.7*0••9*0

• 9* 0• ** 0 .**

t*.*•

0 *> • 00

1 *1 >01•00 *14 •00 .01 •00 «ov

0so • 00•00

0IS100

01*• 00• 00.0*

0t l•00

•00•00•09

010• 00

•M • 00 •09

cI t • 00 • 00

.0 0 •OS

0s•00•00

•09 *09 .01 .09

0s•00

•00•00•09

0 o1 1• M ,00 •00 .00• 00 #00 • 09 .09

0 0 1 1 M .0 0

•09 .09

01•00•00•00•OS

01•00•00•00•09

00 *11.1 .00 .0(

6i -a

01* * 01* tl* 61* 01* 01* 01* 01* 01* •I* *1* 01 * 01* 01* 01* II* 01* 01*10* • 10* 10* 19' 10* II* <0* 10* 10* 10* 10* 10* 10* 10* 10* 90* 90* 10*00* * 00* 00* 00* 00* M* 01* 00* 00* 00* 00* 00* 00* 0<* 00* w* II* II*00* • 00* 00* 041* 00* 00* II* 00* 00* 00* 00* 00* 00* *0* 00* 90* 00* »0*0 1 1 1 I 1 1 f ( 1 0 I I 01 I I M u o t 0*0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 < 1 1

!>•

ii*

i

A M I I I i l ) W IN M )

M O O i l NVIH

I l f U INV14 t lN IA I 1V10I

40 * 10• V I

II 9

«»*•o• 4 * 9

•OM0•1*1i4l •0 4 1

4 « * * l 1 0 •0*110 0

40*0

4fi*9

•0*10

4 0 * 90

• 9 * 13

4 1 * 00

•1*0 9

* «•0 0

•9 *0 0

4 0 * 10 9

40** 0 0

0 0•9*

0 0 04 0 * 0

0 0 0

0 0 9

0 0 04 0

0 0

IM 0 I9 I M l

109010t M m i i t

totittt m iaosm IW I1 0

I 011*1O IIO IO

f A l ’ltVAmoio

I HVAOflOIS >11109

1 VNNV HIOOM W MI

I IV IN V M f 0111112 *11 111M C 101001

I IQ O )009001

1 VMM N IN N 101111

I A 1109111UU1 1 S S M -U A V Q 019011

I M > V «toooul 4 4 1 V *A1V) C U O ltI A l « IV1IA49wim

I 11)11 *1* 100191I *1VA OlAViO 0(0091

I *14 O IQ H I 0ZC091

Mvrooi01* U l

< 1 M U 1 1 IU I t f O f il

I MOO)tocoti1 4411) «A1*9 11*0C1

0 » )S QtONV* 1»1UI *SI I 1 I I T I 4*tn*i

1 SVSNVNVV 91*1*1

( )1 N 0 )0 11*0*1

* M OII4090%1

I )IN O )0 Z0*0*1

i * n h i m c 0190*1

NftOHlV) 1904 1090*1

i ln n v A ix11*111

1 NOIZ911111l •*! I I v i V i jm oti

9 *14 AlSVfti tOOOCl

I U l NV10NII U U 1

t i lN 0 )0 10(011i m i n i

O K t l l 33MVA IMlVM

Z Z IU 1I AOMS

*11111 I *14 41X901

100U 1Z M )VM 1NI04 11*111 im tiiii 101 ou

N0SNIIOO 0 H I t s 1011 M3V1I IN 104 101001

V IM I) *1 *0 10S099

)l SIN 4V00VH 101009

1 U M N O NVS 100119

1 *14 0V10NI 101019

M OV IIXNVA

W»1 II tl II 01 01 01 11 01 |1 II 11 SOVIA 0019V

MO|» SOU »o 9«0| |B»01 :\ri AjoBbjbo HM d '9L‘Q 0|q®l

IHHIIIM INHHANTS

• •••■•••■••■•■I

t m m i i n i 0 1t u r n

INDIAN I T . 1 t 1tt lO O i

ION QNCfNI 1 0 0tO O IO l

HAOIAH NICK 1 0t 00101

1* I . OINNA 1 tTOOTOl

POINT IIACH | 1 0T O l t t l

M 0 RQ9INS0N t 7TIO IO T

PALISAM S 0 0m m

POINT U M N t 0 1TttO O l

T W K I1 I V . I 0 1T t l t l t

SMRY 1 t 1T t l t t t

N I N t UNKCC 0 1T t l t t t

SURRY t 1 tT 10901

0 CO NCI 0 1n o n >

I N D I O I T . t T 1710009

TUNM V I T . t t tT io t o r

M A t R I I t l* 1 9 1T l l t l t

t ION | 9 tT l l t l l

I IV M M N 1 JTtO tO I

I0 R T CALHOUN 1 1TtO ttO

1 " l i t I S . t 0 0TtOOOt

OCOHtl t 1 0TtO tO t

tIO N t T TTtO*\T

OCONIt 1 0T t l t l t

t M M I I I 1 1 0T t t t l t

M l t l l l f t* t 1 tT t l t t l

RANCHO IKCO 1 0TO O tl?

CALV. C L IV I I t 1T9090I

COOK 1 1 1790017

HILLS1CNI t 1 1T t l t t t

t o m a n 1 tTtO ttO

INDIAN I T . 1 1 1TtOOlO

OIAVIR V A l. | t tTttO O l

S T . L U C K t 0 1T t t t t l

CRYSTAL RIY 1 1 0T 70 111

CALV* C l i f f t t 0TTOtOI

SALIH 1 t 1T TO t i l

O Avis-tm t & 0 0T T I I t l

IA R LIY 0 177U01

NONTH MNA 1 1 0TOOtOt

COOK t 9 1TOOTOl

1 H i l l IS* tT t l t H t . o t

AMANSAt t t 0ID O Itt

NORTH MNA t 0 t• o t t i t

IIOUOYAH 1 t t110701 t*0*

P M L IY t 0 1110710 • •I*

SAiCH t t 0• n o n t . t t

N C O U tll 1 1 0O l lt O I l . o t

SIOUOYM I 1t t o t o i r .o *

ST. L L C II tIW O O I 4 .0 0

( • ( • • ■ M i a i t i a i i M a i a i a m t c iRCAC10R V IM S 10 II It 14 19 I t I T I I 11 tO 21 t t t| T O T H

0 C 0 t

0 0 00*

0 1 0 1

0 0 0 1

0 0 0 0t .

i c 1 0•

i 1 0I*

0 C 1 0.0*

0 0 01.0*

0 0 0•t*

0 t 0.1*

0 t 0.1*

0 1l . l *

0 0l . t t

2 14.0*

0 0f.O*

0 e.9*

I 0.0*

0T.O t

0t . t t

01.7*

01.9*

0.9*0• t tD• t t

0t.0*

0lt .0 *0l t .o *

I

i t

t

itli6

16tl

I

I I

t l

Uto

I t

I t

I

I t

t t

tlt

06

t t

I

I t

I I

I I

IT

IT

I I

I I

t

I

I f

I t

410

I

100I

4t

I

itt

I

I

TOTAL H IN T S HMT fIMI K I M IT O 019 CUH M Mcun tit m v

00 00 *T TO 90 t l u 1 9 I t I t I 0 0 0 0 0 0 0 0 t t lt T t » t| «0 I I I I t t t l 10 I t I I I I I I t I I | | 0 t l 0 . l t

I •0 t I . I t I . I t I .T 9 1.11 I . 10 *99 . I t .t o .|C .11 *10 I . I I 1a00 .00 .00 .00 .00 .00 .10 .00 .00 1*10. . . t * IT 1*00 l* T t l* Tt ta t t l . t t . t l 'TO *9T .1C . t t . t l .10 1.00 .00 *00 *00 *00 *00 *00 *00 .00t»T9 t . t t |*>0 t . l l *•:» 1*01 l* t| l* 0t l . T I l . t t I .A l 1.90 l . l t l . t t 1.99 l . t t 1.94 l . t t 1.91 1*91 l . t t 1.51 l .9 tl « t l 1.10 t .O t 1*00 1.99 t . t l t . l t t . l l t . t t |*|9 t . l l t . t t t . t l t .tO l . l t t . l t t . | t I . 10 l . l l t .1 0 t . l l t . l l l . l l

I.

i r - a

II 01* M * I* 00* 1**0 I 0

l i * 11* I I * 11* 91* t l * t»* If * t l 1It* I t * 11* 11* 11* 11* 11* 41* I I 401* 00* 00* 00* 00* 00* 00* 00* 00'01* 00* t 00* 00* I I * 10* I I * 01* 001 1 1 1 1 1 1 1 c0 1 0 0 0 0 I 0 0

tl*« ••••II*II

I I * *4* I I * 44* 44 * If * »«♦ i i 1i l * 11* 11* 11* Ot* It * I f it * • i100* *!* I t * 1** i t * *1* I I * i i * i t01* 10* *0* 01* 10* ■ 1* o r •i* i if l 01 I t *1 I I I I 0* t* i*0 1 1 « 1 1 » i i t

•O'*I•4*1

•1*10

•1*1I• II

•I

•4

♦ I*I

•t*I

•I*0

•0*10

•0*0

•f*0

• I ' t0

•***0

•1*10♦1*00

•0*1

•0*1 0 0•*♦*0 T 0•*•0 0 0 0•0*11 0 0 0•o*tt0 0 0 I 0 0•0*111 I I I 0 1•0*11 0 00 I 1 1 0 0

19101 I t t t I t I t I f I I i i I I f t *1 t t I t t t S4I1A 104391!

A M J i t M l] W i l l Mfl)

M O O i l NVtM

I V f N 1*114 I I N I A I 19101

•l»100010

t I I M 1 m mt W iO f l l l f

l o t mt i i i a m m (10111

I M i n to i a o i o

I 411194 1040191 W A O A IIS *11101

t 9NN9 N1MM 9 I I M I

I (91W HU1 O l t lO i

I *11 H IM I 104001

I 100)I VMN9 N iM H

1 0 I1 U1 411194

U 1 U 4\ H S H * i ! M Q O t IO l i I MlWfmout 44X1) * 4 * 3 f K 044I A l l I f l S i l )i t t m1 11)01 U Sl o o mi *rtk iiA9)i 0(1094

( *14 N9I0MI 01(0*1N f f O ll

W U 4 4 i n s u i i i m

414044 I 400)I K I f i1 441 D *A19J 11*044

0 )1 1 3M3N94 lllUit *SI I I I I V I 4 I U 1 U

1 U t W M V I U 1 U

I U N 030 41*0*4

t NOtt*0*0*4

I IMOM 10*0*4

1 *SI H I M I 0110*4

WHW T*) 4404 1010*4

lltM V * )*t l t t f i

I N O ll*111(41 *ss 1 I I I 9 I 4 11*014

* *14 4 IM A 1 fiO IO fl

1 *14 4910M « U 0 ( 4

1 1IN03Q xototi

t A IM S1111(4

I1MM91 IN 194 t t t l t l

( A I M !* t t 1 t l

( *14 A14WU 100114t M3914 1NI04 U t l U

S U l f 1194 401014

NOSNMOI I H l i t 1011 43910 IN 104 104001 9NN10 *1 *»l o t o i l

M31N 49009H 101011 1 114)40 NVI 101111 1 *14 N9I0NI

104011 1001 IMM9A

(sd o o i ||e ) m om je w M p e e j jo s s o | ib io j. : | i A joB ojbo u M d Y L Q 8 |q e i

VANRtl lOttt *10*01 IK4IAP M . i•nonSAN 8 N H I 1 *•0101 NA00AP NICK

*•0101 I. t. CtNNA

room'tOtNT IfACN 1 T01MI H • RfillNIQN TtOtOT PHIS INSn t i u

POINT NICH t TttOOt

TORKtT PT* a Tint*

f«tf ITttttt MINI VANMt 7«**lS W M I

T10MI QCONff tTMTtV

IROtAft IT* t TM009

T U K (1 Pf» %TNlorPMIRIt If* I TttttlII0N t

T t t mK H IV D K

T40*9l POUT CHH0UN

T44410 I Rill IS. t T4490I

OCONCI IT40904i row > T404IT OCORtl I

m m1TUttf m u t t ii. t

m mRANCHO StCO tMurCALV* CUFF t TfOMICOOK t

w m p RUtStONI tf i t mmnpT44SI0

IROIAR PT* t?*o*»o

HAVII VAl, t T*t00l

ST. Itftt t T*t It!

c m m ttv i TT0S1S

CUV. CitPP t TT0441SAUR ITTtlM

OAVtS-KSSI t T T t m

FAtllV ITTttOl

R0ITM MR* 1m * MCOIR I tiotoi

I Rill II* I TIMM AM ARIA! t

•oosiiNORTH INNA | llttt* IIIMOTAN Ii u r n

PMUIT III9TS9S H I R I IllltS NCONlIt IIIIMt U I M 1 M I

110*01 IT* ttlCtt t

RIACTQR TEARS 10 t t II II 1* I* 1* I T l « I* 10 21 || n T01

000Q

00I001.0*I**•0•I*0.1*

0l*0«000000.0*

000

*•«•0

011.0*0JI.O*

l . t *e 0 0

4.4*0 0 C

4 .M0 0 0

!*••e 0 P

•I*9

0 0T.O *

0 0*.*•

0 0».? ♦

6 0S*9«

6 0•s*

i 0• 4*

0 0*4*0•it*0

T*»*0*♦2*0

•I*

*•t*

TOTAl IflNTIP1ANT WARS «•ROAN *40IT! O h l.tlCNN R I M «*0CON Itl OIV I• !*I M H t N n t H I M M I I

10 9 I S« » *| 40 10

•II «IT *00 *01•10 *90 .11 *#T• I t *11 *14 . t l

IIS

• Of

I tH 10*10 *0*

.41 .1 1•VI *10 *11

*01 *01 *?• *Tt *40 •** *14

ISO*11

• If• tl *41

Itf

• I I• t* • tl • *f

tI

*IS• n•ti• u

•ti•*t

0 1 9 0 1 ) 1 1

•00 .*« *10 *99 •10 *91 «00 *00 •IT .IT .If .IT ••I •*! .I t *11

• IT •*!

• t ot 1 t

•90 t.00 *00•II .94 .99•IT .IT .IT•9! •*! .41

4I 411*

• IT •It• •• •• •• •• •a

A C I O t V I M S II II I t U I T 18 19 <1 I I t l ?0t

»?ahkie tone610701

IN0IAK P T . I 611901

S M QMCFVt 1 690101

HADOAP HICK 490101

P . ( . 9IHHA TOOTOl

POINT IEACH 1 TQ 1K1

H • POIINSOH 710107

PAL ISAOEST l l t S l

POINT KACH I 711001

TUP M Y P T . 1 72U 14

SURPY |721222

HAINC YANKEE 721220

IU9RY t7)0901

OCONCf I710719

I NOUN P T . 2 7)0909

TURKEY P T . 4 7)0907

P P A U IE IS . 17)1116

MON 17)11)1

KEMAUNIE740401

POPT CALHOUN 740610

) « U I I S . 1 740901

OCONEE 2740909

MON t749917

O C O N E t S741116

ARK AN SAS 1741119

PftAtfttf I S . I 741211

ftANCHC SECO790417

CA IV . C U F F 1 790909

COOK I790917

NIUS1CNE 2 79L226

1tOJAM760920

INOIAh P T. ) 7609)0

I f AYER V A l. 1 761001

S T . U C t t 1 761221

C » T 1 f « «| V ) 7 7 0 )1 )

C A IV . CUPP 2 770401

IA L IN I7706)0

O A V IS -O f llf I 771121

EARLEY I771201

NORTH MNA 1 710606

COOR 2790701

S NILE I S . I 7912)0

ARKANSAS 2100)26

N09TH ANNA 2 991214

StOUOVAH 1910701

PARLEY 29107)0

S A L IH I91191)

NtiUfOf )911201

tlOUOVMt 2920601

S T . L l t l t 2 9)0009

0 0 0 0

0 04

e 0 0 0

0 0 0 0

0 0 0e.O*

e 0 0.4*

0 09*

• 040 0

9.060 0

•660 0

• )6C 0

•I*

6 . 0 6

011.060U . O *

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0e

0•

ae

09.74

09.0*

06.14

0U S *

0l.O P

0o.t*c9.6*04 .9 *e) . 9 *c•»0

T O T A L (V E N T S P L A N T W A R S M IA N S T O O I V CUH N IA N CUH S T I M V .4 9 • •••••••••■••i ••••••■•

0 0 2 I4 ) 41 40 ) l

• 00 .0 0 .0 9 .0 9• 00 «00 .11 .2) •01 .0 9 .0 9 *09 • )! .10 .to ««o

I )) • 0) ■t I T• Of• 27• t ••••••••••••••

0 0 1 e 0 0 0 0 0 0 0 0 0 0 0 029 21 I I 11 I I ) ) 1 1 1 1 1 1 1 090 .0 0 •06 • 90 •00 • 00 .0 9 • 00 •00 • 00 •00 •00 •00 •00 • 00 .0 0

iOO •00 • 24 • 90 •90 •00 .0 9 • 00 •00 • 00 • 00 • 00 • 00 • 00 .wo • 00>04 •04 • 04 • 94 •04 • 04 • 04 • 04 •04 • 04 •04 • 04 • 04 • 04 • 94 • 04.16 •19 • 29 • 29 • 14 • 14 • >4 • 14 • 14 .2 4 •14 • 24 • 14 .14 •14 .14................................ ..

• • • • ■ • • ■ • • ■ M lPLANTS

TANM t ROM!• t o m

i n o u * m . iM I N !

I AN O N C ftl I 400101

NAOOAN NICK 490101

«• I . UNNA 700 TO!

POINT HACN 1 701121

H I N0IINS0N T 10107

* AllS A 0tS7 n m

*01 NT I f K M t 7(1001

T u o k it f t * I7IU 1 A

0 M IV t7 | l t t t

NA1NC TA M II 721220

t M I Y 2710901

OCQNIC I790719

tNOfAN > T. f 710001

TW N IT IT* 4 790007

P t l l l l i It* 1 791110

tIO N 1711191

KINAUNtt740001

P0I7 C H JttlM 740010

I M i l IS* 1 740001

ocoNtr t740000

I ION I74001T

OCONCf 9T u r n

ARKANSAS I741 n o

PIAIBSI IS . 2 741221

IM C H O JfCOm o s t

C A L I. C L IP ! I rwooo

cook iT90027

N lllfTC N f < f 91124

TROJAN700020

INOtA* IT* 9 7 M D 0

IfA V fI 9At* 1 701001

tT* U < t l I 701221

COVITAI t l* I 7 TO 919

CAiV* C l IM 2 770401

s a u n i770010

OAVIS-tfttf I771111

PAAIIT I771201

NOMN M M 1

COON I700701

0 N i l ! J * . 2 701*10

A IN ANIAt |000921

nortn m k a i 001210

MOV0TM 1010701fA O lfT 2

010710lift IN 2

OIIO I I NCOUIII 1

111 HI INWTM 2020001 IT* LNCtl |

ttVAl IVINT9 PLANT If M l RIAN 9T0 I I I CNN M M CNN IT f Of I ••••••••••••••••••••••••<

• • • • • • • • • • • • • • * • • • • ■ • • • • ■ • • ■ !KIACTQI YIARS

' 10 11 • * • * 1* l> 1* I T I t H 10 t l t t

0 0 0

1.040 0 0

1 0 0

0 0 04.0*

0 0 0•4*

0 00.94

0 0.0*

29 TOTAL

00*04

012*0*112*04

09.04

0020100000

000•000.1»0

T . l*0♦*!•0

1000000

0

07 *0*

00*44

09.7409*9*0

• I*0•4 40

e

lti*i«o

9*4*0

4*0*09*1*0• I* 0 •0*

nNNH MW *10701 INOCAN PT. I •21001 *AN OhCPRI 1 ••0101 UAOOAft HICK••0101

« . (• (IN N A 700701 *01N7 IIACH 1 701111 H • RQltNSQN 710*07 'A ltS A tC S711111 *or*T HtC H i 711001 TUMft M, 1 711214SUMY 1721212UHKff7I12IPSiMM t7)0901 OCONCI I710715 INDIA* M. | 710109 TMUMT PT. « 710907p»mif m . i i.SN, ,m u

740*01 *0»T C At HOW . M. 74DW0 » "111 I). 1 740001 OCONCI 2

7*0409ItON | 740917 QCONCC 17*121* APR AN)AS |741114 **At«|t IS. |741221 IANCHC SCCO 790417 cnv. cupp i750901COOK 1 790SIT MUSIC*! 2 791226r«ojA* 700520 JNOIAh *T . 3 7400)0 IfAVCP PAI. 1 7*1001 IT* U C IC I 7*1121 tltSTAl HV | 770111 CAtV. O.IPP | 770401SHIN 1770*10•tm.Nssc i771121 • Mitt 1771201 •OiTH ANNA 1___ 710*04COON | 700701 1 Nllf IS. 2 701110 AMAN1AI 2 „ 00012* N0K7H ANNA t •01114 IMUOTAH |•torniMit) t

•10710SA4CN /

•nonNCOUIII 1• 11101 II0U07IH 2•20401tf* ucn i •ioioi •4

TOtAl IVCNTS PlINT VC All RUN 170 OIK CUM NUN CUN tie MV

•CAC70I V IM S 10 11 12 II

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 e

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 C

0 0 0 0 0 0 0 0 0 0 0••1*

0 0 0 0 0 0 0 0 0 0 05 .4 *

0 0 0 0 0 0 0 0 0 0 04 .4 4

1 2 0 0 0 0 0 0 0 0 01*04

0 0 0 0 0 0 0 0 0 0 e.9*

0 0 0 0 0 0 0 0 0 0 0.0 4

0 0 0 0 0 0 0 0 0 0T.O*

0 0 0 0 0 0 0 0 0 04 .4 4

0 0 0 0 0«*••

0 0 0 0 0 0 0 0 0 01 .7 4

0 0 0 0 0 0 0 0 0 01 .5 *

0 0 0 0 0 0 0 0 0 0• 9•

0 0 0 0 0 0 0 0 0 0.4 4

0 0 0 0 0 0 0 0 0 0• 4*

0 0 0 0 0 0 0 0 0l . f *

0 0 0 0 0 0 0 0 07*1*

0 0 0 0 0 0 0 0 04.2*

0 0 0 0 0 0 0 0 0• 2*

2 0 0 0 0 0 07 .4 *

0 0 0 0 0 0 0 04 .1 *

0 0 0 0 0 0 01.0*

0 0 0 0 0 0 0 0• 4*

0 0 0 0 0 0 04 .7 *

0 0 0 0 0 0 04.0 *

* •1 40 0 0 1 0 0 0

1 .1 4

1.0*0 0 0 0 0 0

* •4 *0 0 0 0 0 0

22 29 TOM l

0000

0

0

00

01 .0 4

0.* 40.1 40.1*

01. 0*0 0

0*•04

0* •0 40

01 2 .0 4 •1 1 .0 4

04.4*0

000

4 .0 40•0

2 .* 4•1 .0 4

4 c 1 0 0 0 0 0 C 0 0 0 0 0 0 0 0 o o47 41 41 4 I I 11 14 t t 10 s t • 9 1 1 1 1 1 1 1 1• 09 • 00 • Ot .0 • 00 • 00 • 99 •00 • 00 •00 •00 • 00 •00 •00 •00 • 00 • 00 • 00 • 00 .0 0• 19 • 00 • I* •! • 00 • 00 • 99 • 00 .0 0 .0 0 • 00 .0 0 .0 0 • 00 • 00 .0 0 .0 0 .0 0 •00 . • •• 01 •00 •04 .0 • 04 • 01 • 01 •01 .0 1 •01 •01 • 02 • 02 • 01 •01 • 01 •01 • 01 • 01 .•1• I I •21 • 2* •! • I I • 11 • to • 19 • 19 • I t • ! • • 10 .1 1 • I I • u • n •11 • 10 • 10 .11

I 0 411*1•00 «00 *02•00 .40•02 «0t................................... .!• »!•

VINRK ROM 490701 INOIAR PU | *11001 IAN OIVII I 4*0101 HAOOAF NICK 44)101 *• It IINNA TOOTOl FOINT | | ACM I 70I1 1 I N I ROIINSON T1 4 M T UIMNIT l l f l l

FOINT OUCH I T U M I

TURRIT F T . 9 T I I I I 4

IM R T Iru m

N A IM TANRft 711114

I M I T |790901

OCONII t790714

INOIAR F T . I

TW K C t FT* 4 T 90407

FR A IR tt I S . Im mItO H i m mKlVAURH

T 40401 FORT C liN O III

744410 t Hill It* I 740*01

OCONII i740404

MON I7*4417

OCONII »741114

ARKANSAS I741114

F IA IR It I S , t 741111

4 AN CMC SICO 999417

C U V . C U M | 790901

COON i790017

N t U S K N t 1 791114

TROJAN740910

IHOIAR F T . 9 740IS0

M A V C I V A i, I 7 4 IM 1

S T, U C I I I 741111

C R T I T l l RIV I 770111

C A iV , C i lF F 1770401

S A IIN |770410

0 4 V IS -M I M I 771111

F A R IIT 1771101

NORTH ANNA 1 740404

COO* I700701) mu is* i701190

AMAHSAS I000914

NORTH M M t 441114

SI4U0TAM I414701

FA 4 1 IT t010790

SALIH f • 1101) hcom ri totitoiIIOMOTAN I

010401IT* U C H I

rem ntnfsFIANT V IA lt MANinCNN NfAN CNN ttO MV

tt I 40 4

• 40 •! 1.19 ,4

• M *4 1*19 1*4

4IACT0R 14 11

TIARSII 19 14 17 10 14 10 I I 11

4 0 0 0 0

4 0 0 01*4*

4 0 0 0 4

4 0 0 0 0

4 0 0 0 04*04

1 0 0 0 4• 44

0 1 1 04*44

0 0 0 0•44

0 0 09,04

1 0 0•4*

1 1 t• 9*

0 0 0*14

1 1• a *

1 e9*4*

0 04 *44

1 C9*44

0 0•9 *

0 0,0 4

04.0*

011*0*0ll*OF

07.0*04*4*

%f*09*940• 9*0• 4*0,4*

14 7 749 41 44

•94 *19 *111,14 .90 *49

•44 *14 *941*07 *40 *41

1091

,14 *40 • 14 . I f

It4 • 10

•49• I t• M

9 19 *10

.90 • I t .00

t19

• 44• 70• St

1II• 17• 94 .11• 74

I0• 19 •99• I I• 71

09•04 144 • 91 71

09

•40•40• II• 77

09

•00•44• 91• 77

09

•40•40• SO• 77

0 01 I•00 *00

•00 .04• 10 .94•77 ,7V

0I• 00 • 40 .10.77••••■"••••••••••••••••••••••••••••■is

0 0I I00 ,Of

44 *00 *4490 ,10 *907A ,74 .74

0 t 0 410*

LZ-a

*«*ll 'lCM

*0* t t * f t * •I* *•• t l * i f f t* 11*I f •C* f t * •I* I I * •I* •1* I t * H *• f 00* 00* tt * H * tt* O f tt* •0*00* t l * O f I t * 00* 00* t t * I f 00*• 1 1 1 1 1 1 C t• 0 0 0 0 0 t I I

i f*f *•* •I* H' l l 't M*n* ii* t i i i t

“ * .................................................. A10 111 HA)«•w*•I*II♦

I* II * I* * * • 01*1I* I f f* I I * I I *I* 1** 1* 14* 11*1•• *1* ♦ * O f fl*

I f • t* * f* I**1 1 11 1 *1 11

•t*0•t*oQ

•0*10

•0*0•fi*••'I0•*•*0•♦•J9• 1*1t

0I9

3

•0*00

•O'0 0 I•6**0 t Q•**0 0 0 0•0**0 0 0 0•o*tt0 0 0 0 0 0#0*110 0 0 0 0 1•0*1

0 I 00 0 0 0 0 0

M O J tl tt If 01 * ! • ! II f l ( I *1 I t 21 T lt«m ioi»i

•»**0 0 1 0

•0*10 I 0 0 0 0

•1*10 1 0 0 3 1

•1**0

«0*60 0 0 0 0 0

•1*60 0 1 0 0 0

•*0 0 o I 0 0

•0 10 I * > 0 c

• I *0 0 0 1 0 0

•* 10 I 0 0 0 0

• f0 0 0 0 0 0 0

• I* *0 0 0 0 0 0 0

« f 10 0 2 0 0 0 1

• f t0 0 0 0 0 0 0

*¥•0 0 9 0 0 0 0 0

•**0 0 0 0 Q 0 0 0

* ( •0 1 0 0 0 0 0

• f l0 0 0 1 1 1 0 0

•1*10 t 0 0 0 0 0 1

•I**0 0 0 0

• * • *0 0 1 0 0 0 0 0

•O HI Q X 0 0 0 0 0

0 1 0 2 1 2 0

1 0 0 0 0 0 t

0 t 0 I 2 1 1 0

1 1 0 o t 0 2 0

0 0 0 0 0 0 0

X 0 0 0 0 0 0

0 0 0 0 1 0 0

i 1 0 0 0 0 0

•I**1

•1*1I 0

•1*1t 0

«♦ *!0 0 0

•t*f0 0 0

•I**0 1 1

0 0 0

0 0 0•***

0

W IN NA3 *10 O il

NVlN l i t 14 1NT14

U N lA t 1VAQA

I I IM 1 *M 10*010I NfAOAOIt

lO t l l li i i m *3h

CIOIIOI NITVI

0 U 0 1 II A H lf 4

lOiOlOI NfAOOOlf

*U IO * t TNNf HA VON

OtCMOt S U N TIIT

OIM OI t * tl 11IN C

tO iO llI MOO)

*0«00iI VNM Hi NONm m

1 411IfJ I t l l l lI H S H -S IA T O Of*01A

I N l U t10*011t 41113 *AVn 111011C A l l 1VASAI3 l t t l * i

1 1IW 1 *11 1001*1I *1TA H A T H OCIO*{

I *14 NT10NI 02( 0*1

NVf0*1w i f i

2 1N3U11IN 1210(11 *003

•0(0(11 iU Xt ’ M O 11*061

031S 3H3NTI UltW2 *11 II I t TI4 6121*11 SfUnif *UI*A

f JJN030 1U0*12 NOII

*060*1t )»M030

2060*1 i *si n iN t

02*0*1 NftOHH) 1*04

T090*linnimx1CIH1I NOI I

* U l t lI *CI IU IV I4 106011

* * u m i n i (010(1 t *14 XT10N1 (11011

I I3N030 lOCOCl

I AIMIft•22X21 UINTA 9HIVM 222121

I AIMS*11111I *14 41*101

lo o mt M3V1I 1NI04 H t l U

S IIT S IH 4 10*011 NOSNIIOI • H

122X011 H3TU 1NI04 101001 TMNI* *1 *1 10101*M31N 4T00TH

roioi*I 114310 MTS

100U *I *14 ITIONI

10101*IRON 11INTA

sesneo|eo|ueipeui 8n0 euB||8 0 8|Uj-Aj|||qB»BU| mo|j JBis/wpsej :zZ AjoBbwq UM d EZQ ®WBi

VANKII KMC 0410 TO I

IW U k f t . l 99M 99I

IAN OHOMt I 0410101

MA90AP NICK 0019101

K . I . ItNNA 0T99T9I

lO IN t N IC K 1 0n t t t i

M 9 999HH0NT19MT

PH. ItA M l 0T l l t l l

I0INT N IC K t 0TttOOl

tUKRtV M . t 0mn*twin 1 0m mM IN I TANMC 0

T t lttOSUMY t 0

T 10991OCONII I 0

n o n *INDIAN It* t 0

T 10909TUKKCV M . * 0

11040?M m i i it* i 9m mIION 1 0

T t l t t lKINAUNttT49491i o i t c h h o u nH9IMt K i l l I t . 1 0

T4090t 4*1*OCONCI t

T49404(ION t

74091?OCONCI >m mAKRANSAS 1 0

M i n tM I I M I I I . t 0m m9ANCMC ItCO 0

m « TC U V . Cl I I I 1 0

79999$COON 1

T909ITN tU SIfiN i t 9

T t i t uTI04AN

T49M9*ND|AN IT* I 0

T 90010AfAVff V A l. 1 0

T9190II T . IM CH | 0m » iC tT tTA l 919 t 0

T T9 t i tCUV* d t t l t 0

?T9491S H IN 1

TT94S99 A V I I - K t t l I 9

T T t l l lI M I I V 1m mNODTN MNA 1 0

T IM M 4COOK t

T99T91 4t N l l l I t , t

T O ltM 94AMANSAt t

999W4 •

191 t l* •t l9 M f W I 0

m m 4*94f A f t i lf i 9

9I9TI9 t*|e9 H IN t

I l l O l t 1*9*NC 9U III I

I I I H I 1*94II9 M 1 M »

919991 T •II* l I K t l t

919900 4 9*

t o t a i i v n n 9 9 1PIANT H A 9 I A 4 41 41 49 tMAN • 1 • 1 •14 .99 •91 *9t l i I I I .49 •4 • II *99 •19 *tCNN M M • I • 1 •14 « t l •99 *9CNN t t l N V •49 •4 •41 ,49 •IT .1

MAC 100

0

0

000000

I0

I0

0

0

0

0

0

07*0*

0 9 0 Q

91.94

9 0 0 011.9*

0 0 0 0I I . 0*

0 04.04

0 0• 44

04.9*

0.0*

I T I I I* <0 t l t l t t TOT

04.0*

0I.?*M*0• 9*0,M0

t t t • 01

. I T

I ID

• • t • I t

tt tiM

.0? • t l

III

• II » t t .0?

C 0I t •

•0C i l l•91 .«0. C l *9T

• tt « t t « n

o t • 00 •99 •IT • ti

0 e1 t •00 '00.00• 9T .0?• U « t l

0 I •00 •09 •97 • t l

9 C 9 0 9 11 1 1 1 1 I

•99 • 99 • 90 • 00 •90 • 00• 99 • 99 .90 .99 •90 • 99•9T •9T • 91 •91 •91 • 91• tl • t l • t l • tt •14 • 14

1 t t

INDIAN P T , 1 04*1001

S M 0NCPRE i 0990101

HA00AP NICK 0990101

ft. 1 . (INNA 0TOOTOl

POINT IIACH 1 0T o w n

N 9 ftOIINSON 0T1 0I0 T

m i s i M t 0711*11

POINT IIACM I 0TtlO O l

TURRtT P T , 1 07*1*14

lUftftV 1 07*1***

M I N I TANK IE 0T t l t t O

SWAY t 0T 10101

OCONIC 1 0710715

1 NO IAN P I , t 0T 10905

TURRIT P T , 4 0710407

P ftM ftlt I S . 1 0T l l t U

I ION I 0T l l t l l

KlVAURff 0740001

P M T CAiNOUN 0740**0

1 N l i l IS* 1 074040*

o e o N ii t 0740*04

I ION 1 0740*17

OCONCI 1 0741*1*

ARKANSAS 1741*10

P R AIR II IS . t 0741**1

RANCNC SICO 0*5041?

CAiV* C U F F 1 0790509

COOK 1 07901*7

N IliS tC N I t 0791*2*

TftOJAft 07*09*0

INDIAN P T , 1 07*0119

OKAVCt V A l. 1 07*1001

S T, U C 1 I 1 0741**1

cftvsm ftiv i 0T TO 111

C A IV , C4.IPF t 0770401

5 H .IN 1 0770*10

0 A V II-9 IS S I 1 0771111

P A II IT 1 0771*01

NORTH ANNA 1 0790*0*

COOK t 9TOOTOl

1 N H I I S , t791*10 t 94

APR AN IAS t 099011*

NORTH INNA t 0901114

SI9U0TAH I 9910T0I *•9*

P A ftllT t 9I10T1O 9*1*

S A IIN t 0911911 M l

NC9UIRI 1 9911191 1,9*

II9 U 0 T IH t919901 T 9*

I T , U C I I t990999 4 ••

fO TA l IV IN T I 9P U N T T A l l 4 * 4*M AN • Ot •1 • 09IT 9 11% • 1 • 1 • 90CUN N IM •91 •9 •91CUN IT 9 HV • 1 • 1 •99

m o c ft m is 10 11 i t | I T I t W to t 1 t t i t t o t a i

0 01 0*

0 0 0

0 0 0

0 0 0*.0*

0 0 0• 4*

0 09 9*

0 00*

0 01,0*

0 0.*♦

0 0. !•

c 0•I*

oit'O*011,0*

0• a *o5.4*04.0*0>•0*00

• 411.1 N ,9

C ( I I « 0 1 ( 0 0 • • ( I 0 I • 0 I41 40 t l I I 10 t t t l || I | | | | | I l | | |•M ,99 .01 ,99 « N .09 , N ,|| ,M .«• ,M ,M i H .M *99 .09 ,99 *99 .*• . . .•91 *11 *19 « | T . M .1 4 .00 .00 *01 . M , N .00 .0 0 . N ,09 .00 .11 .1 0 .00

- *99 .91 .91 .91 .91 .91 .91 .91 *91 *91 .91 .01 .91 *91 .91 .91 .91 .91 *91•99 .91 «9t . « «19 *19 iM .19 .11 .19 *19 *19 *19 .19 .19 .19 .19 ,19 .19 «I9 ,19

OtACTOO f f M t10 11 I t 11 14 I t 10 IT 10 14 10 t l 12 I I TO TAl

0 0 0 0 0 0 0 0 0 0 0 4 0 0 00.04

0 0 0 0U 0 4

t

0 0 0 0 0 0 011.0*

0

0 0 0 0 0 0 011*04

t

f 0 0 0 00*0*

t

0 c 0 0 0.4 *

1

0 0 0 00 .0 *

0

0 1 0 0 • 0*

t

0 0 01*04

1

0 0 0•0 *

0

0 0 0•1*

0

0 0 0•1*

1

I 0oa* t

0 0 1

0 14 .0 4 t

0 01 .0 * 0

0 c.1 * 1

0 0 0

V M H I COM•toiti

(H IM M . 1inwi tan o i»m x

*•0101 MMOAO NICK

IM W I , I* IIMI

w 701POINT N U N i

701f ( I H I I0IINS0M

710107 M U t m t

T i l M l POINT 01 K M I

m ootru t h i t o n i

m mWONT k

711 f i t NAINC TANNIC

T t l t t liwir i>10101

OCONtf I710710

I0 0 IA 0 M * 2

T W K t t O f . 4 7M 007

P R A IA || I f * IT I I 2 U

IIO N 1r u m

RlVAVNCIT M M I

PONT CUMMJN 7400I0

) M i l l I t . I T « M »

OCONCI tIIO N t

740017 OCONtl IT4im AM ANlAf X

741110POAtOII I t . I

m mft AN CMC fIC O

T0041Tc a i v . a m i

TO O M ICOOK I

TtO O IT N tliS T O N l *

T u r nTOMAN

700*10i n o ia o o n «

tfAvio vai. t 701001 IT. IKK 1 741111 COTIT Al 0|V t 7 TO 111 cAiv. a Iff f 770401IAIIN |

770010 OAVIt-MttC I 771 111 PAOIIT I771 fOl N001H MNA I 700000COOK «7001011 NUI tt* I 701110 AOKANIAt I000Ito N00TN MNA I

ooih*IIOUOTM 1010701 fAOllT «OlOTtOtttfft f

O l lO ltNCftffOf I0UV01 IIOUOTM t010001 tt* inch i

0>

07.0P00.4*

01*7*0 1*9* 0• I* 0

o»o*0*•0*

o.t*0•*»

TOTAl IVlNTt 10 t 0 0 iK ANT Vf M l 40 41 41 41 40NO AN • M • 17 • 14 a t •001T0 » « t •1ft •00 •tt •to •t«COM MOM •to • it •11 •ti •10CM SVI N V .70 •04 .17 •tt •to

— see M m m i m u m **— ee>e»««e— ee> —

II I.00

.fO• 17• 47

Ito•to

»tt.17

1ft.04•to• 10

1 1 0 010 19 o t•IT ,01 .00 .00• tl #f0 #00 #00

.1 4 . I t . I t

.4 0 .4 4 .4% «%4

0 0 0t i t .0 0 . M .00•00 .00 .00•it . i t a t a t*41 ,41 .4 1 ,4 1

00 410.

••••••••••••••••••••••••••••*••••••••••••••<i t a t

•41 .4%

•00 .00•It *14 •41 *4|

•14 .14 •4| .41

rM K CC ROW #10701

INDIAN PT* 1 i t i o o i

SAN 0 II Of IK I I I0 I0 1

HAOOAP NICK •10111

A . I . IIM IA 700701

POINT MACH 1 701111

N I RQIINION 711107

P U t S A I f tT i i n i

POINf MACH 1 711001

T W « n P7« » 771114

IURR? 17NI» HAIM n w ( t

711721SURRV 7

710901 OCONK I

790719 IH01AN M , t

790109 TURRET P T. 4

710107 PRAtRIf 19* 1

7117162 ION 1

791791RKHAUNII

740101 PORT C AC NOUN

740670 9 N i l I IS* 1

740601 OCONCI 7

740009I ION 1

740617 OCONCI 9

741114 ARRANSAS 1

741116 PRAIRIC I S . 7

741171 RANCHC SCCO

790417 C A iV . C U M 1

790901COOK I

790117 RtUSTCMC 1

79111kTROJAN

760910 INOIAR P T . 9

760110 IfAVCR m . 1

761001 S T. U C I I 1

761111 CRTS7A1 RIV 9

770919 C A iV . CUPP 1

770401S A ilN I

770610 I A V IS -K S S I I

771111 P A R U f 1

771701 NOITM MNA 1

711606COOK 1

710701 1 N liC I S , 1

761190 ARKANSAS 1

100116 NORTH MNA I

901114 S I6U 0 TM 1

910701 f A l i l f I

910790S H I N t

911011 NC6UIRI k

l l l f l l 1 I6U 07M I

•10611 S t . I K K 1

TO TA l W IN f t P U N T f| A l t RIAN STO 01*CUR H IM(UN 1TB N T• • • • • • ( • • • • ( • • • • M M

16

00 00 00 00 00 00000004,1*0000000

«00eoc

0(00te6• •1*0

9.6*C4 . IP0l . | 400

0100100

00

9.0*0.6*0• I*0• 1*

1II 14 I

0

01 .0 *

0

0 0

0 0

0 06 .0 6

0

16 .0 6

0 • 06

0.4 4

19 1* 17 I I I t 10 11 11 I I 70tA i

06*06

011*06

011.06

1 1 4 0 1 0 1 0 B 1 C t 0 046 7 41 41 4 1 90 99 I f 19 IB I t I 9 1

• I t . 4 .0 6 .0 0 • I S • 00 .1 1 • 00 .0 1 • 06 .1 1 • I I • 10 • I I• 14 • f .1 7 .1 1 .1 6 .0 0 • 17 •0 0 •0 1 •14 • I I •4 0 • 00 •00•67 I .0 9 .1 4 •0 4 .0 9 .0 1 • 09 • I I • 19 • IS •IB • I I • I I• 14 • 9 .1 1 .7 9 • t l • I I • I I • 10 • 16 • 16 • 16 .1 0 .1 0 •10

0 9

•00 .06 • 61 • 10 •01

•to

I1•10.00•01• t i

I 0 I 1 00 .00.09•to

>0 .0• IS .1to .19•II********************■***••••••••••*••••••••■•••■••••■••■•••••■•••••••••••••••••••••••••■•••••••••■•••

I I0 4 I I . I .66 .0 • 00

• 09• II••••••••((••

i M U i w m i i i i i i a a i i i mAMIS I

M i l l ROM 0♦MT01

INOtAR 9U 1 0ft C l 991

I M 000001 1 0ftft9l9l

M 0 9 M NCCR 0000m

I . C. I I M I 0T00701

001HT MACH | 0T 0 IM I

M I 0011 MOM 0710107

M L t l lt C S 0___ . T l l t l t001WT 01 ACM 1 0

711902TUOMV M . I 0

T i m s1009V I 0

T l U l tM IN I TANRfC *

m msotKV I e

TM991OCOHOI 1 0

r w n itNOIAN M , | 0

719999TOOROT 0 7 , 4 0

7199970RMRI9 I I , I 9

7 llf| fttION | 1

711111K f l i M K 9

749491700T CUNOUN 9

7*0*101 R l l t C l , t 9

740991OCOMI 1 9

749900I ION | 9

740917OCONCf 1 0

7 4 in ftARK All |AS I 9

741019M A IR ft IS* { 0

74IM 1O0OCHQ IIC O 0

n o n *c m v . a t M i 0

700999COOK 1 o

709907H IU IT 0 N I | 0

791lift100400 9

T 49*19I0OC0O 0 T , f 9

7*991911*911 V * l» I 9

7*100117, 10C1C | 9

7*1011C07IT A t 019 1 9

779t i lC A iV , C I I0 I « 9

779491SM IR I

779*19O A T II -O O IIt 1 0

7 7 I U It A O llT 1 0

771191009 TM M M I 0

79090ftCOOR t 0

700T0I1 O t l l t l , t

791199 94ARCAMAI 0 9

000110000TO M M | 9

001114II0UOTAM 1 9

IIO TO I0001IT 1 9

01071010110 I 9

0 IIO IJ0C0U1II 1 9

011101I00U0TW 1 9

010*01 7,0*17* IfrC II t

110000 •

T t T * i n n n 4 40 U O T T IM S 40 41M 0N • 00 •09*T0 I I I • M • 4*C M H IM •00 .01C M I I I M V •M •40

MAC TOO VIM S * 10 H I t I I

*»0/#*♦ft!•««

_u w ^ » I * 19 tft t l I t t )

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 0

9 9

0 0

0 0

0 0

0 0

1 0

0 0

0 0

9 0

0 00 .9 «

0 07.9*

0 94.14

0 9.2*

0

0

0

0

00.7s

09 .0 S

0*.!•

0l , » s

01.0*

0 I.0» 0

09*0S

e1.0*0

•1*0•1*

00 • 0«

00e

4 .0 *0• 4*

0II.O*0U.OS

0.1*c

9.*S04.0S

aM»0• 9*0•OS

T.0S0*•*♦

IiT*01.)*0.9*0

• 4S

IIWIINMIINHMMNI

0 I • t 1 0 9 0 0 0 0 041 4ft 9ft )t 19 19 I I Bt 0 I 9 t

*99 *91 *99 ,09 <19 *09 »H .01 .09 .99 .99 .99.99 .11 .99 .14 , t l .99 .99 .99 *99 .99 .99 .99.99 *01 .04 *04 .09 *04 .04 . 04 .04 *04 vft4 «04•19 .M «tft . N .14 ,|ft .11 .19 «|4 .14 ,«4 .14

9I.09

.04 .9 4 .9 4 ,9 4

.14 ,1 4 .I S , | S

0 0 01 1 0 4I0

• 00 •00 • 00• 00 •00 • 00• 04 •04 ,04• t4 ,14 *14

to u t

H»D*» Mti®1. . . . .SK*mat" • »«»t«!oNl

»ot»t ilUi'j rtm ttr J ffr .«,« /* “ “ . . . » uK!1

im h i K o m i i

««*Ui Jt?7}1w m r T T' “ Mi/ mI 'iIIO N ,

M . - W . " ' " 1

*0*7 CiImouS*

M O . ,

.cDWI r " r

m u i• WCHC >fC0......... 750*1ft u v . C l i f f I

c * « ,

-.n.wItT*

» u . w r

« 7 . u c ’ r r 1

«MV. cm?*1'

r nn-0 .TH J B TCOBft I

THTtl t M i l I f . t

T I I M O A M A H flt t

I M i t tHOITN M M I

oouit tttvofm tOIOYOI

M R i l f |ittnoI M I H I

I I I O i l M CtUtM I

0 I U O I fttUO VM I t

•<•*01 S T. i U I I t

O H M l

fO TM IVff«r> HIM HIM M IN IfO DIV CUM M|M cum m M v

• Ok .0• to . | |• Ok .0• to • !

M K H K t I M I 10 II It I:000000I

0•0000000000

T .Q I

1 . 0

e•010€0c00000

1 .1*0» .M0k .t*0I .M0

•9kC•0*

0 • l«0• I*

I t I f I t I T &• I t t0 t l t t t l V O tU

0t*0*

0»0

t .0 *0•k*

0II.t* 0I I . f *

0 t 0 0

0 0 0 0) . ! »

0 0 0 0• 9*

0 © 1 0• k*

0 0 0 0• k*

0 1 0

1 0 0f ••*

0 0 04.1*

0 0 0• t*

0 0? .t*

0 0k . l*

0 01.0*

0 0.**

0•«?•

0k.O*

4k . l *

0l . l *

01*0*

k .e *0

k.O*

!•k

9

ri .o *

0I• 00

0I•00

t 4 t | t c t l o o o tI I t t 19 10 I t | 9 I | > k I

•ot a t « i t .0 0 . 0 1 . 0 0 .90 . n .0 0 «oo .oo , 0 0. t t .k k .1 9 . f k . I t .0 0 * 00 . 90 . 0 0 . 00 . 0 0 .0 0•JJ »ft .Ot .00 *00 .00 .00 .00 .00 .00 «|9 ,99 ,99 ,99 '• 10 * l k « l t . I t • ! ! a l l . 11 . 11 a l l . 11 . 11 , J 1 . 11 . 11 .11 #| |

>•••■•••••••••••■*»•••••••••••••••••••*•••••*«••••##•••«•••■••■••••••••••••«»•••••••■••••••••

•<*

1 1 •

T M K t l to m 0 ct10T01

IN O Iift f t . 1 1 0*11061

SIN O K tf lt 1 0 0t f f l O I

MAOOAP N KR 0 0*•0101

I . f . tlNNA 0 tT f t W I

JO INT IIACH I 0 0T f l t t l

M | lOIIMIQN 0 0T i t If?

P A ilf AM 1 0 tT H I t l

fO IN I IIACH t 0 1f f l f f l

t u u t f M . 1 t t711114

SIMM 0 0T I1 I2 I

NAINC VANRtC 0 0T t l t t l

S U IIT 0 07)0901

OCONKI 1 0 0T i o m

INflAM f t . t 0 0710W5

lu t R iv o r . * e 071010?

f l i f t I I I f . I 0 f7)111*

I ION 1 0 0m m

KftfAUMt e 0740*01

PO»T CKMOUM 0 07*0110

i m i l t s . i 0 fT4090I

OCONII t 0 0740*0*

IIO N I 1 t740*17

OCONf f 1 1 A741111

AM ANtAt 1 0 tr u m

M A 1 I I I I t , t 0 t741111

RANCNt SCCO 1 tT f t * t ^

CAiV* U I M 1 0 0M O JO I

COOK 1 I 0750*17

N li lt lC M I I 1 0T i l I I I

TtOJAN 0 0T ftf tO

INOIAA P U I 0 0T t f l t O

I I A V t l V A I, I I tT IIO O I

It* L U I I I 1 0h u h

C I W I l I I V 1 t tm n t

c a i v * c i i m i 1 fTTt*O I

S H IN t tT T H I I

t l V t t « I I M I 1 t tT T I I I1

I M I I T 1 0 fJ T l t f l

ROtfM MNA | a tT lt M *

( H I 1 t tT t t T t l

1 N i l ! I f . f tT t l l t O t . f *

AAR AN I I I 1 t ff t f l t *

NM TH MNA t t tt t l l l *

tlfV U V M 1 t tt IO T tt i . t *

fM L f V 1 tI l f T M f a l l

IM IN | 0t l l t l t 3 . M

RCItflU 1 t 6l l l t t l l . M

tft lfO V M t tI f t t t t •

t r . i u c i i i ttfU ttt 4.1*

v i m iv iN T t 1 If U R f If Aft At AtR iff • ft . t lI f f I t* • t t . • I tCUN R IM •f% . •t*CUH 111 N V •If • • 14

M ACK* VIA fl ■ 10 I I I t I I 14 1* I* I T I I IQ t l t t t t TOT

t t 0 0 0

0 0 0 01 .0 *

0 c e 0 0

0 c 0 0 0

0 t 0 0 01 .0 *

0 c 0 0 0• * *

0 0 0 0* . * •

0 0 0 0• 0*

0 0 01,0*

0 0 0•4*

0 0 0• I*

0 e 0• 1*

0 0l . l *

0 15.4*

0 04.0*

0 0l . l *

0 f• 9*

0 0•t*

t7,0*

04.4*

*.0*0II.0*0

u.o*

II.T*•)•!»0

# » •e. * •e• M

t 41 .11 • II

•t4 .1*

II. M•tt*14•II

tf,11 • t t.1*It

>1 • t t . N .11

f t

I 19 •t4 • t t >•1 . t t

t t•M•tf. I t• If

CII . I t . f t .It • I f

tI

• t t•ft•tt. I t

t t tI t t

•tt . H . f t• t f . f t . f t•tt . f t . f t•It . I t . I t

tI

•tt•ft•ttIt ft .It .

I t « l t .• ■ • • • • ■ • • • • I

t ft I•tt ' f t•ft . f t•tt . t t

I t . I f > •• • • • • •<

tt *11.11

• t t • t t

Sf-CI

or••*

*ii« t e

n* i rI f tl* M* tl* H* It* It* II* I f 41* H * H 1 M*10* M* M* M*I I ( t O i l !

tl*II*N*M*(I

• I * t l * ♦t* I** H* II*It* It*tt* II*tt* tt*t iit i

t l1 II* 91*It* tt* tt*tt* tt* tl* ft* tt* ft* tt* II II tl It t i l l

II*tt*M*

*1" II* t ltt* It* i tII* II* tl* t tII* tt* t l* t tII 1% I* I** I * t

It*II*It*

♦*•0«o*c0•1'*0•**4000• 0000000

• t * 9 I I 0 •0*lt0 0

in ii ii ii ti ii ti tt «i ii

•O'0

•I*0

♦ t*l0

•A**0

•♦*1)

• l ' l0

♦I*0 9

•I*0 0

• f0 0

•0*10 0

•0*0 0 1

•1**0 0 0

•**0 0 0 )

♦0**0 t 0 9

0 t 0 0

0 t 0 9•0*1

0 0 9

0 0 0 9

ti ii ti IITU «01)V1

AM III Ml) wit M) lit III ttflM((fitUNlAl mo*

*11tMtlli im i IHtllf * 4 0 4 11 1

I M I l fI HIM)* lltlll* *liri tu tuI U IlH 10461$r%ntotI »M» M4MHtr t t lI fftNVMV4*11114 I *11 IIIn f 114114 I *00)tttt«4.I.!"" *u*0,»1tlU41 411*9 4I9II441 Jim^siAft tit044

i«0*t449 HID *A>rj 111044

i lo in *iiItO 194U S ! ,M’*' A U iw m«*ro«40111(4 i iW itniK 4*»tli t *00)•Oft<4t m i d H*tti0)15 9N)Hf|1111*4* **I I I I I I Km mI tVSMVMf «19I*4I imqm4110*4 I non1*1*4I IMOIO lttt*4 I **l H IM | flit0*4W0N1V) iVOilotttt

0191(4 * nU 1 *11 illlVM 40»tti* *u u m i1010(4 I *44 MVIOni lUOti1 11*0)0 1010(4I AIM!•11114 ilMtttt IMITM 111194i A«mi*19194, s . ; i r i M - ,>| « « . L,ta<

IMUIW4 401Q l iminus* i N t t n o i> n » h i i h o 4 IMMt

• W ilt >4 •, tein*, a s m mviovn 101000i im u m100119

1 *14 O IO N It u o i o Mat ii.m

jeie/w Bu|»e|noj|o jo ssoi :Q£ Ajo Bojbo y/v\d le q eiqei

9£-a

*1* 41* 11* 41* 11* 11* •I* It* IIto* to* 14* to* H* 10* 10* to* to00* 00* 00* 00* 00* 00* 00* 00* 0000* 00* 00* 00* 00* 00* 00* 00* 0*0 1 1 1 1 1 1 1 10 0 0 0 • • 0 o 0

•I* I t * •I* •I* *1* 01* 41* 41* 01* o r It * *1*to* to* to* to* to* to* to* to* 10* 10* *0* *9*00* 00* td* 00* 00* 00* 00* 00* 00* 00* •I* I I *00* 00* to* 00* 00* 00* 00* 99* 00* 01* 90* 19*1 1 0 f t 01 I I 01 I I 01 9 * 1* 1*• o 9 o 0 0 0 o 0 1 I

• 0*11 o•0*110

*0*00

•1*0

•(*0

•**0

•0*40

•0*0 0

0•»*

0 0♦0**

0 0

0 0

0 0•0

0

0 0

IV IO i I t f t t t Ot »1 I T 41 «| , t *1

'••••••••••••••••••••••••■■••••••••■•••■•••••a*t t

i t i n

AM O il M ) WIN Ml) I l f O il

NVIN I f f * 4NV14

UIIM tf 191

•il• N N t I 11)11 190910i wtmiftIM H O

I IIIAUtf IM H O

I N IW I •14*10

t 411914 104010

I*11100

t VINO N iM Hottooo

I IVlNVW f M i l l *

I M l H I M I t«4M i

I I N )

t VNHV NINON101144i inivi t t t t i i1 I I I M - 1 I A M 01*444

t K I W I10*0141 H I D «A t V ) 111044I A l l t f l t A l ) 1111*4

1 I I M 1 *11 1001041 "IfA 114VII 0100*4

I *14 NV19NI 0140*4

N ffO N l*11144

f I M O i t t t U 410044 1 MOO)00ft 0441 4411) *AtV) 41*044

O H S 9M)ttVN 1111*4f M l I I I I V M 4 t ll* 4

i : « i n v « i v * U 1 * 4

< )IN0)0 41*0*4

I NOII*000*4

I I M O M 1000*4

I *11 H IM I 01*0*4

NflOHIO 4 «Q «1000*4

IIN n V M I111114

I NOI I*111141 M l I I I I V M 404044

* *14 A I I M i 000014 t *44 NVIONI

i U O t 41 IM 0 9 0

100014I 4 « M I

011114 I IM V 4 1NI9N

111114I A lN fll

*11114 I *44 A B IM 1

100114t M H M 4NI94 I I ! 114

It O f SI1V4 401014

M I N U S ! 0 N l i t 104t N 9 V II 4NI04 104004

VNNIO *1 *1 10100*D I N H f lM N toioo*

1 U M N O N fl 1001*0 1 *44 NV19NI

104010 IN O i IINNVA

t iN V K>•••••••••M •••••

Bu||ooo weuoduioo jo ssoi : i e AjoBeiBQ y/vy Z£-a *|qei

stx

Lt'Q

i\* I

)••••10* 10'' 10* 10* 10* 10* 10* 10* 10'* 40* 19* (9* 40*00* 00'' 00* 10* 10* 10* 10* 10* 10*1 10* 19* 10* 10*•0* 00'* 00* 00* 00* 00* 00* 00* •O'’ 00* 00* 00* 00*00* 00'• 00* 00* 00* 00* 00* 09* OO41 00* 00* 00* 00*1 1 1 1 1 1 ( 1 ( 1 9 91 (10 0 0 0 0 0 9 0 o 0 o 0 0

•o*

ft!0

00* 00* 01* *9* •0* 1* •10* 10* 10* to* 10* 0* •00* 00* 91* OO* 00* 0* *00* 00* 10* 09* 00* 0* •( ( 91 ot t« 19 90 0 1 0 0

••M•0*9i

0•9 *

•I

• OM0

* I M0♦ l ‘ »0•0*0

0•1*0

0••*

0 0•OM

0 0• 1*9

0 0•♦*4

0 0• 9

0 0•9 •

c 0•0 1

0 04 •

0 0••*

0 0 0

0 0 0•i*

0 0 0•9*1

0 0 0t lM

0 0 0

•0*9

♦(*

••*9 0 9 0

•0*90 0 0 0

00*910 0 0 0 0 0

♦0*910 0 0 0 » 0

♦ • • 90

•o*i0

0

0

0

0

0

ft0

9

0

0

0

0

a n s i t mi mm m> M ( t i l

MOW f i t I t iN V U

(4 M A I 19101

9 11)11 *11im it9 W l M l f t

199119 I( IO IU

9 119*90(1010

9 4 I19 V I 101111

1 M I O M I t •19199

9 VHHV MltON •91909

9 f f l H t n * 0(9191

9 M l 111* I 101091

I 900)•09999 t ««W Miaou

1 M U I1 411914Win

i i s i M - u m 019941

I H I1V I1010449 4 9 1 V * « « } 1 11044I 419 I f 11413 119194

1 11)11 'IS 1001911 *1»A 9 1A9I9 019094

t *14 1*10*1 091091

NVrQOI991U 4

I IIU1S11IM 199091

1 *0039 0< 0 (i1 U I D * A lf ) 11*044

0 ) I S 0H)MV9 1991VI9 M l 1191999• 19191

« criNvittv• 19194t moio110091

9 MOJI•00094

9 11*0)0 909091

i m i n m i099094

*10*10 1909 109091

lltiftVAl*1(9111

I *01I9 (9 1 (1t M l I l i l V M l lOOOtl

9 *10 AlVtfU 909014

9 *19 1V1M 1 0140(1

1 19*0)0 1 9(0 (4

9 A9VM919191

I IM V 4 iM Iftf 999194

I AiVflt•19191

i * i i a m w u1001919 M )f 19 1*104 1(9114

I M K l l f l10(014

N O lN IIO l I H 1991011 MSI 10 IK 104 101001

9**11 *9 *9 101099

M l * 4V00VH 101(199

I 194310 MVl 100119

1 *14 9VI0MI 101019

MOO I9NNVA

luaisAs jb ib /v \ e o |A i0s *o m o t \ z t A jo B b ib q u M d £ £ - q o i q e i

Y M I I I ROM 410T01

I NOUN M . | t t lO O l

SMI O l i t f l l I *10101

N M t H NIC* *10101 R . t . I I M U

TOO101 001 NT I I IC N 1

TO IttI N 0 ROItNtON

T l t l O lm i t i N i

n u l lPOINT K t ( N t

rnooiY W M Y M . 1 n unI W I Y i

T t l t t t M I N I U N M I

T t l t t lSWBV I

T i t 901 OCQNII 1

T io n t IMtM M. I

TMOOO TURRIT M . t

T M to r M M I1 I IS. I

m mI ION I

m mM M U N fl

TtO tO I 10RT CM.NOUN

T 4 M I0i m u i t . i

TtOOOt O COM I I

TtOtOtI ION I

f t O f l lOCONf I |Min* m t N i t t i

T l l t l l M A I I t t H « Im m RMCNO 1 1 (0

T t t t t T CM.V. C l.I f f I

TOO 060COOK 1

TtO O IT N Ilk STC N I t

T 91It *T N 4 IK

T I IM O l « U k f t . I

T tO tIO lltUI VII. 1 T0100I

ST* U t i l I T t l t t l

C t T I T i t I f f >TTO lt I

C U T . A I M t TT0401

I U I J I 1TTO tIO 04111*01111 I T T t l t l

M U M ITT II0 1

NOOTN MR* I TOtM O

COOR IT00T0I

t K U I ||v tm mM M I M I

oootttNORTN « M t

00ft t i t I I IM t M I010T01 9M1IT I010*10IR O N |

OltOII MOtfMI I

H i n tI I I M t l R I

OlOtOlI T . 1U CII I ORTO TH t l l N I lRIANT T|t> l tOMAN t .M I,I TO O il I . N I.(Ml » I M t . H I.(U l t i l O il I .M ||

RUCTOt TC MI 10 II | | | |0 0 0 0 1

0 0 t 01.0*

1 1 0 0 0

0 0 0 t t

0 c 0 0 0• *©•

0 0 0 1 0

t 1 0 tt*te

0 t 1 0• 04

0 1 01.0*

0 0 0•t*

1 0 0• It

1 0 0a *

0 0

4 1*•*•

t 0t . t t

1 0I.O *

0 0.9*

0 €.0*

14 i t i t i t io i t to t i t t t i n m

011*0*I

I t . o t

0T.O*04.4*

11*T*01.1*0

• 9*0.4 *0• te

IT

IIIII0

I I

I t

T

10104

11t t

11to

t

I I

U

T

9I t

1*IT

I t

ft

I t

T

I t

I0

t l

I

T

l «

II•IT

II91t

I1t

0t

Table D-35. PWR Category 34: Generator trip or generator caused faults

V M K I t o m *10701

INOIAR PT* 1 I t lO O l

U N OMOPKI I M O tO l

NIODiU NICK *10101

R . f . *INHATOOTOl POINT H A CK 1

T N I ! ) M | ROHHSQN

T 1 0 K T M l H t O I S

T U f l l POINT MACH 2

T t lO O l TUNRIT P T . I

SUIIV 1T t l t t t

M I N I TANRCI T t l t t l

s urrv t710901

OCONCE 1rson*

INDIAN P T . t 710*09

TURRCV P T . * 710*07

PRAIRI« I S . Im m

ic o n ir u m

RlNAUPIK?»0*©|

PORI CALHOUN 7*0*20

B MILK I S . 1 7*0t02

OCONII

I ION 27*0*17

OCONCI I7*ltl*ARKANSAS 1

7 U 1 M P R A H II IS* 2

7*1121rancho s ic o

f t O * I f CAIV. CLIPP 1

79O90ICOOR 1

790*27 NIK9T0NC 2 79i mtrojan

7*0910 INOIAR PT. »

7*0*90 HAVER VAL* 1

7*1001tr* ((idi i7*1121

CRVtTAl RIV } 770911

CAiV. C ltP I 2 770*01

SALIH 1770*10

O A V fl-M S SI 1 771121

PARUV I771201 NORTH MNA t 710*0*COOR 2 7*0701 9 NILE It. I 7*1210 ARftANtftS I*0092* NOOTH MNA I •OKI* ttOUOVM Io t o r nPAftlfV t*10790SALIH I*11011 NCtUtftl I*11201 SIOUOVM t•10*01 IT. LLCIt t l»**0«

RKACTOR 10 11

VIARSI t 11 1*

0 1 0 0

t a

o e 0

01.0*

0 0

1 0 0 0 0

0 0 0 0 0

0 1 0 0*.0*

0.*•

19 U I f U 1* to t l I I t t TOT

1 0 0 0 * 0 0 * 0 *.0*0

l t .o e012.0*

0 0 0

0 0 01 .0 *

0 e 0•*♦

1 1 0.1 *

0 1 0.1 *

0 21 .1 *

1 Q1 .* *

0 0« .*♦

2 c) . * •

0 0.9*

1 0*0*

07 .0 *

0* . * •

t.t*0.0*

09.7*01.9*0

• 9* 0• *♦

••2*0

• t*

I t 1* I* « I* It * • * 0 0 * 0*9 *1 *0 9* 99 2* 29 t l I t 9 1 1 1

•It .1* .** *2* .9 * • *1 .2* .** .11 • .* « . 0 0 l . l l .0 0• •79 .7* .*• • *t .* * .** • 92 .7 0 .* * . . 0 0 .0 0 1.19 .0 0• .*• .41 . I t .9 * • t l • 9« . * • .*• .*• . • *7 .** • *7 .**

1*11 l . « t 1 .0 1 •tf .%* • t| •to .* t .** . • *7 .** .*? .* 7

TOTAL IVINff PLANT flatPCAN I .:t* oiv i.CUN HIM I*(MR 91* M l I .. ..................................................................... .......... .

* * • • • * • M l I I I I 1 I * *l*.|* ** .** .*« .0* .*• *0* .**0* .00 .*• .00 .00 .0* .00 ** •** .** .** •** .*7 .*1

*7 .1 1 •** .* * i l l .1 1 .11•■■•••••••••••••■•••••••••••••••••••••••■■••••••••••••••••••••a

z z s ir?W H

«*oo«« iiei01 tot»♦ >• on**TOO>01 'OUT OCtfM | > 0 l t t l

* • >0llNS0N >1090>

'H tK tl l'D I M

m i n i H a i i l 1

, ’ M M ' >10901oeoftt! 1 1

___> M » II W U I M , i

twicit H , 4

. . . N , » « " •» H * Miiurni

_____ >«M1» 0 » t CMHOIM . . ’ t l U t I *111 II. i

ItOWI W O N II 1>«<•«( IO N I

nm , l*tnt

»*m»H m n n . j

N u l l ■ W i « l 1 IC 0»»#«»

a m i

c o o . ,

m m.Mu . a r r

...m jiiCliff | ” 0401

l U l f t |>>0110

• W I l - l t M l 1

. 'a '? 1COO* t >00>01 I M i l I t . I >01100 ittiN Iif t000tt* not Tit M U I

• n i t *ItOVOtIM 1

outot fm n i01v»0IHIP IO ftlO lt

M CO VIIf 1OlltOI 900I*>J* IOtOOOl

tl* I U I I t

>0T*| l»MTfHim n a tOf***>* Oil cw. r* « i ( # ’ »»• *».

I1 C T 0 I Y U M M I t 1

0000C

00000000

l . l *01.4*

c*•**

c9.0*0

.5* c • 0*

t* is i* i> to »o to t i t t t t ioT*

0 0 0 0 0

0 01 .0 *

0 1 0 0 0U .G 4

0 0 0 0 0I t . 04

0 0 0* •0 *

0 0 0• 41

0 04 .1 *

0 0• 0*

01 .0 *

0

0•I*0.1 *

0*•0*

0 • 0«

* 0«l 4*19 *10M * U>10 .10*9 •%>

I t t

• 00 .1 0 • 10 »*0

•••••••••

I10•0*.1* • 19

t 0 0 0 0 0 0 0I t 1 9 I 9 1 1 1

•OC *00 •t •00 • 00 • OO • 00 •00 •00•0C .00 .4 •00 • 00 .00 .00 •00 •00• It • !! •1 • 19 • 19 • 1* • 1* •I* •1*•41 » 4 ) «4 .1 ) ,4 > • 41 .4 t •09 .4 1

•••••••••••••a ••■••••■•••••••••••••••••••a**

O *00 4 l 0 . l t

00 .1*• 19 .19 *19 « U

HMTI

VANSI I I N I OlOTOl

1N0IAR M « Im mIAN O N V II t

I I U O l MMDAH NICK

IHM1 • • I . IIM U

TMH1 OOINT M AIN I

t o i m H | ROtlNSQN

T1IMT 'A llS A M S

7119)1 POINT M A IN 9

791001 TWIRIV M , 1

T91914sum i791999

NAINf TANRII T9199I

I M M 9T1090I

OCONII IT i o m

INDIAN M . 9 T i t 009

VUIMT M . 4 TIOtOT

M A IM C I I . It i i l i e

t ION I711111

KdU U N tf740401

FOOT CM.HOW T40490

i u n i i i * iT40009

OCOHII 9T 40404

(ION I740417

OCONCI IT 4 IH 0

AMANIAS 1741114

M A H IK IS* 9 741991

RANCHO SICO70041T

c a iv * a i f f i 790900

COOK I790097

N IU ITO N I 9791124

IROJAN740990

INOIAM M * | 740010

OCAVf* V i l , I 741001

I T . U C 1 I \ 741991

CRVITAI IIV | 770111

CAIV. A I M 9 770401

I44IN ITIOOIO

O A V IS-M SSl 1 7 7 I I I I

h i n t 1771101

NOR IN ANNA 1 710*04

COOK 9710701

I M i l I I* 9 701910

ARKANSAS 9100190

NORTH ANNA f 001914

I60U0TAM 10J070I

f A l l ! V 9110710

SAIIN 9•nonN CO U U I I

011901 StOUOTAN 9

190001 ST* l i C I I 9

OMOOt

t o t a l r r iN T i H a m t i a r i MANsro oftCUN N IM CUN t l f N V

9*0*0l.0«

ACTOR TIARS I t 19 11

0 0 0 0

0 0 01 .0 *

0 0 0 0

< 0 0 0

c 0 0 00*0 *

c 0 0 0• A*

c 0 00*0 *

0 0 0

e 01*0*

0 0•0 *

6 0*» •

C 0• I *

C0 .1 *

c9 .4 *

04 .4 *

01 .0 *

0. * •0• 0*

I* H 10 | T I t 10 90 91 99 91 f i t .

00*00

019*0*011.0*

*9«*00•90

• • ( • • • H M M I M I N I I I I M *

1 1 1 0 1 1 1 0 0 0 0 0 0 0

ir

0 0 041 41 40 I 1 ) 90 9 10 0 0 1 1 1 1 1 i 1 1 1•09 *09 •09 *0 • 00 • 01 • A *00 * *00 •oo *00 *00 *00 *00 *00 *00 *00 .0 0 *00• It *10 •10 *| • 00 • 10 • t .94 • •to *00 • 00 *00 *00 • 00 .00 •00 .00 *00 «00•04 «04 •00 «o • 01 • 01 • 1 *01 , *01 *01 • 01 *01 *01 • 01 • 01 *01 *01 *01 *01•90 *10 •10 •! • I T • I f • 0 « I 0 * • IT • I T • I T • I T • I T • IT . I T • IT • I T . I T . I T••••••■•••••••••a ••••••••••••a ■•••••••••••••••••»••••••••••*••••••••*•*••••••••••••••

0 I0 410.1

• 01• I T

HANTS

INOIAN M * i 0 0011001

SAN D k t » « l 1 0 0000101

HAOOAN NICK 0 0000101

l « I . IINNA 0 0TOOTOl

90INT MACH | 1 0T O I t t l

N • ROOINSON 0 0T IO M T

PALISADtS 0 0T l l t l l

9QINT MACH | 0 0TtlO O l

T M U T M . > * 0t t l l l A

SURRY 1 0 IT t l t t t

NAINI TANNCI 0 0m t t i

SMART 1 0 07 SO SOI

OCONCI 1 0 0r u n *

INOIAN M * t 0 0710009

r W K T 9 T . A 1 0T U W

M A IN I I IS* 1 0 07 IU 1 A

I ION | 0 0M l l t l

M V A U NII 0 0TAOOOt

fOAT CALHOUN 0 0TAOUO

t M i l IS* 1 0 07*0tQt

OCONff t 0 0TAOOOO

ItON t 0 0fAO O lf

OCONII 1 0 0T A It lA

ARKANSAS 1 1 0f A l t l f

H A 1 I I I IS* t 0 0f A l t t t

RANCHC SICO 0 0t « 0 AIT

CALV* c l i m 1 0 0T90900

COON 1 1 1TIO O fT

NILiSTCNC » t 07*1 t l A

t r o ja n 0 0I M U O

INOIAN M * ) t 0TAO IIO

I IA V f 0 VAL• 1 0 0TAtOOt

ST* L U C II I 0 0T O I t t t

C tV STAl I I T S 0 07 TO M l

CALV* C U M t 0 0ffO AO i

s h i n 0 1TTOAIO

O A V IS -M S S I 1 0 0t r i m

OAOLIT 1 0 tT T I t O I

NORTH MNA I 0 0TOOAOA

COON t 0 0TOOTOl

» N H I IS* t 0TO IISO t* t*

ARKANSAS .1 0 0000tt*

NORTH MNA | 0 1001 ISA

SIOVOTAH t 0 0OIOTOI 0*0*

1 At L I T t 1010710 t . l *

I N I N # 0O I M I I t* M

NCOUIOI 1 0O l lt O I 1*0*

SIOUOTAH 1 0OtOOOl T 0*

St* LO C H t 0OMOOO

TOTAL IV IN T f IS 1A U N T T IA R I AO A ASNIAN • I f *0 •I#STO O il • M *t • StC M R IM *10 *| • IfC M I S ! N T *00 *0 *10

ifACTOR TIAftl k« II II I 14 t » U I T I t to t l t t t l TO?

0 0 0 0u o *

0 0 0 0 0

0 c 0 0 0

0 0 0 0 0A.O*

0 e 0 0 0• AA

0 0 0 00*0*

0 0 0 0• 0*

0 0 0s .o *

0 0* « •

0 0 0•1*

0 € 0.1 1

0 00 .1 *

0 «»«A»

0 0A .oe

0l*«A

0 0.J *

0 0

0u.o*0tt .O *

I7.0*0I.M

01.1*0l.l*•• I*0

0*t«o• a*

i *At AO

•09 .10• I* .11• II .»* • tl .A*

A 9 0 I 1 1 0 0 0 0 0so IS to t l I I I I 0 9 s 1 1

.11 «19 • 00 • I I •OA • 01 •00 •00 • 00 •00 •00

.11 *9» •00 • IS •ft • 10 •00 •00 •00 • 00 •00

.11 • IS • It • II • It • It • It • I t •11 • It • II

.A t • AO • AA • A) •A t • At •At • n • At »* l • A lI I M M M l t M I I M t l l t H l l l M I I M U a M I I M M H M I M K M I I

0 0 0 0 0 0 AO1 1 t I 1 0 AlOUO

•0 0 •0 0 .0 0 • 0 0 • 0 0 *00 • 0 0 . I t• 00 •0 0 *00 •0 0 •0 0 • 00 • 00• I t • t t • I I • I t • I I • I I • I t• A| «AI »A0 • AO *A0 •AO • AO

•••■•••■•••••••••••a***

tr a

•9*09*00*•0

It*•0*00*00*I0

•I*•0*00*00*10

o r i rto* to*00* 00*00* 00*1 I0 0

Of*i t 100*00*I0

oo*00*00*10

•I*to*00*00*I0

01*00*00*00*c0

• I * 41* %(* 4 ( * 04* II* «»* 1* *%* *4* tft*40* 49* 40* 40* 40* 49* 01* 91 11* (1 * *1*00* K * 00* 41* «9* 00* 41* 91 91* 91* (1 *00* « ! • 00* 90* 91* 00* 40* ( 0 (0 * 40* >0*• 0 11 91 I I 41 ( ( l ( 04 14 ( 40 1 0 1 4 0 I 1 1 ( 1

0* 00* A N O il t f ) I* II* WIN W)I* 00* *10 O il0* II* HUM

10*14 A B IH U N lA I I f 101

•«*0♦I**

0•O'C0•1*40•4*10

• 4*0

•4 *0

•«*0

• c * (0

•1*1

•4 * 40

•0*10

•0*0 0

• t*0 0

49*10 0

•4 * «0 0

49*50 0

♦ !*•0 0

9 0

•0*110•0*110

10*001 U 0 4 C l «> I I o t I I I I I t 01

0 0 0•0*(

0 0 0•0*

0 0 0 0•4*t

0 0 9 0•4*

0 0 0 a 0•0*9

0 0 0 9 0

0 0 0 0 9 0

0 0 0 1 0 1•0*1

0 0 0 0 0 0

C l 41 (1 11 11 01m u 0049911

*119999(9

•Ml*' m i ,r an,,t

I Himo u o t o

mm'. . . j . r 4* * " 1

• > ( « » r n i ,# "

n U ! " m m f

iLX i" " '

IKUl" " l>°"

019011

l^ 1 “,,1r*tUOii5 MlfJ t A l* U i U l ) 119194I *4|1001941 'IV * I1AV 1I 0(0091

“,,WI

I Z I l t l 3M5" *I *SI U m i N41*141

.u i . r 5’1”"’iUOWMMM * ,'0,, . . I IIN O JD MMti• m iln u *js u r * ‘,o*H M .r''"1' m m ' ,,0,,* *11 I I I I V M *040(1•*< Aivani

f *44 MVIOMI (1 4 0 (1

t I1NQ90 10*0(4 i tm io t t l l l

I1MNV4 IK IfH t u r n

I AMOSunit( *19 t u r n 100111

7 H J f l l 1NI04 1(1111SMVSIYM10(011

NOSNIIOI I H 111104f M9V90 49109 104004

VNNIO *1 *• 101009

99IN 4VQ0IH 101009I l»ttN0 NVt

100119 1 *19 9VI0MI

104019 IA 0 I ilMNVA

uniM

UMOu>|un esneo—sdm «no|jnds :8£ AjoBbibq -gE Q *iqei

V M K I I ft OKI 1 I*10101

■ M IA N M * 1 I t 1 T* I I M 1

SAN ONCfM t 0 0* M 1 0 l

H M IID NICK t S*00101

!• I* IINNA 1 *T M T O l

POINT H4CH I 1 0l O l t t l

N t lO IIN S M * 4T IO M T

L I S I N S 1 0I U I U

POINT N ACM t 1 tI t l M l

T W R IT P T . S T 1111114

SUftIT 1 1 II t l t t l

NAlNt TANKtl 1 )I I I K I

S M tV t 0 •T M M I

o c o n i i i 0 1i s o n t

INDIAN M . t 7 tI M M t

!W I | V P T . 4 0 II M M I

H l l t l l IS* I 2 0T S U I *

H O N 1 ) 0T l l t S l

KIVAUNII 2 sT40M 1

POUT CALHOIM I 1T40*t0

S N U t IS. 1 0140*01

OCONil t 0 0740404

ttON 1 4 17*0*17

OCONtf t 0 914111*

AIN AM Sit 1 1 0T 4 II1 4

PftAIKH IS . t I 0T 4 1 tt l

IM C N O SICO 9 07W 41?

CA IV . t t l f P 1 1 1TtOM O

COON | 4 1790017

N tiiS T C N I t 1 0T t l t t t

TftOiAH 0 07 M 9 t*

SNOtAN P T . 1 1 11*0*10

t t m i v a c . i I t 17*1*01

ST. i n c t l 1 0 21*1221

CftVSTIl I I V I 4 177*11*

c a iv . a i f f t 1 07 I0 M I

SALIN 1 4770*10

d a v i s - i c s s i i I Im m

P t f U T 1 1 0T T I M l

N M TN MNA 1 1 47M*0*

COON 2 1 1710701

1 N l l l I S . 1 •T O It M !•*•

AMAHSAS t * 1I M S I *

NONTN MNA 1 1 0001114

SIOUOTM 1 0 0OlOTOl *•*»

I M i l f 1 4•10710 9.1*

SAiON 1 1• n o n I.* *

N C tlJlM 1 *0 1 IM 1 l . M

SftU O V M t 00104*1 7 •*

t l « I M i l t 0OMMO *•0*

TOT At H IN T S l i t t 9*PIAN T VfAAS 40 4 AtNtAN (• I* l . t l . l t 11T0 O i l 1.C7 t . l 1 .1 7 1CUN N IM l .M t . l l . f S 1C W t i t M V 1.07 !•* 1 .41 I• M M • •• •• •• • ■• •••••• •••••••••

tA C T M V IM S11 I t I t 14

1 t 4 0 1

1 0l . M

c 0 t 0 9I t .O *

1 1 0 0 011*0*

« 0 0* • • 4

1 0 0• 44

1 •* •0 *

1 0•0«

I t I * IT ! • W 16 t l t t t t T C U l

1t a *«i.t*i4.**

l . M0.t*e*«•

i*• t *

i.w o • •0*

14•I

*I T

*I I

I*11UI t

IT

t l

104

SO

I?

0I I

toI01

IT

t

I *

*

10 I I

10 0

I I

ao*

tit

it04

1090

I I

»1 T

5to00

t l M t t « | St I I I I IS41 40 I t I I t t I t I t I I

.1 4 1 .1 0 I . S t l . t l 1 .14 | » M .* 4 l . M I ,•tS 1 .49 1 .0 1 1 .4 4 1 .41 | .* T | . H . N I .• I I 1*01 l . 4 t l . t t W t4 I . I I 1 .4* 1 .41 I . •IT t a t M l t * M l . M l . t * 1 .41 1.41 I ,

t t « i i i i a i i • h i * * * > 1 1 1 1 1 1 * t l O . l t

I . t O l . M . M , | | ( . ( * 1 .0 0 ,0 0 .0 * .0 0 l . M , M l . M I . I f 1 .0 0 .0 0 .1 0 . 00 . 0 0 . 0 0 . 00 . 0 0 .0 0 . 00 l . t » l . t t I . t O I . t o I . t o l . t t I . t o l . t t l . t t l . t t l . Ml . t l l . t t l . t t l . t t l . t t l . t l l . t l l . t l | . I I l . t l | , « |

M *

**1* * V «

i i * J l * t f4** **•W' II* 44*••*1 M * 00*1 I 1I 0 0

44*I f

4** a *ot* i t * • V M 1

40*O ftt*I I *(I

00*I f4 4 '*0*(

04* N• * ' tt*• n **» ••*i oo*t 4I 0

W * #•* 4 f O fW M >4* •I* i t * • II I i

M * 0 0 * O f Ot* t t * 1 00* 10* *•* • I I I I I t l

• •« «• ««• «■ «•00*• f*0*t i*i i•i

* f •0*1 « t* 01* 41* I t I I I I t l

11*1 01*1 *1*1 ( ( * I f * i t * •*• H * 00* I I * 41* •** O t I t I** I I 41

H * l0

«* * t

•0*11

• f t0 0

• 1*00 0

* 0 "»1 0

♦ 4*00 1

0 0

0 1

0 0

Xt l*

0 0 0•**t

0 0 1*0*4

0 0 0•6*0

0 0 0• f

0 ? 2 1• f

0 0 0 0*«•

0 0 0 0•6*1

1 0 0 1*4*1

1 n 0 0

• V0

•oat

•0*11I

#•*11

««• *

101 I I I t t t 01 *1 01 11 01 « | t l

• f t0 1 0

•0*4Q 4 I

•0*0 0 1

•c*) 1 1

•4*10 0 1 0

t* *t4 t 0

•4*14 4 0 0

•1*40 0 0 0

•1*0 » 0 ? 0

tt*0 0 0 9 0

•0*0 1 0 0 0

t0*|4 4 4 0 0

* I t 1

0 0 0 0 0

0 0 0 0 0

4 4 1 4 0

( C 4 t 4

0 i 0 1 0

tl U 01 iivia la n v u

i oo** u* •i to*• u*

ot

a m » i m iM H « M l)

I M 111 HflH

SVflt 14MIAI t f i O l

♦ f t ooooto•41i im i

1*0011I Mf 40f|0|S

I M U Ii K t m »

t u r nt M t t l

014010I

104010J MT40ft0iS

t l f l o i9 VKM MiSOH

I l f M II SftHVM V

0(1104t * u m * t

104044I a f t )

*0t«04I MW *J#P#

I 0 » l 4 i1 U ) | f |

t t t U i

010044I MHOS

*****

111044*

;« * { .* , , , m ” I I I M 1 ' I f

100104 *I * W * V l A f l l 010004

c * i « %n\m\ 0100*4 Iftroil0 M I* 4

< IM34S11IM 41*014

3 *00300C0S4t M l f J41*04* u « , «

t S ftN VM V *121*4

t U « 0 ) Q 4 U 0 U

I *011I000t4

* 1 * 0 )0 I0 0 4 U

I *11 H I M C 01*0*1

i«o dro*o*i

ttMftVftt*t t n u

• m i ‘t * U A iM tni

1090(4

, * „ a i « * «

IWOcJO l f l l l * A ,W S

* 8 8 1 * " , w

i j s r i ” °‘f t t V l l 'P H

40(014 N O IM IIO I t H

I I I 104t M 9fi| 4M10* 104004

t4 1 ««4D I N IVCIfN

101*04 1 II IM O MVS 10011*\ *1 4 4 U 9 I 1

1*4*14 I U I l l l N U

UNI14

u o p j p u o o } U B | 8 U B J ) o u - d | J ) | B n u B y y : o t A j o B b i b o H A A d ' U r a * i q B j .

TA N R It 10 V I 010001

110111 M . Io t io o i

t M ONCMO I 490101 NICK 4 0 0 I0 I

i . I . MNNA 700901

001 NT M AC* I 701 M l

M 0 tOUNSON 710107

f M t l i l l t711291

POINT N M N t 711001

TUOKfT *r« • 711114

IUR0V I 7I1IIIN A IM M N R II

7 fU 2 0SHORT t7 M M 1 OCOMI 1790711

IKOIAN M , I 790009

t m r i y o n 4 7 90 X 7 Mllltl IS* 1 79101*

H O N I791191

KIVAVMC740401

OQftT CH.NOUN740400

I N I K f l . 1740401 oeoMt i740404/ION I74041T

O C O M I 9m m ARKANSAS 1741214

O R A Itt l IS* 2 741C II

AiftCNC SICOr fw tr

CAIV* C l t M 1 T 94949COOK I 79O027 NIllSICNt 2rnm

TROJAN700990

INOIA* 01* I 7*0010

O tA V If V A U 1 701001

tr* t o c ic iT4 1 tt|

c i m n ftiv 9T70919

CAIV* a i M 9 779401SHIP I770010

0 A V I t* M > 9 l I 771111

fA O ilT |771201

NOOTN ANNA I

COOK I700701

9 N U t IS* 2 701090

A BRANS AS |10091*

NOOTN M N0 |oo imSIIMTM I010701

f A O U T t010710

lA tfft |011019

NCO UI0I 1011*01

flO M TA M 2OtOOOl

17* IN C H I

TO TA i IV fN tS O U N f *f AOI M A N 990 01* cm mm cm m o m v

000000 4*9*I

41 4• Oft *0i *99 .0 •00 *0,• 02 •*

0 01*T*

0 09*9*

0 0• 9*

0 0• 4*

0 0

0r

0•

0•

0•

0•

014

00*

0*44

04 .T *

04 ,0 *

00 * 1 4

0l . l *

01 ,0 4

fttACTOft TIA R I 10 U I t 19

0 0 1

0 9 0

0 9 1

0 9 0

0 9 0

0 0 0

0 0 0

0 1 0

0 0 0l« 0 e

0 0 0*44

0 c 0• 94

0 0 0• 14

0 00 ,1 4

4 09 .4 *

0 04*44

0 01 ,0 4

0 0• 94

0 C• 0«

I* 19 10 I T 10 14 to I I |t

0 0 0 0

01*04

0 0 0 01 1 ,0 4

0 0 0 01 2 ,0 4

0 00*04

0 0•4 4

04 .4 4

0• 04

04*0*

0T.O *0

4*4 *

04 1

04 |

I

•01• 00 *00 *lft *00 ,01 *0( • I* .17 ,11

090

099.00

094 0 0 1 1 0 0 0 4 0 0 4 4

19 10 I t 0 0 9 1 9 | | t t! ! * 2 •!! *M ,M *n .oo *oo *oo .oo00 *00 • »} »A4 .00 *00 .40 .00 * 00 .00 .40 *9001 .01 ,01 «0f »0| rOt ,41 «9| .42 *41 *41 ,91

I M M I M M t N N M I ........................ 11 *%$ # W * " *l$ » 1' ' I# *19 *10

,00 • 19

,01,1 4

0 0 01 t 0 • 14,t

,00 ,M *00 ,02,00 •00 ,00.02 •02 • 02*19 • 19 *19

APPENDIX EBWR TRANSIENT EVENT COUNTS BY PLANT AND REACTOR YEAR

V.

E-l

APPENDIX E BWR TRANSIENT EVENT COUNTS BY PLANT AND REACTOR YEAR

Tables E-l through E-38 contained in this appendix were printed by E P R I’s PLUNG E computer pro­gram and were used to obtain som e o f the results in this report’s main body. There is a table for the total o f all transients and for each category o f BWR transient. Each table gives counts o f all transients in the category according to the plant, and the reactor year o f the plant, in which the events occurred. Reactor years are measured from the commercial power date o f each plant, which is listed along the left side o f the tables beneath each plant’s name. Thus, the tables provide an easy way to compare transient counts according to the plants’ ages. The number preceded by an asterisk below the last year o f data for each plant is the number o f m onths o f data in that last year. The data cover each plant’s history through December 1983, or until removed from commercial operation, whichever occurs first.

In addition to plant/reactor year event counts, each table includes the follow ing inform ation for each reactor year:

1. The total number o f transients (excluding partial years)

2. The number o f plants that reported a full year o f data

3. The observed mean and sample standard deviation o f the number o f transients per plant for that year

4. The observed mean and sample standard deviation o f the number o f transients per plant per year based on the cumulative number o f transients from year 1 to the year o f interest (these are labeled the cum ulative mean and cumulative standard deviation).

All o f the above inform ation is displayed along the bottom o f every table. Data displayed in partial reactor years were not included in these figures.

A lso included in each table is the following inform ation displayed along the right edge:

1. The total number o f transients reported for each plant (including data from partial years)

2. The total number o f transients reported (all plants)

3. The total number o f reactor years, including partial years (all plants)

4. The mean number o f transients per plant-year.

Minor changes were required in the computer program PLUNG E received from EPRI to use it for this data base analysis. The changes included the following:

1. Minor format changes due to the computer system differences

2. Changes needed to accom m odate the enlarged data

a . form atting the output for more colum ns o f years

b . adding additional plants to the data statements

c . increasing indices and dimensions o f arrays

3. Changes to the calendar year option when a full year o f data is available in the m ost recent year o f data for a plant.

One area where no changes were made was the outage data statements. Although outage information was collected along with the transient data, the PLUNGE option requiring this information was not used and adding it to the data statements was beyond the scope of the project.

miL/»

DPfSDEN I60C704

8IG ROCK PT.63C329

HUHBCLDT BAYtic e o i

9 RILE PT . 1 691201

CYSTtP CREeK 691228

DRESDtN 270C609

MILLSTONE 17 i0312

H O N T I C f c U C71C630

ORESDEN 3711116

VT. YANKc fc7 2 1 1 3 0 PllGVIH I721201

QUAD CITItS 1 7 iC 216

quad c i r n s z7*1310

C OOPt R 5 T A.74C701

PEACHBOTTCH 2 74 C 70 5

BROWN F £ Y i 74C801

PtACMBOTTCK 3 74J22?

OUANE ARNCLD 75C201

BROWN FE«RY 2 75C331

FITZPATRICK75*.72S

3 RUNS WICK 27*1103

HATCH 1751231

BROWN FERRY 3 77C301

BRUNSWICK 17 7 0 3 1 8

MATCH 279C9G5

SUSQUEHANNA 1 03C6O8

2 i 4 t h 7 i 9The f i r s t 12 years of data ar e u n a v a i l a b l e

The f i r s t 10 years of dat a are u n a v ai l a b l e

H A C T U f c Y t A k S 10 11 12 14 1*> 16 17 lb 1*

0 1 I 43.'

1 0 4 4 1 1

TOTAL

IT

13

P 3 1 £ 5 j * 2 i 2 0 101 1 . 0 *

4 3

73 13 t 10 3 7 L 5 1 4 I 0 1 o 1 . 0 *

BO

1* 1 8 2. 1 4 2 5 1 2 2 0 0 . 1 *

57

9 -) 12 b «. b 7 ■> b b 9 6 5 b . a *

1 0 2

IQ ? t t b 5 1 ' 5 <* 2 tt j9 . 7 *

66

12 5 2 3 4 d h 7 4 fc 1 3 10 . 1 *

6 0

10 10 10 *t 5 j 4 J 7 10 3 o 01 . 5 *

61

cj g 7 6 1 <» 3 2 3 8 1 01 . 1 *

53

?\ M 15 7 Cy 12 1 1 o 8 7 9 01 . 0 *

1 1 3

\? 10 8 fc J > 11 1 0 51 0 . 4 *

8 2

IC H 7 11 6 4 5 7 0 v . 8 •

6 6

2* ‘1 1 3 2 <♦ f> 36 . 0 *

63

15 b 13 - 7 2 3 15 . 9 *

5 8

?C 0 2C 9 2C 2d 7 17 8 05 . 0 *

1 2 3

5 q 3 S 0 1C 1 4 1. 3 *

5 1

6 6 11 <L 4 7 t 5 61) . 0 *

5 3

1 11 19 12 21 1 8 I u 5 101 0 . 1 *

1 1 7

15 11 6 0 5 <• 5 G5 . 2 *

55

2e 22 20 13 9 19 9 6 01 . 9 *

126

2b 22 12 7 17 lfc 7 13 0.v>*

120

23 20 9 8 11 5 31J 1 *

79

1 p 13 14 11 9 2 5 *

7*

15 13 13 6 33.9*

50

8 8

t o t a l EVEHTS 347 215 220 153 lt7 188 130 108 77 t3 37 25 10 2 1 6 9 5 i 1 0 1632PLANT YEARS 23 23 23 23 11 22 20 15 i l 10 tt 5 4 2 2 2 2 \ 1 0 251.28MEAN 15.1 9.3 9.6 6.7 7.6 8.5 6. 'j 5.4 5.1 5.7 3. 7 3.1 2.0 . 5 . 5 3.0 4 . 5 2.5 1.0 1.0 .0 7.29STD DEV 7.51 6.01 5.70 3.32 5.54 5 .50 4.4 7 4 .01 2 . 50 3.23 3.<*0 3.04 2.35 .5o .71 1.41 . 71 2.12 .00 • 00 .00cun m e a n 15.1 12.2 11*3 10.2 9.7 9.5 9. 1 8 .1 6.4 8.3 8.0 7.9 7. 7 7 . 6 7.5 7.5 7.5 7.4 7.4 7.4 7.4CUn STD DfcV 7.51 7.32 b . ^ O 6.51 b . 40 6 .25 6.1 2 6 .0) 5 .90 5.82 3.80 5.80 2.90 5.83 5.84 5.83 5.02 5.81 5.81 5.82 5.62

E-6

PLANTS B E 4 C TQ R TE A R S1 2 3 * 5 b 7 d 9 10 11 12 13 1* 15 lt> 17 18 19 2G

IM

1~

111*■«

1111

2 3 r a u t

DRESDEN 1 The f i r s t 12 :fe a r s of data a re u n av a i la b le 0 c 0 0 0 0 0 0« 0 C 7 0 * 3 . 9 *

B I G ROCK P T • The f i r s t 10 years of data are u n av a i la b le 0 0 0 0 0 0 0 0 0 0 0 063C329 9 . 1 *

HUMBOLDT BAY 0 l C 0 * l 2 J 1 0 2 0 1 1263 C801 1 1 . 0 * \

9 N I L E P T . 1 ? 0 0 1 0 2 G 3 0 0 1 0 0 0 0 66 9 1 * 0 1 1 . 0 *

OYSTER C R E E * 2 0 C 3 i 1 0 3 0 0 0 G 0 0 0 76 9 1220 . 1 *

DRESDEN 2 1 0 2 G l C 0 1 1 G 0 0 0 G 67 0 C 609 6 . 8 *

M ILLSTONE 1 * 0 0 0 0 0 C 0 1 0 0 1 0 671 0312 9 . 7 *

MONTICELLC 0 ? 1 0 0 1 0 1 0 G 1 0 0 67 1 C630 6 . 1 *

ORESOEN 3 1 2 0 U 0 c G 2 0 C 0 1 0 67 1 1 1 1 6 1 . 5 *

V T . YANKEE c 2 0 0 0 G C 3 0 0 G 0 I7 2 1 1 3 0 i . 1*

P IL G R IM 1 c 1 2 0 1 1 2 3 0 G 2 0 97 2 1201 1 . 0 *

QUAD C I T I E S 1 0 1 i 1 0 1 G J 0 0 0 *7 3 0 2 1 6 1 0 . * *

QUAD C I T I E S 2 0 0 0 0 1 0 C 3 0 0 0 17 3 0310 9 . U *

COOPER S T A . 0 3 c 1 0 0 0 1 0 1 67 *C 7 01 6 . 0 *

PEACH0OTTGM 2 1 0 0 0 c 0 0 3 1 0 27 * 0 7 0 5 5 . 9 *

BROWN F E R R Y 1 1 0 2 0 1 J i 1 0 0 V7 *C 8 0 1 5 . 0 *

PEACHBOTTCM 3 c 0 0 0 1 1 G 3 0 0 27 * 1 2 2 3 . 3 *

DUANE ARNCLO 0 1 1 0 G 0 G 1 0 375C201 1 W 0 *

BROUN F ER R Y 2 c 0 0 G 0 u i 3 2 375C301 1 0 . 1 *

F I T Z P A T R I C K 1 1 c G 1 c 0 D 0 37 5 0 7 2 0 5 . 2 *

BRUNSWICK 2 «. 1 1 1 0 1 0 1 0 97 5 1103 1 . 9 *

MATCH 1 c c c 0 c 1 G 3 0 17 5 1231 . 0 *

BROWN FER R Y 3 c 0 0 2 0 c C t7 7 C 3 0 I 13 . 1 *

BRUNSWICK 1 2 3 0 0 0 0 0 577C310 * . 5 *

HATCH 2 ? 0 G C 0 27 9 C905 3 . 9 *

SUSOUEHANM 1 c 083C60B 6 * 6 *

TOTAL E Y E M S 21 16 10 9 li 13 6 6 * 0 6 2 0 0 0 0 0 0 0 0 0 11 2PLANT YEARS 23 23 23 23 22 12 I 0 23 15 11 10 0 * 2 2 2 2 1 1 0 2 5 1 . 2 8MEAN . 9 1 . 7 8 . * 3 .. 39 . 50 . i 9 . 3 0 .. *0 . 2 7 .■ CO • 6C 25 . 0 0 . oc .■ 00 .00 . 0 0 . 0 0 . 0 0 . 00 . 0 0 . * 5STD DEV 1 . 2 * 1 . 0 0 .. 7 3 .. 78 . 9 1 . 8 0 . 0 6 .60 . * 6 . GO . 8 * . *0 . 0 0 . OG . 00 . 0 0 . 0 0 . 0 0 . 0 0 . 00 . 0 0CUM MEAN . 9 1 . 8 5 «.71 .6 3 . 6 1 . 6 0 . 3 6 ..5 * . 5 2 .. 50 . 5 0 . *9 . * 8 . *7 . * 7 . * 6 • * 6 . * 6 • * 3 . * 5 . * 5CUM S TD D tV 1 . 2 * 1 . 1 1 1.. 0 2 ..9 7 .9 6 .9 3 . 9 0 ,.87 . 8 5 '. 8 * . 8 3 . 82 . 8 2 • «1 ..81 . 8 1 . 8 1 . 8 0 .8 0 . 80 .8 0

Table E-3. BWR Category 2: Electric load rejection with turbine bypass valve failures

P L A N T S M ACfl-rf YEARS

fTJ

-Li

1 ? j <* 5 6 7 1G 1 12 1 l*t I 5 16 17 i 6 19 2 G 2 1 22 2 3 TOTAL

DRESDEN 1 The f i r s t 1? y e a r s of d a t a a r e unav t a b l e C G 0 0 C 0 0fcGC70*

1 Tabl eV *

BI G POCK PT. The f i r s t 10 y e a r s of d a t a a r e unav u 0 0 C 0 0 0 0 0 G 0 0t 3 C 3 2 9 9 . 1 *

HUMBOLDT BAY C 0 0 J 0 C c 0 j G 0 0 063Cfc01 11 . o *

9 MILE PT . 1 c 0 0 u 0 C c 0 G 0 u 0 G 0 06 9 1 2 0 1 1 . 0 *

OYSTER C«E£K 0 0 C o G G G c 0 0 0 0 0 0 06 1 1 2 2 8 . 1 *

ORESOfw 2 c c c o 0 C 0 0 c 0 G 0 0 07 0 ' . 60 9 6 . 8 *

m i l l s t o n e 1 c c c 0 c C J 0 c 0 C 0 07 1 0 3 1 2 9 . 7 *

HONTICf LL C c 0 G u c G c 0 G G 0 0T! C b 3 0 b » 1 *

0P6SCEN 3 c G 0 0 0 C o G C 0 j 0 V7 1 1 1 1 6 1 . 5 *

VT. YANKEE c 0 C 0 0 C u 0 0 0 u 07 2 1 1 3 0 l . l *

P I LGRI M 1 c 0 c c c C G 0 G u G 07 2 1 2 0 1 1. G*

QUAD C I T I E S 1 D 0 0 0 0 G 0 G 0 0 0? 3 C 2 1 « 1 0 . * *

QUAD C I T I E S 2 0 0 0 0 G C I 0 0 r, G7 3 C 3 1 0 v . d *

COOPt R S T a , 0 0 c 0 0 0 o 0 0 07*.C701 t * 0*

PEACHBOTTCH 2 Q Q G G 0 0 0 G 07<iC705 5 . 9 *

BROWN F f P P Y 1 c 0 t 0 0 G G 0 0 07<»Cb01 5 . 0 *

PEACHBOTTCH 3 0 0 0 u 0 0 0 0 0 07 * 1 2 2 3 . 3*

DUANE APNILO c c 0 0 0 G 0 0 u7 5 C 2 0 1 1 1 . 0 *

BROUN FfcPRY 2 c 0 c 0 0 G c 0 07 5 C 3 : i 1 0 . 1 *

FI TZPATRI CK D 0 c 0 0 0 c 0 07 5 C 7 2 8 5 . 2 *

BRUNSWICK 2 c 0 1 0 u 0 G 0 17 5 1 1 0 3 l . ' V*

HATCH 1 c 0 0 0 0 0 c G G7 5 1 2 3 1 . 0 *

BROWN FERRY 3 c 0 G c u 0 0 07 7 C 3 0 1 n . i *

BRUNSWICK 1 c 0 c 0 0 0 0 07 7 C 3 1 6 ? . &*

HATCH 2 0 0 0 0 0 079 ( , 905 3 . 9 *

SUSQUEHANM 1 0 u8 3 C 6 0 0 6 • 0*

TOTAL EVE M S 0 0 1 0 0 C C 0 0 0 0 0 G C 0 0 0 0 0 0 0 1PLANT YEARS 23 23 23 23 22 22 r>G 20 15 2 2 1 0 « 5 2 2 i 2 1 1 0 2 5 1 . 2 0MEAN . o c 00 0* 00 . 0 0 0 0 • j C . 0 0 . 0 0 0 0 0 0 00 OG . uC 0 0 . 0 0 • OG • Ou • u c • 0 0 • 0 0 • 0 0STD DEV . c c 00 21 00 . 0 0 GC . J O . 0 0 . 0 0 00 0 0 00 uO . OG 0 0 . 0 0 . GO • 0 0 . 0 0 • o u • 0 0c u n MEAN • 00 00 01 01 . 0 1 01 . o l . 01 . 0 1 0 0 G 0 00 0 0 . CC . 0 0 . 0 0 • GO • GO • 0 0 • 0 0 • 0 0CUM STO DEV • CC 00 12 10 . 0 4 0 9 • 0 6 . 0 8 . 0 7 07 0 7 07 G 7 . 07 0 7 0 7 • 07 • 0 6 • 0 6 • 0 6 • 0 6

PLANTS

mi00

DRESDEN 1600704

B IG ROCK P T , 63C3 29

HUMBOLDT SAY 63C801

9 M ILE P T . 1 691201

OYSTER CREEK 691 28

DRESOEN 270C609

M ILLSTONE 171C312

*10NTICEtLC71C630

DRESDEN 3711116

V T . YANKEE721130

P IL G R IM 1721201

QUAD C I T I E S 1 73C218

QUAO C I T I E S 2 73C310

COOPER S T A ,74G701

PEACHBOTTCM 2 7 4 0 0 5

BROWN FERRY 1 74C801

FEACHBOTTCM 3 741223

DUANE ARNOLD 75C201

BR3WN FERRY 2 75C301

F I T Z P A T R I C K75C728

BRUNSWICK 2751103

HATCH 1751231

BROWN FERRY 3 77C301

BRUNSWICK 1770318

HATCH 279C905

SUSQUEHANNA 1 63C608

2 3 4 5 6 7 6 9

The f i r s t T2 years of data are unavailable

The f i r s t 10 years of data are unavailable

REACTOR YEARS 10 11 12 13

C

035

3

3

110

6*8*

0 0 0 0 0 0

2 2 2 1 0 0

0 1 3 0 C 0

2 3 1 0 1 2

1 3 1 1 0 c

1 0 0 0 0 0

2 0 0 1 1 1

1 0 0 0 0 1

0 0 1 0 0 0

0 1 2 1 3 1

1 1 1 0 2 3

0 0 1 1 1 0

2 5 0 0 1 2

0 1 1 5 2 3

0 1 0 0 0 0

0 0 0 2 2 1

0 0 1 1 1 3

0 0 0 1 0 1

3 7 0 1 1 J

1 0 0 2 C I

4 2 0 0 1 Glo .1 *

3 0 3 2 1 09 .5 *

1 1 0 03 ,9 *

0101002c

1100c110

11.0*2

10.1*0

5 .2 *0

1 . 9 *0.0*

00010020

0

0

0

06 * C «

05 . 9 *

05 .0 *

0.3*

00

0

0

1

1

J

1

0

1

01 0 .4 *

09 . 8 *

0

0

0

0

0

0

c

0

01.1*

14 15 16 17 18 19 2* 21 22 23

0 0 0 0 C 13 .9 *

0 0 0 0 0 0 0 0

111.0*

00

0

19 .7 *

0b.l*

01 . 5 *

9 . 1 *

TOTAL

1

0

1

1 0 161 ,0*

0 0 10.1 *

0 146 ,8 *

14

4

13

4

5

127

9

1217

5

5

8 5

17

121010

3

0

TO TA L EVENTS 55 24 ?e 17 19 17 16 17 8 3 4 0 0 1 0 0 0 0 V 0 0 214PLANT YEARS 23 23 23 23 22 22 20 20 15 l l 10 8 5 4 2 2 2 2 1 1 0 2 5 1 . 2 8MEAN 2 . 3 9 1 .0 4 1 .2 2 . 7 4 . 8 6 .7 7 . 6 0 .85 .5 3 . 2 7 .4 0 .0 0 .0 0 .2 5 . 3 0 . 0 0 .0 0 . 0 0 • 00 .0 0 . 0 0 • 65STD DEV 1 .7 3 1 .1 9 1 .8 1 .9 6 i . 1 7 .6 7 l . J i 1 .4 2 • 64 . 6 5 .5 2 • 00 . 0 0 * 50 • 00 • 00 • 00 . 0 0 • 00 . 0 0 . 0 0CUM MEAN 2 . 39 1 .7 2 1 • i>5 1 , 3 5 1 • 2> 1 . 1 8 1 .1 3 1 .1 0 1 .0 5 1 . C 1 .9 8 .9 5 .V 2 .9 1 . 9 0 . 9 0 • 89 • 8 « . 8 8 • 87 . 8 7CUM STO DEV 1 . 7 3 1 . 6 1 1 .6 9 1 . 5 7 1 .5 1 1 . 4 3 1 . 3 9 1 .3 9 1 . 3 6 1 . 3 4 1 .3 2 1 .3 1 1 . 3 0 1 . 2 9 1 . 2 9 1 . 2 9 I .2 8 1 . 2 8 1 .2 8 1 .2 8 1 . 2 8

Table E-5. B W R Category 4. Turbine trip w ith turbine bypass valve failure

P L A N T S2 3 * ^ 6 7 3 9 The f i r s t 12 years of dat a a r e u n a v a i l a b l e

The f i r s t 10 year s of dat a ar e u n a v a i l a b l e

0 c

c

0

0

RE ACT UK r t A R b 10 l i 12 13 14

0

c

15 16 17 16 19

0 0 0 C 03 . '

0 0 0 0 0

21 22 23 TOTA L

0 0 0

0 0 0 0 0

0

0

0

0

0 0

0 0 0 0 1

0 0 0 0 0 0 0

DRESDEN 1t>0C704

BIG SOCK PT * C3C329

HUH80L0T BAY 630601

9 WILE P T . 1 0*12-31

O Y S U e C » U K fc91 2 2 8

DRESDEN 270C-609

HKLSTONf c L7 1 C 3 1 2

HONTI Ct LLC7 1 C 6 3 0

DRESDEN 37 1 x 1 1 6

V T . YANKEfc

7 2 1 1 3 0 P I L GR I H 1

7 2 1 2 0 1 OUAD C I T I E S 1 n C2i 8 QUAD C I T I t S 2

7 3 C 3 1 0 COOPfc* STA.

7 4 C7 0 1 PtACMBOTT C H 2

7 4 G7 0 5 BROWN FERkY 1

7 4 C 8 0 1 PfACHBOTTCN 3

7 4 1 2 2 3 OUANE ARNOLD

7 5 C 2 0 18R0WN F t R f i t 2

7 5 C 3 0 1FI TZPATRI CK

7 5 C 7 2 3 BRUNSWICK 2

751203HATCH 1

7 5 1 2 3 1 8R0WN FfcRPY 3

V 7 C3 0 1 BRUNSWICK 1

770318HATCH 2

7 9 C 9 0 5 SUSOUEHAN^A 1

03 C6 O9

C

cC

cc

0c

00C000c

0c

c

c

c

c

0c

00

0.4*

0 c 0 0 c c

c 0 o c c c

c 0 0 c L

0 c c - -

0 c 0 0 c 0

0 0 G 0 c G

0 G - c c 0

0 0 0 0 G u

0 c c 0 3 c

0 L 0 0 0 G

0 0 0 c c G

0 c 0 c 0 G

c c 0 0 C C

0 0 0 0 G sj

0 0 0 c 0 G

<\ 0 0 0 c G

0 c 1 0 c G

G c 0 0 c 0

0 C 0 * 0 0

0 c 0 0 c ii

0 G 0 0 0 ulJ . 1*

0 G 0 0 0 c3 .5*

0 c 0 03.9*

c

0000

0

0

000

11.0* 0

10. I* 0

5.2 *0

1 , 9 *0.0*

0

0

0

0

0

0

0

0

0

06.0*

c5 .9 *

c5 .0 *

0. 3 *

0

0

0

0

0

0

010 . 4 *

09 .8 *

0

0

011 . J *

0

0

0

09.7*

0t , l *

01.5 *

0 01 .0 *

C 0.1 *

G6 .6 *

01. 1*

01.0*

09,1*

t o t a l e v e n t s 0 0 c 4 0 0 0 D 0 0 0 0 0 G 0 0 0 0 0 0 0PLANT YEARS 23 23 23 23 22 22 2C 20 15 i 1 1G 8 5 ? 2 2 2 1 1 0MEAN .GC .CO • GO .04 .GO . 00 .3 0 . QJ .00 . GO . 0 0 . 00 . 0 0 .OC . 0 0 . 0 0 . 0 0 . 0 0 . 00 • 00 • 00

STO DEV .oc . 0 0 .OC • 21 .Otf . 00 . 0 0 . 00 . 0 0 . 0 0 .00 . 00 . 00 .OC . 0 0 . 0 0 . 0 0 . 0 0 . 00 • 00 • 00CUM MEAN . 0 0 . 0 0 . 0 0 . 01 . 01 .Cl . 01 .01 . 01 . 0 0 . 0 0 .00 .GO . 00 . 0 0 . 0 0 . 0 0 .GO . 0 0 . 0 0 . 0 0

CUM STD DEV • GO .00 .CO .10 .09 .09 .0 8 .08 .0 7 . 0 7 .07 .0 7 .0 7 .0 7 . 0 7 . 0 7 .0 7 . 0 6 • 06 • 06 • 06

12&A.2*

• 00

E-10

PLANTS k EACTQR YEAKS1 2 3 4 5 0 7 3 9 1 0 1 1 12 13 14 1 5 1 6 1 7 IB IV 2 0 Z 1 Z Z £ 3 TUTAt

DRESDEN 1 The f i r s t 12 f e a r s o f d a t a a r e u n a v a i l a b l e 0 0 0 0 0 0 0 06 0 C 7 0 4 3 . 9 *

BI G ROCK P T . The f i r s t 10 y e a r s o f d a t a a r e u n a v a i l a b l e 0 0 0 0 0 0 0 0 0 0 0 06 3 0 3 2 9 9 , 1 *

HURBOLDT BAY 0 0 0 0 0 0 0 J 0 0 0 0 0 0( 3 C 8 0 1 A l . J *

9 MILE P T . 1 1 0 0 u 0 c 0 0 1 0 0 0 0 0 26 9 X2 0 1 1 . 0 *

OYSTER CREEK 2 c 1 0 0 c J 0 1 0 0 0 0 0 0 46 9 1 2 2 8 . 1 *

D R E S D E N 2 C 2 0 c 0 0 0 1 0 0 1 0 0 0 H7 0 C 6 0 9 6 . 4 *

R I U S T O N E 1 4 0 0 0 0 0 u 0 0 c c 0 0 47 1 0 3 1 2 9 . 7 *

RONTICELLC 1 0 1 0 0 0 C 3 0 0 c 0 0 27 1 C 6 3 0 6 . 1 *

DRESDEN 3 0 0 0 0 0 c 0 1 0 0 0 1 0 / 27 1 1 1 1 6 1 . 5 *

VT . YANKEE: 1 1 1 1 0 Q 0 0 0 0 0 u 47 2 1 1 3 0 i . l *

PI LGRI M 1 3 1 0 0 t 3 0 J 0 0 0 0 77 2 1 2 3 1 1 . 0 *

QUAD C I T I E S 1 0 0 0 0 0 C G J 0 0 0 07 3 C 2 1 0 1 0 . 4 *

QUAD C I T I E S 2 C 0 u 0 0 C 0 c 0 0 17 3 C 3 1 0 9 . 6 *

COOPER ST A * I 0 0 0 0 0 0 0 0 27 4 C 7 0 1 6 . 0 *

PEACHBOTTCH 2 1 0 0 0 c c 0 0 0 0 17 4 C 7 0 5 5 . 9 *

BROWN FERRY 1 3 0 1 0 0 c 0 1 0 0 574C 801 5 . 0 *

PEACHSOTTC* 3 0 0 c 0 0 G 0 3 0 0 074 ? . 2 2 3 . 3 *

OUANE ARNCLD 0 0 0 0 0 0 0 3 1 17 5 C 2 0 1 1 1 . 3 *

BROWN FERRY 2 c 0 0 0 2 C 0 J 0 27 5 C 3 0 1 1 0 . 1 *

F I T ZP ATRI CK 2 c Cl 0 L 0 0 0 37 5 0 7 2 8 5 . 2 *

BRUNSWICK 2 I 2 1 1 0 0 1 1 0 87 5 1 1 0 3 1 . 9 *

HATCH 1 1 c 0 0 0 c 3 0 27 5 1 2 3 1 . 0 *

BROWN FERRY 3 4 1 1 0 0 0 1 77 7 C 3 0 J 1 3 . 1 *

BRUNSWICK 1 2 0 0 0 0 0 0 27 7 C 3 1 8 9 . 5 *

HATCH 2 2 c 1 0 c 37 9 C 9 0 5 3 . 9 *

SUSQUEHANNA 1 1 I8 3 C 6 0 8 6 . 8 *

TOTAL EVENTS 30 11 7 2 2 3 1 * 2 C 1 1 0 C 0 o U 0 0 c 0 6 7PLANT YEARS 23 23 23 23 22 22 2 0 2J 15 IX 1C 8 * 4 2 2 2 2 1 1 0 2 5 1 . 2 8MEAN 1 . 30 • *8 • 30 • 09 • U9 . 1 * . 0 5 20 . 1 3 . 0 0 . 1 0 . 1 3 0 0 . 0 0 . 0 0 . 0 0 . O k . 0 0 . 0 0 . 0 0 . 0 0 • £ ?STD DEV 1 . 29 . 6 7 • 47 . 2 9 • 43 . 6 * • 2 2 *1 . 3 5 . 00 • 3 c . 3 5 . OG . o c . 0 0 . 0 0 • 0 0 . 0 0 . 0 0 . 0 0 . 0 0CUR MEAN 1 . 30 . 8 9 . 7 0 • 54 .<>6 . 4 t . 3 0 34 . 3 2 . 31 . 3 0 . 2 9 28 . 2 8 . 1 6 , 2 7 . 2 7 , 2 7 . 2 7 . 2 7 . 2 7CUR STO 06V 1 . 29 1 . 1 0 . 9 ? . 8 9 . 8 * . 8 2 . 7 8 75 . 7 3 . 71 . 7 0 . 6 9 . 6 8 • 6 b • 6 7 . 6 7 . 6 7 • 67 • 6 6 * 6 6 • 6 6

E-ll

P L * M S: 1 j t. 0 7 6 9

Rt ACT OR 1 0 11

ffcAKS12 13 1* 15 1 6 17 1 8 19 2 0 21 2 2 2 3 TOTAL

o r e s o e n i The f i r s t 12 !f e a r s of d a t a a r e u n a v a i l a b l e 0 0 0 0 0 0 0 0t G C 7 d 4 j . 9*

BIG POCK PT. The f i r s t 10 y e a r s of d a t a a r e una va l l a b l e & o 0 0 0 0 0 o 0 0 0 00 3 1 3 2 9 9 . i t

HUH8QLDT fcAy i C C 0 c c 0 0 0 0 0 1 1t 3 C 0 0 1 i i . a *

9 MILE KT . : 0 1 0 * 0 l C 3 0 0 c 0 0 0 0 36 9 1 ^ 0 1 i . 0 *

O t S T c B CKthK 0 c 1 0 0 u 3 0 0 C 1 0 0 0 21 2 2 Ft . 1 *

DRESDEN 2 c 0 c 1 1 c c J 0 1 0 c 0 0 37 0 r 6 0 9 6 . d *

H I t L S TONE 1 c 0 c c c c 0 J G 0 0 0 0 07 1 C3 L 2 9 . 7 *

HCNTICfe lLC 3 0 W a 1 i 0 J 0 1 0 \J 0 37 1 C 6 3 0 6 . 1 *

DRESDEN 3 1 0 1 i 0 c * 0 0 0 0 G 0 47 1 1 1 1 6 1 . 5 *

VT. YANKEE c 0 G o 0 0 3 j C 0 0 0 07 2 1 1 3 0 A . 1*

P I L G R I * 1 c o c c 1 c 0 0 0 c j c 17 ? 1 2 0 1 l . G *

QUAD C I T I t S 1 1 c c 0 i c c 3 1 c 0 37 3 C 2 1 0 10 .<1*

QUAD C I T I E S 2 1 0 L o 0 c 0 2 0 0 c 37 3 C 3 1 0 9 , b *

COOPER STA. c c c 0 0 c c 3 0 o 07 4 C 7 0 1 6 . 0 *

P6ACHSOTTCH 2 c 1 c 0 c c c 3 0 c 17 4 C 7 0 5 5 . 9 *

BROWN FERRY 1 c 0 2 1 0 c u J 0 0 37 4 c e o i 5 . 0 *

PEACHBGTTCH 3 c 0 0 U c 0 L 0 0 0 07 4 1 2 2 3 . 3 *

OUANE ARNULO c 0 c J 0 c 0 0 0 07 5 C 2 0 1 i l . O *

BROUN FERPY 2 c 0 3 c 1 c 1 1 0 67 5 C 3 0 1 1 0 . 1 *

F I T ZP ATRI CK 1 0 0 0 u 0 0 2 0 37 5 C 7 2 S 5 . 2 *

BRUNSWICK 2 c 0 G 0 0 1 0 3 0 17 5 1 1 0 3 1 . 9 *

HATCH 1 c 0 C 0 1 4 0 0 0 27 5 1 2 3 1 . 0 *

BROUN FERRY 3 3 0 c c 2 c u 57 7 C 3 0 1 ID . 1 *

BRUNSWICK 1 C 0 1 0 1 1 0 37 7 C 3 1 8 V . 5 *

HATCH 2 c 1 3 0 0 479C9U5 i . v *

SUSQUEHANNA 1 c 00 3 0 6 0 3 6 . a*

t o t a l e v e r t s 7 3 11 <* 9 2 5 1 2 0 1 G c C 0 0 0 Q 0 0 5 1PLANT YEAKS 2 3 23 2 3 23 2 2 2 2 * 0 23 1 5 11 1 0 a 5 <1 2 2 2 2 1 1 0 2 5 1 * 2 6NEAN • 3C . 13 . 4 6 . 1 7 . 4 1 . 2 3 . 2 3 . 0 7 . 16 .. 0 0 .. 1 3 . CO . Ob . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0STO OtV . 7 0 , 3* . 9 5 . 3 9 . 59 . 4 3 . 1 1 . 6 4 . 2 6 . 40 . 0 0 ,. 3 5 «,C0 . OG . 0 0 . 0 0 . 0 0 . 0 0 • 0 0 • 0 0 • 0 0c u n MEAN # 3C . 22 • 3C . 27 . 3 0 . 2 9 . 2 6 . 2 5 . 2 5 • 2<* . 2 3 .. 2 3 ,<£.Z 22 . 2 2 . 2 1 »21 . 2 1 . 2 1 • 2 1 . 2 1CUM STD Ot V , 7C . 55 . 7 1 . 6 5 . 6 4 « o l . 5 & . 5 9 . 5 7 . 56 . 5 5 ,► 5 * ., 5 4 . 5 3 . 5 3 . 5 3 . 5 3 . 5 3 . 5 3 . 5 2 . 5 2

E-12

PLANTS REACTOR YEARS1 2 3 * 5 6 7 d 9 10 11 12 13 1* 15 16 17 l b 19 20 21 22 23 TOTA L

DRESDEN 1 The f i r s t ' T i years of data are unavai lable C C 0 0 0 0 0 060070* 3 . 9*

B IG POCK P T . The f i r s t 10 years of data are unavailable 0 0 0 0 0 0 0 0 0 0 0 063C329 9 . 1 *

HUMBOLDT BAY C 0 0 0 0 0 0 0 0 0 0 0 0 063C801 1 1 . c*

9 N I L E P T . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0691201 1 .3 *

OfSTER CHEEK c 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1691229 .1 *

ORESOEN 2 c 0 C 0 0 0 c, 3 0 0 o 0 0 0 070C609 6 .8 *

M ILLS TONE 1 c 3 0 0 0 c 2 J 0 0 0 0 0 2710312 9 .7 *

MGNTIC ELLC 0 0 0 0 0 0 0 J 0 0 0 0 0 071C630 6 . 1 *

DRESDEN 3 c 0 0 0 0 0 0 0 0 0 0 0 0 0711116 1 .5 *

V T . YANKEE c 0 0 0 0 0 Q 0 0 0 0 0 0721130 1 .1 *

P IL GR IM 1 1 0 c 0 0 0 0 0 0 U 0 0 1721201 1 .0 *

OUAO C I T I E S 1 0 0 0 0 0 0 0 0 0 0 0 073C218 1 0 . f*

OUAO C I T I E S 2 0 0 0 0 1 c 0 0 0 0 0 173C310 9 . 8 *

COOPER S T * . 0 0 0 0 0 0 0 0 0 0 074C701 6 . 0 *

PEACHBOTTGM 2 c 0 c 0 0 0 0 0 0 0 07*C705 5 .9 *

BROUN FERPY 1 c 0 0 0 0 G 0 0 0 C 07*0801 5 . 0 *

PEACHBOTTCM 3 0 0 1 0 0 1 0 0 0 0 27*1223 • 3*

OUANE ARNOLD 0 1 1 c 0 1 0 0 0 375C201 11 .0*

BROWN FERRY 2 0 0 0 0 0 0 0 0 <i 0750301 1 0 .1 *

F I T Z P A T R I C K c 0 (I 0 c 0 0 0 0 075C728 5 .2 *

BRUNSWICK 2 0 0 0 0 0 0 0 0 0 0751103 1 . 9 *

HATCH 1 C 0 c 0 2 0 0 0 0 2751231 • 0*

BROWN FERRY 3 c 0 c Cr 0 c G 077C301 10 .1 *

BRUNSWICK 1 0 0 c c 0 0 0 077C318 9 . 5 *

HATCH 2 1 1 c 0 0 2790905 3*9*

SUSQUEHANNA 1 0 083C608 6 . 0 *

TO TA L E V E M S 2 2 2 0 3 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 IkPLANT YEARS 23 23 23 23 22 22 20 20 15 11 10 8 5 * 2 2 2 2 1 1 0 2 5 1 . 2 *NEAN . 0 9 .0 9 • 09 . 0 0 • 1* • C9 • 10 • 05 • 00 . 00 . 0 0 • 00 •00 . GO . 00 •00 • 00 • vO • 00 • 00 • 00 • 06STO DEV . 2 9 .2 9 .2 9 • 00 • *7 • 29 • * 5 • 22 .0 0 •00 . 0 0 • 00 •00 . 00 •00 . 00 • 00 • 00 • 00 • 00 • 00CUN MEAN • 09 • 09 • 09 • 07 • 08 • 08 • 08 • 08 • 07 •07 . 0 7 . 0 6 •06 •06 . 06 •06 • 06 • 06 • 06 • 06 • 06CUN STD DEV • 29 • 28 • 28 • 25 • 30 • 3C • 32 • 31 . 3 0 •29 .2 8 • 28 . 28 . 27 . 27 . 27 . 2 7 .2 7 .2 7 • 27 • 27

P L A N T S r e a c t o * YEARS1 2 3 * - 0 7 * 9 1G 11 12 13 1* 15 16 i.7 16 19 2G 21 22 2 3 T QT AI

DRESDEN i The f i r s t 12 :pears of data are u n a v a i l a b l e 0 0 0 0 1 1 0 2t O C 7 0 * 3 . 9*

B I G POCK P T . The f i r s t io ;years of data ar e una v ai l a b l e 0 0 0 C 0 1 C 0 3 0 0 19 . 1 *

HUMBOLDT e * r C n 0 0 c 0 1 3 0 0 0 0 3 4e i C f c o i 1 1 . 0 *

9 M I L E P T . 1 2 0 c l V c i j 0 0 0 0 0 0 0 4t < i l k 01 1 . 0 *

O r S T f R C S E c K 1 j i ■j z j 3 0 c c i 1 G 0 6* < U £ 2 « . 1 *

DRE S DE N 2 1 •> G 0 0 ; c 3 c 1 1 0 0 0 47 0 C c 0 9 o . a *

H l L L S T O h f 1 2 C 3 G L c 3 0 c 0 u G 27 1 C 3 1 2 9 . 7 *

W C N T I C f L L C 2 : c i 1 I 1 j c G 0 0 77 1 C f 30 6 . i *

DRfcSDE* 3 ? i 1 0 0 1 1 0 c 0 G 0 0 b1 . 5 *

V T . YANKE E 0 l I 0 0 i 0 3 G G G 3 37 2 1 1 30 1 . 1 *

P I L G R I M l r c 3 { 0 C 1 i 1 1 c 0 97 2 1 2 01 1 . 0 *

QUAD C I T I E S 1 1 0 1 1 c c : 1 2 2 G 97 3 C 2 1 8 i 0 . * *

OUAfl C I T I E S 2 ? 0 0 0 G c G 0 C 0 0 27 J C j 10 9 . 8 *

COOPER S T A . o z c & 0 0 0 0 0 C 074C7 01 6 . 0 *

P t A C H B P T T L K > ? r i 0 0 c G J <J 1 47 4 C 7 3 5 5 . 9 *

b r o m n f e r r y i c 0 1 0 0 c C L 0 0 27 4 C 6 01 5 . 0 *

P E A C H B H T T C M 3 1 I G o 1 0 1 J 0 1 67 * 1 2 2 3 . 3 *

O U A Nt A P NC L U c G 0 u 0 1 C 3 0 17 5C 2 3 1 1 1 . 0 *

BROWN F fc R R Y 2 c C 1 0 C 2 1 2 0 67 b C 301 1 0 .1 *

F I T Z P A T R I C K 0 c C 1 0 c 0 j 0 17 5C7 2H 5 . 2 *

B RUNS WI C K 2 i 1 0 1 0 1 G 3 0 47 5 1 1 0 3 1 . 9 *

H A T C H 1 e 0 c & 1 c 1 1 G 97 5 1 2 3 1 . 0 *

BROWN FfcRRY 3 i 2 i G 0 c C 47 7 C 3 0 1 1 3 . 1*

B RUNS WI C K 1 0 0 0 1 G 2 G 37 7 C 3 I 8 * . 5 *

H A T C H 2 c 3 0 0 0 37 9 C « 0 5 3 , 9 *

S U S Q U E H A NN A 1 0 06 3 C 6 0 8 6 . 9 *

T C T A L E V E h T S 2*. 11 11 0 3 12 9 6 3 * 1 1 1 G 0 1 1 1 0 0 0 1 02P L A N T Y E ARS 23 23 23 23 22 22 2 0 23 15 11 10 d 5 * 2 2 2 2 1 1 0 2 5 1 . 2 f tMEAN 1 .C* • *8 . * 8 . 3 b . 1 * ,. 3 5 • <r5 . 33 . 2 0 . 36 . 1 0 . 13 . 20 . 0 0 . 30 . 5 0 . 5 0 • 3G . 0 0 • OC »0<j • 41s t o o e v i • 3b . 8 5 . 7 3 . 57 . 3 3 , 7 * .3 1 . 57 . 5 6 . 6 7 . 3 2 . 33 .,<*5 . 0 0 . 0 0 . 7 1 . 7 1 . 7 1 . 0 0 . OG . 0 0CUM MEAN 1 • 0* . 7 6 • 6 7 . 59 • SG >51 . 5 0 . *8 . 4 6 . *5 • 4 3 . *2 . * 2 . * 1 . *1 . * 1 . *1 . * 1 . 4 1 . 4 1 . 4 1CUM S T O O E V 1 . 3 6 1 . 1 6 1 . 0 * . 95 . e e ,,66 . 8 2 . 60 . 79 . 76 .. 7 7 . 76 . 75 . 7 & . 75 . 7 4 « 7* . 74 • 74 . 74 • 74

E-14

PLANTS REACTOR YEARS1 Z 3 4 5 6 7 d 9 10 11 12 13 14 15 26 17 I B i 9 20 2x 22 11 TO TA L

DRESDEN 1 The f i r s t 12 years of data are unavai lable 0 0 0 0 0 G 0 0600 70 4 3 . 9 *

0 I& ROCK P T • The f i r s t 10 years of 4a ta are unavai lable 0 0 0 0 0 0 0 0 0 0 0

63C329 9 . 1 *H UH80L DT 6AY 0 0 o 0 0 C Q 0 0 0 0 0 0 0

63C891 1 1 .0 *9 P l I lE P T . 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1

691201 1 .0 *OYSTER C « E U 1 0 Q G 0 0 c 3 3 0 Q 0 3 0 0 1

691228 . 1 *ORESOEN 2 c o o 0 0 0 c 3 0 C 0 0 0 c G

70C609 6 .9 *M U L S T O N E 1 c 0 1 2 3 2 2 3 0 0 0 0 0 10

71C312 9 . 7 *h o n t i c e l l c 0 1 0 0 0 o 0 J 0 C 0 0 0 1

71C630 b . l *DRESDEN 3 0 0 o u 0 C 0 0 C C 0 0 0 0

7 11 11 b 1 .5 *V T . YANKEE 1 0 o 0 c 0 0 3 0 0 c 0 1

7 21 13 0 i . l *P l l & f t i n 1 c 0 c 0 0 0 0 3 0 0 1 0 I

721201 1 .0 *OUAD C I T I E S 1 0 o o 0 V c c 0 0 u C 0

73C218 1 0 .4 *OUAO C I T I E S 2 0 o o 0 0 0 0 0 0 0 0 0

73C310 9 .d *COOPER S T A . c 0 c 0 0 0 i 3 0 0 1

7 40 70 1 6 . 0 *PEACH BCTTCH 2 c 0 o 0 c c 0 3 0 0 0

74C705 5 .9 *BROUN FERRY 1 c o o 0 0 0 0 0 0 0 0

740601 5 .0 *p EACHBQTTCn 3 c 0 o 0 0 c 0 3 0 C 0

741223 .3 *DUANE ARMCLO 1 1 c 0 0 0 c 0 0 2

75C201 1 1 .0 *BROWN F t P B Y 2 c 0 0 0 1 0 0 J 0 X

75C3Q1 1 0 .1 *F I T Z P A T R I C K 0 0 0 0 0 0 0 3 0 0

75C7 28 5 .2 *BRUNSWICK 2 c o o 0 0 0 c 3 0 0

751103 1 .9 *HATCH 1 0 0 o 0 0 L 0 0 0 0

751231 .0 *B*OWN FERRY 3 c 1 0 3 0 0 0 I

77C301 2J . 1 *BRUNSWICK 1 0 o o 0 0 c c 0

770 31 8 9 . 5 *HATCH 2 0 o o 0 0 0

79C905 3 .9 *SUSQUEHANNA 1 0 0

83C608 6 .6 *

T O T A L EVEN TS 4 3 1 I 4 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 20PLANT YEARS 23 23 23 23 cZ 22 ^ C 23 15 11 LG ft % 4 2 ? c 2 L 1h e a n . 1 7 . 1 3 . 0 4 . 0* .1 6 . 0 9 • i & .00 .00 •OC .10 .Ou .30 •JO .30 .00 .00 ,00 , 0 0 .00 .00 .08STO DEV . 3 9 .34 .21 . 4 2 • 6b . 4 3 . 4 9 .30 .00 . 00 .32 .00 .00 . 00 .00 .00 .00 .00 .00 .00 .00cun mean • 17 .15 .12 .11 . 12 .12 .12 • U .10 . 09 .09 .0 9 . 0 9 . 09 . 0 9 . 0 9 . 0 9 .0 8 . 0 8 *08 • 08£Un STO DEV . 3 9 . 3 6 . 3 2 .3 9 • HI .4 2 .* 3 .41 . 3 9 . 39 .3 8 . 3 7 . 3 7 . 36 . 3 6 . 3 6 . 3 6 .3 6 •36 . 3 6 . 3 6

E-15

- '“•s

PLANTS REACTCR YEARS23 TOTA L1 Z 3 * 5 6 7 a 9 10 11 12 13 1* 15 16 17 18 19 2G 21 ~*.2

DRESDEN 1 The f i r s t 12 years of data are unavailable 0 C 0 0 0 0 0 060070* 3 . 9*

B IG ROCK P T . The f i r s t 10 years of data are unavailable 0 0 0 1 0 0 0 G 0 0 0 163C329 9 . 1 *

h u h b o l d t e*Y 0 0 c 0 0 L c 3 0 0 0 0 0 0

63C801 11 .0 *9 WILE P T . 1 1 0 c 0 0 c G 3 0 G 0 1 0 G 0 2

6912G1 1 .0*OTSTEP CREEK 0 0 0 0 0 0 t j 0 0 0 0 0 G 0 0

691228 .1*0RES0EN 2 c 0 c 0 u 0 0 ;> U 0 0 c 0 G 0

70C609 6 .3 *H lL L S T Q N t 1 2 0 c 1 0 2 3 3 0 1 0 0 0 9

71C31? 9 . 7 *H O H T I C t l L C 1 0 0 1 0 0 1 0 0 G 0 0 *

7 1 C 6 3 0 6. 1 *DRESDEN I Q 0 <3 c 0 c -3 3 0 0 0 0 1

7 1 1 1 1 6 1 . 5 *V T . YANKc t C 0 c 0 0 c C } 1 1 0 G 2

7 2 1 1 3 0 1. 1 *P I L G R I M 1 c 0 0 J 0 0 0 J 0 1 0 0 1

7 2 1 2 0 1 1. 0 *QUAD C I T I E S 1 0 0 0 0 0 c 0 J 0 0 0 0

7 3 0 2 1 8 l u . * *QUAD C I T I E S 2 0 0 0 0 c c 0 0 0 0 0 0

73C310 9 .8 *C OO PE R S T A . 1 0 0 0 c c 0 3 0 c 1

7 * v 7 0 1 6 . 0 *PEACHBOTTCM 2 c 0 G 0 0 0 G J G G 0

7*C705 5 .9 *BROWN FERRY 1 c c 0 0 c 0 C 0 G 1

7 * c e o i 5 .0 *P E A C H B O T T C H 3 c 0 0 0 0 0 0 3 0 0 0

7 * 1 2 2 3 • 3*DUANE ARNCLD c 0 c 0 0 0 C 3 0 0

75C201 11. u*BROWN FERRY 2 0 c 0 2 c 0 0 0 3

7 5 C 3 0 1 10. 1 *F I T Z P A T R I C K 0 0 0 0 3 0 0 3 0 0

7 5 C 7 2 8 5 . 2 *BRUNSWICK 2 0 0 c 0 0 0 0 3 0 0

7 5 1 1 0 3 1 .9 *H A T C h 1 c 0 c 0 0 I u 3 0 0

7 5 1 2 3 1 .0 *BROWN FfcPPY 3 0 0 G 0 0 c G 0

77C301 10 1*BRUNSWICK 1 0 c 0 u 0 c 1 1

770318 J . 5 *HATCH 2 0 0 0 0 0 0

79C905 3.9*SUSQUEHANNA I 0 0

8 3 C 6 0 8 6*6*

t o t a l e v e n t s 5 1 0 2 2 2 * 2 1 3 1 1 0 1 0 0 0 0 0 0 0 26P L A N T YEARS 23 23 23 23 22 22 2 C 20 15 11 10 8 5 * 2 2 2 2 1 1 0 2 5 1 . 2 0MEAN . 22 .C* • 00 . 0 9 .0 9 .0 9 .2 0 13 • 07 . 21 • 10 • 13 • GO 25 . 0 0 00 • 00 • 00 • 00 • Ou • 0 0 • 10

STO OEV * 52 .2 1 • 00 • 29 • *3 • *3 • 70 31 • 26 *7 • 32 • 35 . 0 0 5G • 00 0 0 • 00 • 00 , 0 0 • 00 • 00c u n mean • 22 • 13 • 0 9 • 09 • 09 • 09 • 1 0 13 . 1 0 11 • 11 • 11 • 11 11 . 11 11 • 11 .1 1 • 11 . 1 0 . 1 0cun STD OEV . 52 .* 0 • 33 . 32 • 3* • 35 .4 1 *0 . 3 9 •*G • 39 .3 9 • 39 39 • 39 3 8 • 38 • 36 • 38 . 3 6 • 38

E-16

Table E-12. BWR Category 11: Inadvertent opening r : a safety/relief valve (stuck)

PLANTS REACTOR YEAR*1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 TO TA L

DRESDEN 1 The f i r s t 1? years of data are unavai lable 0 0 0 0 0 0 0 0600704 3. 9*

BIG ROCK P T . The f i r s t 10 years of data are unavailable G 0 0 0 0 0 0 0 0 0 0 si63C329 9 . 1 *

HUNBOLDT BAY 0 0 0 0 G C G 0 0 0 0 0 G 0630801 1 1 .0 *

9 N I L E P T . 1 0 0 C 0 0 0 0 3 0 0 0 0 0 0 0 0691201 1 .0 *

OYSTER CREE* 0 0 0 0 G G c J 0 c c ti 0 G 0 0691220 • 1*

ORESOEN 2 0 0 c 0 0 0 0 0 0 G 0 0 0 0 it70C609 6 .d *

M ILLSTONE 1 0 0 0 0 1 G 2 D G 0 0 0 0 371C312 9*7*

H O N T I C E I L C 0 0 0 0 0 G 0 3 0 0 G 0 0 071C630 6 .1 *

DRESDEN 3 0 0 G G 0 0 G 3 0 0 0 0 0 071X116 I . * *

V T . YANKEE 0 0 0 0 0 0 U 0 0 0 0 0 0721130 1 .1 *

P IL G R If l 1 1 0 1 0 0 0 0 3 0 G c 0 I721201 1*0*

o u a d c r m s i c 0 0 0 0 c 0 I 0 0 0 173021B 1 0 .* *

OUAO C I T I E S 2 0 0 0 0 0 u 0 0 0 0 0 073C310 9 .8 *

COOPER S T A . 4 0 0 0 0 0 G 3 0 0 474G701 6 . 0 *

PEACHBOTTCh 2 1 1 1 0 0 c 1 0 1 0 574C705 5 , 9 *

BROWN FERRY 1 2 o o 0 0 G 0 3 0 0 274C601 5 . 0 *

PEACHBOTTC* 3 0 1 0 0 1 0 0 0 1 0 37*1223 • 3*

DUANE ARNCLO c 0 0 0 0 c 0 0 0 075C201 U . O *

BROWN FERRY 2 0 0 2 0 0 0 0 3 0 275C301 1 0 .1 *

F I T Z P A T R I C K c 2 0 0 0 0 0 0 0 275C728 5 .2 *

BRUNSWICK 2 1 0 c 0 0 G 0 0 0 1751103 1 . 9 *

HATCH 1 0 3 1 1 0 C 0 0 0 5751231 .0 *

BROWN FFRRY 3 0 1 0 0 0 0 0 177C301 1J .1 *

BRUNSWICK 1 c 0 1 0 0 1 c Z770310 9 . 5 *

HATCH 2 0 0 0 0 0 079C905 3 .? *

SUSQUEHANNA 1 0 003C6OB 6 . 6 *

T O TA L EVENTS 9 8 6 1 2 1 3 1 2 0 0 0 0 0 0 0 G 0 0 0 0 33PLANT Y£ARS 23 2 3 23 23 i t Z2 ?.c 20 15 11 10 e 5 4 2 2 2 2 i l 0 2 S 1 . 2 INEAN .3 9 . 3 5 .2 6 • 04 • 09 • 05 • 15 • 05 • 13 •00 • 00 .0 0 . GO . 0 0 •00 . 0 0 • 00 • 00 • 00 • 00 • 00 • 13STD DEV .9 * . 7 8 .5 * .2 1 .2 9 • 21 • 49 .22 • 35 . 00 • 00 . 0 0 ',00 . 0 0 . 00 . 0 0 • 00 • 00 • Jt> • 00 • HOCUN NEAN .3 9 . 3 7 *33 . 2 6 .2 3 • 20 • 19 • 16 • 17 •16 • 16 • 15 . 15 . 1 4 •14 .1 4 • 14 • 14 • 14 • 14 • 14CUN STD OEV • 9* •85 .7 6 • 68 • 62 .5 8 •5 7 • 5* • 53 •52 • 51 • 50 ..49 . 4 9 . 49 .4 0 • 48 • 46 • 48 • 48 • 48

E-17

2 3 * 5 6 7 8 9

The f i r s t T2 years of data are unavailable

The f i r s t 10 years of data are unavailable

H E ACT OR YEARj 10 11 12 13 1* 15 16 17 18 19 20 21 22 23

0 0 0 0 0 03 .9 *

0 0 0 0 0 0 C 0

TOTAL

0

0

0

2010010100

0

0

0

0

0

0

0

0

20

20

0

ORfcSOEN 160C7D*

BIG ROCK P T .63C329

HUNBGIDT BAY 63C801

9 MILE P T . I 691201

OYSTER CREEK 6^12 28

0RESUEN 270C609

H i l l STONE 171G312

H O N T I C E U C71C630

DRESDEN 3711116

V T . YANKEE7 2 1 1 3 0

PILGRIM 172i20 1

OUAD C I T I E S 1 73C216

OUAO C I T I E S 2 73C310

COOPER S T A .7*C701

PEACHBOTTCH 2 7*C705

BROWN F£RPY 1 7*C601

fE A C H B O TTC * 3 7*1223

OUANE ARNCLO 75C201

BROWN FERRY 2 75C331

F IT Z P A T R I C K75C728

BRUNSWICK 27?>1103

HATCH X731231

ftROUH FERRY 3 77C301

BRUNSWICK 177C318

HATCH 279C905

SUSQUEHANNA I 630608

0 0 00 1 00 0 0

c 1 0c c c

c 0 0

I 0 c

0 0 u

c 0 1c 0 0c 0 00 0 0c 0 0

c 0 c

0 0 0c 0 c

c 0 0c 0 0c 0 0

c 2 00 0 c

0 0 10 0 0c

6. 8*

0

1

0c000cCl

000◦c0000000003.9*

0 0 3 0t I 0 00 3 c

c 0 0 0c c 0 00 0 J 0

c c 3 00 0 3 0

c 0 0 0c 0 3 00 0 0 c

0 0 0 0

0 0 0 0

c c 3 0

c Q 3 00 0 J 0

1 1 .0 *c 0 0 0

1 0 .1 *0 c J 0

5 .2 *c 0 0 0

1 . 9 *c c J 0

.0 *0 0

10 . 1 *0 0

■*.5*

c

00

0

0

0

0

0

0

0

cb . 0*

05 . 9 *

05.0*0. 3*

0G

C

0C

0

C

0

0

0

010.**

09 .8 *

0

0

0

0

0

0

0

0

01.1*

01.0*

311.0*

0

0

0

c9 .7 *

6.1*0

1 .5 *

G 01 .0*

0

0b .a *

0.1 *

TOTAL EVENTS 1 * 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9PLANT Y tAPS 23 23 23 23 i 2 22 20 20 15 11 10 8 5 * 2 2 2 2 1 1 0 2 5 1 . 2 0MEAN • 0* . 1 7 . 0 9 • 0* .0 5 .0 0 • JO • 33 .3 0 . 0 0 .0 0 .0 0 .0 0 . 3 0 .0 0 • 00 . 0 0 • 00 .0 0 • vO . 0 0 • 04STO DEV .2 1 ,* 9 .2 9 .2 1 .* 1 ,o O . 3 0 .0 0 . 0 0 • oc . 0 0 .0 0 .0 0 .OC . 0 0 . 0 0 . 0 0 . 0 0 .0 0 . 0 0 . 0 0CUN MEAN .0 * ,11 .1 0 . 0 9 .0 8 . 0 7 .0 6 .05 .0 5 . 0 * .0 * • 0* . 0 * «0 * . 0 * . 0 * . 0 * • 0* .0 * . 0 * . 0 *CUN STD OEV .2 1 .3 8 .3 5 .3 2 . 3 0 .2 8 • 2b .25 .2 * • 23 • 22 • 22 • 22 • 22 • 22 • 21 . 2 1 • 21 ,21 • 21 .2 1

E-18

Table E-14. BWR Category 13: Turbine bypass or control valves cause increased pressure (closed)

PLANTS r e a c t o r YEARS1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 l o 17 16

OJ 21 22 23 TOTAL

ORESOEN 1 The f i r s t 12 years of data are unavailable 0 0 0 0 0 0 0 0600704

The 10 ;3 .9 *

BIG ROCK P T . f i r s t 0 0 0 0 0 0 i 0 0 0 0 163C329 9 . 1 *

HUMBOLDT BAY 1 0 C i 0 C C 0 0 1 0 0 0 3630801 11 .0*

9 N I L E P T . 1 0 0 C 0 G 0 c 0 0 0 1 0 0 0 0 1691201 1 .0 *

OY STER CREEK c 0 0 1 G C c 1 0 0 j 0 0 G 0 46 91 22 8 .1 *

ORESOEN 2 1 1 1 0 C 0 G i G 0 1 1 0 C 6700609 6 .8 *

m i l l s t o n e I 2 0 0 0 0 G 0 0 G 0 0 0 0 271C312 9 .7 *

N O N T K E L L C 0 0 0 0 0 2 0 1 0 0 G 0 0 371C630 6 .1 *

ORESOEN 3 c 1 1 0 0 c c 0 0 3 c 0 0 5711116 1 .5 *

V T . YANKEt 0 0 2 3 1 0 u a 1 2 0 0 9721130 1 .1 *

PIL G R IM 1 c 0 0 0 0 i 0 0 0 1 0 0 Z721201 1 .0 *

OUAO C I T I E S 1 0 1 0 1 3 G 0 0 0 G 0 5730218 1 0 . V*

OUAD C I T I E S 2 0 0 0 0 0 C 0 D 0 1 0 173C310 9 .8 *

COOPER S T A . 7 2 0 c G 0 G j 2 G 1174C701 6 . 0 *

PEACHBOTTCH 2 C c 1 0 2 c G 3 0 0 3740 73 5 5 .9 *

BROWN FERRY 1 1 0 c 0 0 0 G 0 0 0 174C601 5 .0 *

PEACHBOTTCfl 3 0 2 0 1 1 1 U 3 0 0 5741223 • 3*

OUANE ARNCLO c G 1 0 I c 3 0 2 775C231 1 1 .0 *

SROWN FERRY 2 c 0 2 G 1 0 1 1 1 67 5C3J1 1 0 .1 *

F I T Z P A T R I C K 1 0 2 1 1 0 1 1 0 7750720 5 .2 *

BRUNSWICK 2 c 0 1 0 0 1 C 0 0 2751103 1 . 9 *

HATCH 1 1 5 1 1 2 1 C 1 G 12751231 .u *

8R0WN FFRRY 3 c 0 0 0 1 G 0 177C301 10 .1 *

BRUNSWICK 1 c 1 c 0 2 1 0 4770318 9 .5 *

HATCH 2 0 1 1 0 0 279C905 3 . 9 *

SUSQUEHANNA 1 0 063C608 6 .8 *

TO TA L EVENTS 14 14 13 9 15 7 5 8 3 e 2 1 0 0 0 0 1 0 0 0 0 103PLANT YEAKS 23 23 23 23 22 22 20 23 15 li 10 6 5 4 2 2 2 2 1 1 0 2 51 *2 6MEAN . 6 1 •61 .5 7 . 3 9 • 66 • 32 • 25 •40 . 2 0 . 73 .2 0 .1 3 • 0 0 •00 . 0 0 . 0 0 • 50 . 0 0 , 0 0 . 00 • 00 .4 1STO DEV 1 .5 C 1 . 16 . 7 3 .7 2 • b9 .5 7 • 72 •75 • t*b 1. 01 .4 2 • 35 •00 . OG . 00 *00 • 71 • 00 •00 *00 • 00CUM MEAN • 61 •61 .5 9 .5 4 • 57 • 53 • 4 9 •40 . 4 6 •46 .4 6 . 4 5 • 44 . 43 . 43 . 4 2 . 43 • 42 •42 *42 • 42CUN STO OEV 1 . 5 0 1* 32 1 • 15 1 • Ob 1 .0 3 • 97 • 95 •93 . 9 0 . 91 .8 9 .8 8 . 6 7 . 67 . 87 . 8 6 . 8 6 • 66 •66 *06 • 8b

PLANTS RE A C T O R YEARS 10 11 12 13 1* 15 16 17 i e 19 20 21 22 23

0 0 0 0 0 03 .9 *

0 0 0 O 0 0 0 0

TOTAL

0001002

DRESDEN 1 The f i r s t u years of data are unavailable60070*

BIG POCK P T . The f i r s t TO years of data are unavailable 0 0630329

HUHBOLDT BAY 0 0 0 0 0 0 0 3 0 0 0 063C801

9 N I L E P T . 1 c C 0 1 c c 0 0 c c 0 0691201

OYSTER CREEK c c c 0 0 0 b 3 0 0 0 0691229

DRESDEN 2 c 0 0 0 0 0 0 3 0 0 0 070C609

MILLSTONE 1 c 0 c 1 0 c 1 0 0 0 0 071C 31?

H O M T I C l l L C 3 r c 0 0 c u 3 1 0 0 071C630

DRESDEN 3 1 0 2 1 2 c 0 3 0 1 0 3711116

V T . YANKEE C C 0 0 0 1 c 0 0 0 0 0721130 1 .1 *

P IL GR IM 1 0 C 0 0 Q c 0 3 0 0 0 0721201 1 .0 *

OUAO C I T I E S 1 0 0 0 0 C c 0 I 0 G 0730218 1 0 .* *

OUAO C I T I E S 2 1 1 0 0 0 c c I 0 0 c730310 9 .8 *

CQGPfcR ST A . 0 0 0 0 0 0 0 3 1 c7*0701 6 .0 *

PEACHBOTTCn z c 0 0 0 0 G 1 0 0 07*C705 *♦9*

BROUN FEtiPY I c 0 I 0 2 c 0 0 0 07 * C 8 g l 5 .0 *

PEACH0OTTCM 3 c 1 0 u 0 c u 3 0 07*1223 .3 *

QUAME ARNOLD 0 1 0 0 0 0 0 3 075C201 1 1 .0 *

BROUN FERRY 2 c ? 3 I Q c 0 0 075C301 10.1 *

F I T Z P A T R I C K c 3 1 0 0 0 0 3 0750728 5 .2 *

BRUNSWICK 2 0 0 1 0 0 0 i 1 0751103 1 .9 *

HATCH 1 3 0 c 0 0 c 0 0 G751231 .0 *

BROUN FERRY 3 c o b 0 L c 077C301 13 . 1*

BRUNSWICK 1 1 0 0 c 0 0 077C319 9 . 5 *

HATCH 2 c 0 0 0 0790905 3 .9 *

SUSQUEHANNA 1 063C606 6 . 6 *

000

11. o*000c

9 .7 *0

6.1*0

1 .5 *

01*0*3.1*

0£>•<*«

TO TA L EVENTS 9 8 e * 5 1 3 3 2 1 0 0 0 C 0 0 0 0 0 0 0 *4PLANT YEARS 23 23 23 23 22 22 2 C 23 15 11 10 8 5 * 2 2 2 2 1 1 0 2 5 1 . 2 8MEAN . 3 9 .3 5 .3 5 • 17 .2 3 .0 5 »1 i .15 .1 3 .0 9 . 0 0 .0 0 . 0 0 .oc . 0 0 . 0 0 • 00 .0 0 .0 0 .0 0 . 0 0 .1 8STD DEV .8 9 .7 8 .7 6 * 39 .6 1 .2 1 .3 7 .3 7 .3 5 . 30 .0 0 .0 0 .0 0 , 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 0 . 0 0CUM MEAN .3 9 .3 7 . 3 6 .3 2 • 3C .2 6 .2 * .23 .2 3 .2 2 . 2 1 .2 0 . 2 0 .1 9 . 1 9 . 1 9 .1 9 .1 9 .1 8 • IB . 1 8CUH STD DfcV . 8 9 .8 3 .BO .7 3 .7 0 .6 6 • o 3 .60 .5 9 . 5 7 .3 6 • 55 .5 5 . 5 * .5 * • 5* .5 * .5 * .5 * .* 3 .5*3

E-20

PLANTS

OftESO EN Xeco7o*

BIG POCK PT* 630329

HUHB01DT BAY 630801

9 N I L E P T . 1 69X201

OY STER CREEK 691 22 6

O R t S O tH Z70C609

MILLSTONE 17XC312

NONT1CEL LC71C630

DRESDEN 3711 11 6

V T . YANKEE721 13 0

P IL G R IM 1721201

OUAO C I T I E S 1 73C218

QUAD C I T I E S 2 73C310

COOPER S T * .7*C701

PEACH60TTCM 2 7*0705

BROWN FERRY 1 74C601

PEACHBOTTCN 4 7*1223

DUANE ARNOLD 75G201

BROWN FERRY 2 750 30 1

F I T Z P A T R I C K75C720

BRUNSWICK 2751103

HATCH 3751231

SHOWN FERRY 3 77C301

BRUNSWICK 1770 31 6

HATCH 2790905

SUJQUEHANhA 1 830606

0

1

0

C

0

0

0

0

C

C

0

1

0

G

0

0

c

0

0

0

0

3

0

0e .8*

2 3

The f i r s t

The f i r s t

0 o

12 years of

10 years of

0 o

6 7 8 9

data are unavai lable

data are unavailable

REACTOR y e a r *10 11 12 13

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

G

G

0

0

0

0

03.9*

0

G

0

0

0

c

00

0000tG0c00000

13.1*0

9 .5*

00000000

0

00

00000

11.0*0

10.1*0

5 .2 *0

1 - 9 *0.0*

0

00c00c

00

0

0

06.0*

05.9*0

5 .0 *0. 3 *

0

0

0

0

0

00

0

000

10.**0

9 . 8 *

G

0

0

0

0

0

0

0

01. 1*

01.0*

1*

0

0

16

011.0*

0 00

0

09 . 7 *

06. 1*

01 .5 *

01.0*

0.1 *

03 . 9 *0 0

06.8*

09 . X *

TOTA L

0

X

0

X

0

0

0

0

0

0

0

0

0

1

0

X

0

X

X

0

20

0

*

1

0

TO TA L BVEbTS PLANT YEAkS MEAN STD OEV CUN MEAN CUN STO OEV

5 2 2 Z 1 1 0 0 0 0 0 0 0 C 0 0 0 1 0 0 0 1323 23 23 23 22 22 20 23 15 11 10 6 5 * 2 2 2 2 X X 0 2 5 1 .2 *22 .0 * .0 9 • 09 • 05 .0 5 w O • 00 • OO • 00 .0 0 .0 0 .0 0 .O C • 00 . 0 0 . 0 0 • 50 • 00 • 00 • 00 • 0567 .2 1 .2 9 . 2 9 .2 1 .2 1 .0 0 .00 .CG .0 0 .0 0 . 0 0 . 0 0 • 00 • 00 . 0 0 . 0 0 • 71 . 0 0 • 00 • 0022 • 13 • 12 • 11 • 10 • 09 •0 8 .07 .0 6 • 06 • 06 .0 5 .0 5 . 0 5 • 05 . 0 5 • 05 • 05 .0 5 .0 5 • 0567 ♦ 50 . * * . * 0 • 36 .3 5 .3 3 .31 .3 0 . 2 9 .2 9 .2 6 .2 8 • 28 • 27 . 2 7 . 2 7 • 28 .2 8 .2 8 • 29

APPENDIX FFURTHER INFORMATION ON BOUND CALCULATIONS

F-l

E-21

PLANTS

DRESOEN X60070*

BIG ROCK PT, 63C329

HUMBOLDT BAY 630601

9 NILE PT. X 69X20X

oyster creek6 91 22 8

DRESDEN 270C609

rtlLLSTGNE X7X03X2

MONTIC ELL C71C630

DRESDEN 37X1X16

VT* YANKEE721X30

PILGRIM 172X201

QUAD CITIES X 7)0218

QUAD CITIES 2 73C310

COOPER STA.7*0701

REACHBOTTCM 2 74C705

BROUN FERRY 1 7*0001

PEACHBOTTCM 3 741223

DUANE ARNOLD 75C201

BROUN FERRY 2 75C30X

FITZPATRICK75C728

BRUNSWICK Z751103

HATCH 1751231

BROUN FERRY 3 77C301

BRUNSUICK 177C318

HATCH 2790905

SUSQUEHANNA 1 83C60S

REACTOR YEARS 10 11 12 13

The f i r s t 12 years of data are unavailable

The f i r s t io years of data are unavailable

oc0ccocco0000000c00cCc00

6.8*

00000cc0000100c0000cc00

3 . 9 *

0 0 0 00 c 0 00 0 3 00 0 0 00 I 0 cc c 3 0c c 3 c0 0 3 00 0 D 00 0 3 0X c 0 00 0 3 00 0 3 0X 0 0 00 0 3 00 0 3 0

11*0*c 0 0 0

10.1*0 0 0 0

5.2*1 0 a 0

1.9*0 0 a 0

.0*0 0

10.1*0 0

0c00ci0c00c0

6. 0*0

5 .9 *0i».0*0.3*

000

11.0*0000

9 . 7 *0

6.1*0

1 .5 *

1* 15 lb 17 Id 19 20 21 22 230 0 0 0 0 0

3.9*0 0 0 0 0 0 0 0

9.1*

0 01.0*

0 0.1*0

6.8*

01. 1*0

1.0*0

10.**0

•j.a*

T OT AL

0000012X0000z

1 0 X 0 5 X 0 32 0 0 0 0

TOTAL EVchTS PLANT YEAR* MEAN STO DEV CUM PiEAK CUM STO DEV

0 * 1 2 1 3 1 0 0 X 0 X 0 0 0 0 0 0 0 0 0 14

23 23 23 23 22 22 20 20 15 XX xo 8 5 * 2 2 2 2 X X 0 2 5 1 . 2 8.OC . 1 7 . 0 * . 0 9 .0 5 • 1* . 0 5 .00 • 00 . 0 9 • 30 • 13 . 0 0 • 00 • 00 . 0 0 . 0 0 • OO . 0 0 • 00 • 00 • 06

. 0 0 .* 9 . 2 1 .2 9 .2 1 .35 . 2 2 • 03 • 00 . 3 0 • 00 .35 • 00 • 00 • 00 . 0 0 • 00 •00 • 00 • 00 • 00.0 0 . 0 9 . 0 7 • 06 • t? . 0 6 •Ob .07 • 06 • 06 • 06 .06 • 06 • 06 • 06 .06 .06 • 06 • 06 • 06 • 06•cc .35 • 31 .31 .29 .30 • 29 • 27 • 26 .27 • 26 • 26 • 26 • 26 • 26 .26 • 25 • 25 .25 • 25 • 25

E-22

PLANTS r e a c t o r y e a r s10 11 12 13 15 17 ie 21 22 iZ

ORESOEN 1 The f i r s t 12 years of data are unavai lable 0 C 0 0 0 G 0 0600 70 4 3* 9*

ft 16 ROCK P T . The f i r s t 10 years of data are unavai lable G 3 0 0 0 0 0 0 0 0 0 063C329 9 . 1 *

HU1BQLDT eAT C 0 0 0 0 0 C 0 0 0 0 0 0 0630801 1 1 .0 *

9 N I L E P T . 1 1 0 C 0 0 c 0 0 0 0 0 0 0 0 0 1691201 1 .0 *

OYSTER CREEK 1 0 0 c C 0 0 3 0 G 0 0 0 c 0 1691226 .1 *

ORESOEN 2 C 0 0 0 0 0 c 3 c G 0 0 0 0 0700609 6 .8 *

m i l l s t o n e 1 0 0 0 G 0 0 0 0 0 0 1 0 0 171C312 9 . 7 *

MONT I C E l l C c c Q 0 0 0 0 3 0 0 0 a 0 071C630 6 .1 *

DRESDEN 3 0 0 c 0 0 0 0 3 0 0 0 0 0 0711116 1 .5 *

V T • YAHKEfc 0 0 0 0 0 c 0 0 0 0 1 0 1721130 1 .1 *

PIL G R IM 1 c 0 0 0 0 0 J 3 0 0 0 0 0721201 1 . 0 *

OUAO C I T I E S 1 0 0 0 0 c c G 0 0 0 0 073C216 1 0 .4 *

OUAD C I T I E S 2 0 0 0 0 c c 0 0 0 0 0 073C31C 9 • 8*

COOPER S T *• 0 0 0 c 0 0 G 0 0 0 07*0701 C .O *

PEACHBOTTCP 2 c 0 0 c 0 c 0 a G 0 074C705 5 .9 *

BROWN ' E R P Y 1 c 0 0 0 0 c 0 3 0 0 3740601 5 . C *

PEACHBOTTCM 3 0 0 0 0 c c 1 3 0 0 17*1223 • 3*

DUANE ARNCLO c 0 c 0 0 1 c 0 1 275C201 1 1 .0 *

BROWN FfR RY 2 0 0 0 0 0 0 0 3 0 075C301 1 0 .1 *

F IT Z P A T R I C K 0 0 0 0 0 G G 3 0 075C728 5.2 *

BRUNSWICK 2 1 0 c 0 0 0 C 3 0 1751103 1 .9 *

HATCH 1 0 0 0 0 0 c c 0 0 0751231 • 0*

BROWN FERRY 3 c 0 c 0 G c 0 077C301 13 .1 *

BRUNSWICK 1 0 0 0 u 0 c 0 077C318 } •&♦

HATCH 2 0 0 c c 1 179C905 3 .9 *

SUSOUEHANNA 1 0 063C608

11111•

1c

I •

1<0

11

TO TA L EVENTS 3 0 t> 0 0 1 1 9 0 C 2 0 0 0 0 0 0 0 0 0 0 9PLANT YEARS 23 23 23 23 22 c c 20 20 15 11 1G a 5 4 3 Z 2 2 1 1 0 2 5 1 .2 8MEAN .1 3 . 0 0 . 00 . 00 . 0 0 .0 5 . 0 $ • 03 • 00 . 00 . 2 0 •00 •CO . 0 0 . 00 . 0 0 . 0 0 • OC . 0 0 • 00 . 0 0 • 04STO DEV .3 4 .CO . oc . 00 . 00 .2 1 • 22 • 03 • 00 •00 .4 2 . 00 . 0 0 . 0 0 . CO . 0 0 .0 0 • 00 • 00 • 00 .0 0CUM MEAN .1 3 .0 7 •04 . 03 • 03 .0 3 .0 3 .03 .0 3 . 02 . 0 3 . 03 .0 3 .0 3 . 03 . 0 3 . 0 3 • 03 • 03 • 03 • 03CUM STD DEV .3 4 . 21 •18 • 16 • 17 .1 6 • 17 • 16 •16 • 18 . 18 •17 . 1 7 •17 .1 7 • 17 • 17 • 17 • 17 • 17

E-23

PLANTS REACTOR YE ARJ>23 TO TA L1 2 3 * 5 6 8 9 10 11 12 13 1* 15 16 17 10 19 20 21 22

DRESDEN 1 The f i r s t 12 years of data are unavai lable 0 0 0 0 0 0 0 0

600 70 * 3 . 9 *B IG ROCK P T • The f i r s t 10 ]fears of data are unaval lable 0 0 0 0 0 0 0 0 it 0 0 0

63C329 9*1*h u h b o l o t b a y 0 0 0 C 0 0 0 3 0 0 G 0 0 0

63C601 11 .0*9 N I L E P T . 1 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 0

691201 1 .0 *OYSTER CREEK c 0 0 0 0 0 c J 0 1 0 0 0 0 0 1

691 22 6 . 1 *DRESDEN 2 0 0 C G 0 G 0 0 0 0 0 0 0 0 0

70C609 6. 8*H ILL S TO N E 1 c 0 C C 0 C 0 0 0 0 0 0 0 0

710312 9 . 7 *n O N T I C E L l C 0 0 C c 0 C c 0 0 0 G 0 0 0

71C630 6 . 1 *DRESOEN 3 c 1 0 0 0 0 0 J 0 0 0 0 0 1

711116 1 . 5 *V T . YANKEE 0 0 0 0 0 0 0 0 0 G 0 0 0

721130 i . l *p i l g r i m 1 c 0 C G 0 0 0 0 0 0 0 0 0

721201 1 .0 *QUAD C I T I E S 1 c 0 0 0 0 0 0 0 0 0 0 0

730216 1 0 .* *QUAD C I T I E S 2 0 0 0 0 0 0 0 0 0 0 0 0

730310 9 . a*COOPER ST A * 0 0 c 0 0 0 0 0 0 0 0

7*0701 6 . 0 *PEACHBQTTCM 2 c 0 0 0 0 0 0 0 0 G 0

7*0 70 5 5 . 9 *BROWN FERRY 1 0 0 c 0 0 c C 0 0 0 0

7 * c e o i 5 . 0 *PEACH0OTTCH 3 0 0 0 0 0 0 c 0 0 0 0

7 *1 22 3 .3 *OUANE ARNCLD c 0 0 G 0 0 0 3 0 0

75C201 1 1 .0 *BROWN FERPY 2 0 0 0 0 0 0 0 0 0 0

75C301 1 0 .1 *f I T Z P A T R I C K 0 2 0 c 0 0 0 0 0 2

750726 5 . 2 *BRUNSWICK 2 c 0 0 0 0 0 0 3 0 0

751103 1 . 9 *HATCH 1 c 0 0 G C c 0 3 0 0

751231 . 0 *BROWN FERRY 3 0 c c 0 0 0 0 0

77C301 1 0 .1 *BRUNSWICK 1 0 0 0 0 0 0 0 0

77C31H 9 . 5 *HATCH 2 0 0 0 0 0 0

790905 3 . 9 *SUSQUEHANNA 1 0 0

63C606 6 . 6 *

T O TA L EVENTS C 3 0 0 c 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ♦

p l a n t y e a r s 23 23 23 23 22 22 20 20 15 11 10 8 5 4 2 2 2 2 1 A 0 251*20MEAN .CO • 13 .0 0 • 00 . 0 0 . 0 0 .0 0 .0 0 . 0 0 . 09 .0 0 .OC . 0 0 . 00 . 0 0 . 0 0 • 00 • 00 • 00 . 0 0 .0 0 •02

STD DEV . 0 0 .* 6 .0 0 .00 .00 .00 .00 .00 .00 . 30 .00 .00 .00 . 00 .00 .00 .00 .00 .00 .00 .00CUN MEAN .00 .0 7 . 0* • 03 .03 • 02 * J 2 .02 .02 . 02 .02 .02 .02 . 02 .02 .02 .02 .02 • 02 .02 • 02CUN STD OEV .oc .3 3 .2 7 . 2 3 .2 1 . 1 9 .1 8 .1 7 . 1 6 . 17 • 17 .1 6 . 1 6 . 16 . 1 6 . 1 6 .16 .1 6 • 16 . 1 6 • 16

E-24

PLANTS REACTOR YEAR*1 2 3 4 5 6 7 8 9 1G 11 12 13 1* 15 16 17 16 19 20 21 22 23 TO TA L

DRESDEN 1 The f i r s t 12 years of data are unavailable 0 0 0 0 G 0 0 060C704 3 . 9*

S i t ROCK P T . The f i r s t 10 years of tfaU are uftaval table C 0 0 0 0 0 0 0 0 C 0 063C329 9 . 1 *

HUNBOLOT BAY 0 0 o 0 0 0 G 0 0 G 0 0 0 0630801 11 .0 *

9 N I L E P T . 1 0 o o 0 0 0 G 0 0 0 0 G O O 0 0691201 1 . 0 *

OYS TER CREEK 0 0 o 0 G c G 0 0 0 0 0 0 0 0 0691228 .1 *

DRESOEN 2 c 0 c 0 0 0 0 a 0 0 0 0 0 c J70C609 6 .8 *

MILLSTONE 1 0 0 0 0 0 0 G 0 0 0 0 0 0 0710312 9 . 7 *

H Q N T IC E L L C 0 0 c c 0 0 0 0 0 0 0 0 0 071 C630 6 . 1 *

DRESDEN 3 c 0 c G 0 G G 0 0 0 0 0 0 0711116 1 .5 *

V T . YANKEE 0 o o 0 0 c 0 0 0 0 0 0 0721130 1 .1 *

PILGRIM 1 c 0 G 0 0 0 0 3 0 0 0 0 0721201 1 .0 *

OUAO C I T I E S 1 0 0 0 0 0 C 0 0 0 0 0 073C218 1 0 .4 *

OUAO C I T I E S 2 c C 0 0 0 0 G 0 0 G 0 073C310 9 . 8 *

COOPER S T A . c o o 0 G 0 0 0 0 0 074C701 6 . 0 *

PEACHBOTTCN 2 0 0 o 0 0 G 0 0 0 0 074C705 5 .9 *

BROtfN FERkY 1 C 0 G 0 0 0 o 0 G 0 074C801 5 .0 *

PEACHBOTTCN 3 0 0 0 G 0 G 0 0 0 0 0741223 .3 *

DUANE ARNOLD c 0 G 0 0 C C 0 0 075C201 1 1 .0 *

BROWN FERRY 2 G 0 c G 0 0 0 0 0 075C301 1 0 .1 *

F I T Z P A T R I C K 0 0 G 0 0 c 0 0 0 075C728 5 .2 *

BRUNSWICK 2 0 0 0 0 0 C G 0 0 0751103 1 . 9 *

HATCH 1 c o o 0 0 0 C j 0 0751231 • 0*

BROWN FERRY 3 c 0 0 0 0 G 0 077C301 1 0 .1 *

BRUNSWICK 1 1 0 0 0 0 0 0 177C318 9 . 5 *

HATCH 2 0 0 G 0 0 079C905 3 .9 *

SUSOUEHANAA 1 c 083C608 6 . 8 *

T O TA L EVENTS 1 0 c 0 0 C 0 3 G G 0 0 0 G 0 0 0 0 0 0 0 1PLANT YEARS 23 23 23 23 22 22 20 20 15 11 10 8 5 4 2 2 2 2 1 1 0 2 5 1 . 2 8m e a n • C4 •00 .o c • 00 • GO • OC .0 0 • 00 . 0 0 . 00 . 0 0 •GO . 0 0 .C O . 0 0 . 0 0 .OG .0 0 . 0 0 • 00 • 00 • 00STO DEV • ?1 •00 . 0 0 • OG • GC • 00 • J O .0 0 . 0 0 . 00 . 0 0 •CO . 0 0 . 0 0 . 00 . 0 0 . 0 0 . 0 0 • 00 • 00 • 00CUN ftEAN • C4 •02 *01 • 01 • 01 • 01 • 01 • 01 .0 1 •OG «0 0 •00 . 0 0 . 0 0 •00 .0 0 • GO •00 • 00 • 00 • 00CUN STO OEV • 21 •15 .1 2 • 10 • G9 • 09 • Ob • Od .0 7 •C7 . 0 7 . 07 . 0 7 . 0 7 . 0 7 . 0 7 . 0 7 • 06 • Ob • 06 • 06

E-25

p l a n t s REACTOR TEARS1 2 3 * 5 6 7 < J 9 10 11 12 13 1* 15 16 17 16 19 20 21 22

— . --------------------------------------------

ORESOEN 1 The f i r s t 12 years of data are unavai lable 0 0 0 0 0 0 160C704 3*9*

B IG ROCK FT* The f i r s t 10 years of data are unavai lable 0 0 0 0 0 0 0 O O O O0 3C3 29

HUM BOlOT BAY 0 0 C 0 0 0 G J 0 0 0 0 0 063C601 1 1 .0 *

9 N I L E P T . 1 c 1 1 0 0 2 c 0 0 0 0 G 0 G 0 4691201

•o.H

OYSTER CREEK 0 0 o 0 0 G J 3 0 0 0 0 1 0 0 A691228 .1 *

ORESOEN 2 1 0 0 0 0 0 1 3 0 0 & 0 0 0 270C609 6 .3 *

N IL L S T O N E 1 c 0 o 0 0 c 0 0 0 0 0 0 1 1710312 9 . 7 *

N O N T IC E LL C 0 0 o 0 0 G c 0 0 0 0 0 o o71C630 6 .1 *

O R tS O tH 3 c 0 0 0 0 c G 1 0 0 0 G 0 1711116 1 .5 *

V T . YANKEi 1 C 2 0 0 1 1 a 0 0 0 0 5

721130 l . l *P IL G R I N 1 c 0 0 0 0 c G j 0 0 0 0 0

721201 1 .0 *QUAD C I T I E S 1 0 0 0 0 0 2 0 3 0 0 0 2

73C218 1 0 .* *OUAO C I T I E S 2 c 0 1 1 1 c G 3 1 1 0 5

7 30 31 0 9 . 8 *COOPER S T A . 2 0 0 G 0 0 0 3 0 0 2

74C701 6 . 0 *PEACHBQTTCM 2 0 0 c 1 k G 0 0 0 0 2

74C705 5 .9 *BROWN FERRY 1 0 0 1 0 0 G c 1 0 0 Z

7 * c e o i 5 .Q *FEACHftOTTCH 3 0 0 0 0 0 0 G 3 0 0 0

741223 .3 *DUANE ARNCIO 0 o i 0 0 0 G I 0 2

75C201 1 1 .0 *BROWN FERRY 2 c * 1 0 0 1 C 0 0 2

750301 1 0 .1 *F IT Z P A T R I C K 0 0 0 0 0 0 G 3 0 0

75C728 5 .2 •BRUNSWICK 2 c 0 0 0 1 0 0 1 0 2

7 5 U 0 3 1 .9 *HATCH 1 0 C 1 0 0 0 0 0 0 1

751231 . 0 *BROWN FERRY 3 c 0 c 0 0 0 c 0

77C301 1 0 .1 *BRUNSWICK 1 c 0 0 0 0 G 0 0

77C316 J . 5 *HATCH 2 0 0 0 0 0 0

79C905 3 .9 *SUSOUEHANNA 1 1 1

83C606 6 . 8 *

T O T A L E V E M S * 1 B 2 3 6 2 * 1 1 0 0 1 0 0 0 0 0 0 0 0v f a r s ? 3 23 23 a 22 22 i G 20 15 21 10 s * 2 2 2 2 1 l o

M A N . 1 7 . 0 * • 35 . 0 9 .1 * • 27 • 10 • 20 • 07 .0 9 • 00 • GO • 20 • 00 • 00 •00 • 00 • 00 •00 •00 • 00

STO OEV .2 1 • 57 . 2 9 . 3 5 .6 3 #31 .<rl • 26 • 30 • 00 • 00 • 4J> *00 • 00 •oo • 00 • 00 • 00 • 00 • 00CUN HEAH . 1 7 • 11 • I S .1 6 . 1 6 • IB . 1 7 • 17 • 16 .1 6 • 15 • 15 • 15 • 14 • 14 • 14 • 14 • 14 • 14 • 14 • 14CUN STD OEV . * 9 . 3 8 • 46 • 43 .* 1 .4 5 . 4 4 • 43 . 4 2 • *2 • 41 • 40 .4 0 • 40 • 40 . 4 0 • 39 . 3 9 • 39 • 39 • 39

E-26

PLANTS REACTOR YEARS1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 TO TA L

ORESDEN 1 The f i r s t 12 years of data are unava la ble 0 C 0 0 0 0 0 060C704 3. 9*

B IG ROCK P T. The f i r s t 10 years of data are unava la ble 0 0 0 0 0 0 0 0 0 0 0 063C329 9 . 1 *

HUN SQL0T BAY C 0 C 0 G 0 0 0 0 0 C 0 0630801

*o

9 N I L E P T . 1 0 1 0 0 0 0 c 0 0 G 0 0 0 0 1691201 1 .0 *

OYSTER CREEK c C G 0 G 0 0 c G 0 0 0 G 0 0692229 . 1 *

ORESDEN 2 c 0 0 0 G c c 0 0 0 c 0 C 0

70C6 0* 6 .8 *N IL L S T O N E 1 0 0 0 0 C 0 1 0 0 0 0 0 1

71C312 9 .7 *H O N T IC E L L C 0 c c 0 0 G 0 0 0 c o G 0

71C630 6 .1 *ORESDEN 3 0 0 0 0 0 0 G G 0 0 0 0 0

711116 1 .5 *V T . YANKEE 0 0 0 0 0 0 u 0 0 0 0 0

721130 l . l *P ILG R IM 1 c 0 0 0 0 c C 0 c G 0 u

721201 1 .0 *QUAO C I T I E S 1 c 0 0 0 0 c G 0 0 1 1

7 3C219 1 0 .4 *OUAO C I T l t S 2 0 0 0 c 0 0 w 0 c C 0

73C310 9 . 8 *COOPER S T A . 0 0 c c 0 G 0 0 0 0

74C701 6 . 0 *PEACHBOTTCf* 2 c 0 o 0 0 c C 0 G 0

74C705 5 . 9 *BROUN FERRY 1 c 0 0 0 0 G 3 0 0 0

74C801 5.G *PEACHBOTTCf* 3 3 0 0 0 0 0 G 0 0 0

741 22 3 .3 *OUANE ARNCLO 0 0 G 0 G c 0 0 0

75C201 1 1 .0 *BROWN FERRY 2 c 0 0 i 0 c 0 0 1

75C301 1 0 .1 *F I T Z P A T R I C K 0 0 G 0 0 0 j 0 0

75C728 5 .2 *BRUNSWICK 2 c 0 1 G c G 0 0 0 1

751103 1 .9 *HATCH 1 0 0 C 0 0 0 0 3 0 0

751231 .0 *BROWN FERRY 3 0 0 0 0 0 0 1 1

7 7C 3 0I 1 0 . 1 *BRUNSWICK 1 c 0 0 0 0 C 0 0

770318 9 *5*HATCH 2 0 1 0 0 0 1

79C9 05 3 .9 *SUSQUEHANNA 1 c 0

83C608 6 . 8 *

t o t a l e v e n t s c 2 1 1 0 G 1 0 0 0 0 0 0 0 0 0 0 0 Q Q 0 7PLANT YEARS 23 23 23 23 22 22 2 J 2j 15 11 10 8 5 * 2 2 2 2 1 1 0 2 5 1 . 2 8NEAN . 0 0 •09 . 0 4 • 04 • CO • 00 .0 5 • 00 • 00 •00 • 00 • 00 • 00 . 00 • 00 •00 • 00 • 00 • 00 • 00 • 00 • 03STO DEV . 0 0 •29 .2 1 .2 1 • CO • GO • 22 • 00 . 0 0 . Ob • 00 • 00 . 0 0 . 00 • 00 •00 • 00 • 00 • Ov • 00 • 00

CU A NEAN • 00 . 0 4 . 0 4 .0 4 • C4 • C3 •03 • 03 • 03 •02 • 02 • 02 #02 •02 • 02 . 02 • 02 • 02 • 02 • 02 • 02CUN STO DEV • 00 • 21 *21 • 21 • 18 • 17 • 18 • 17 . 1 6 16 •15 • 15 • 15 •15 • 15 . 15 • 14 • 14 • 14 • 14 • 14

E-27

PLANTS REACTOR YEARS1 Z 3 4 > 6 7 0 9 1C 11 12 13 14 15 16 j.7 10 19 20 2 a ZZ 23 TO TA L

DRESDEN 1 The f i r s t 12 years of data are unavai lable 0 3 0 0 0 w 0 0600704 3 .9 *

816 ROCK PT* The f i r s * 10 !fears of data are unavai lable 0 0 0 0 0 0 C G 0 0 0 063C3 29 9 . 1 *

H I M O L D T eAY 0 l C 0 0 0 c 3 0 0 c c 0 1630 60 1 1 1 .0 *

9 N I L E P T . 1 c 0 1 0 0 c G 0 0 0 0 0 0 c 0 10*1 20 1 1*0*

OYSTER CREEK c 0 1 0 0 I 1 0 0 0 0 0 0 o 0 3691 22 6 .1 *

DRESOEN Z 0 0 0 0 0 w 0 3 0 0 0 0 C G 070C609 6 . 8 *

M l L S T Q N E 1 c 0 0 0 0 0 0 3 0 0 0 0 0 0710 31 2 9 . 7 *

fl O N T IC E LL C 1 0 0 1 1 0 0 J 0 0 (J c C 371C630 6 . 1 *

DRESOEN 3 0 3 0 0 0 c 0 3 0 G 0 0 0 0711116 1 .5 *

V T . YANKEE c 0 c 0 c 0 0 0 0 0 G 3 0721130 1 .1 *

P U G R I H 1 c 0 0 c 0 1 0 0 0 G 0 0 1721201 l . C *

OUAO C I T I E S 1 0 0 0 0 3 c 3 3 0 0 0 073C2 16 10*4*

OUAO C I T I E S 2 0 0 0 0 0 c 0 0 0 0 0 073C310 9 . 8 *

COOPER STA* 0 0 c 0 0 0 0 3 0 0 074C701 6 . 0 *

PEACHBOTTCfl Z c 0 0 0 0 c c 3 3 0 074C705 5 . 9 *

BROWN FERRY 1 1 0 0 0 & c 0 1 0 0 274C801 5 . 0 *

PEACH BOTTCP 3 0 0 0 0 0 0 0 3 0 0 0741223 • 3*

DUANE ARNCLO 1 0 1 0 0 0 u 3 0 275C201 1 1 .0 *

BROWN PERRY 2 c 0 c G 0 c c 3 0 075C301 10*1*

F I T Z P A T R I C K c 0 c 0 0 0 G 3 0 075C728 5 .2 *

BRUNSWICK Z 0 0 c 0 0 0 0 0 0 0751 10 3 1 .9 *

HATCH 1 1 0 0 0 0 1 c 3 C 2751 23 1 •0*

BROWN FERRY 3 c 0 0 0 0 & 0 077C301 1 0 . 1 *

BRUNSWICK 1 0 0 0 0 1 0 0 177C3 18 •) .5 *

HATCH 2 c 0 0 0 0 <t79C905 3 . 9 *

SUSQUEHANNA 1 0 083C608 6 . 8 *

T O TA L EVENTS 4 1 3 1 2 3 1 1 0 0 0 0 0 0 0 0 c 0 0 0 0 16PLANT YEARS 23 23 23 23 22 22 20 20 IS 11 10 8 5 4 2 2 2 Z 4 1 0 291 *29-MEAN . 1 7 • 04 • 13 • 04 . 0 9 • 14 • 35 • 05 • 00 r 00 • 00 • 00 . 0 0 . 0 0 • 00 •00 • OC *00 .0 0 • 00 . 0 0 • 06STD DEV . 3 4 * 21 • 34 • 21 • 29 .3 5 •2 2 • 22 .O C •OC •oc • 00 • 0 0 . o c • 00 •00 •00 • 00 . 0 0 •OG •00CUN MEAN . 1 7 • 11 • 12 • 1C . 1 0 • 1C • 10 • 09 • 06 *00 .0 8 • 07 •07 . 0 7 • 07 • 07 *07 •07 • 07 • 07 . 0 7c un S TD DEV . 3 9 • 31 • 31 • 30 . 3 0 .3 1 • 30 • 29 • 2 fl •27 • 2b • 26 •26 *26 • 25 • 25 *25 • 25 • 25 • 25 • 25

E-28

P L A N T S2 3 4 5 6 7 8 9

The f i r s t 12 ye a rs o f d ata a re u n a v a ila b le

The f i r s t 10 y e a rs of tfata a r e w ta v a W a b le

r e a c t o # y e a r *10 I X 12 13

DRESDEN 16 0 C 7 0 4

S i t POCK P 7 •63C329

H U M B O LD T BAY C 0 C 0 C630601

* R I L E P T . I 0 1 C 0 0 6 9 2 2 0 1

OYSTER CREEK 0 0 0 0 0 691226

ORESDEN 2 C 0 0 1 070C609

M L L S T O N E 1 0 0 0 0 07X0312

H D N T IC t L L C 0 0 0 0 07 1 C 6 3 0

ORESOEN 3 1 0 0 0 07111X6

VT* YANKEE 0 1 0 9 0721130

PILGRIM 1 0 0 0 0 1721201

OUAO C I T I E S 1 C 0 0 1 0 730216

OUAO C I T I E S 2 0 0 X 0 0 73C310

COOPER S T A « 0 0 0 0 0740701

PEACHBOTTCH 2 1 0 0 0 2 74C705

BROWN FERRY 1 C 0 1 0 1 74C601

PEACHBOTTCH 3 C 0 C 0 0 741223

DUANE ARNCLO C 0 0 0 0750201

8R0VN FEftftY 2 0 0 0 0 0 75C301

F I T Z P A T R I C K 2 0 1 0 0750 72 8

BRUNSWICK 2 1 1 0 0 0751103

HATCH 1 0 3 1 0 275X231

BROWN FERRY 3 C 0 0 0 0 77C301

BRUNSWICK 1 1 1 0 1 077C318

HATCH 2 0 X 1 2 079C905 3 .9 *

SUSQUEHANNA 1 C83C60B 6 . 8 *

c c 0 0

0 0 0 0

0 0 o 0

c 0 0 0

c 0 0 0

0 0 1 0

0 0 0 0

0 0 3 0

0 c J 0

0 c 0 1

0 0 0 0

1 0 3 0

0 0 1 0

0 0 I 0

1 0 J 0

c 0 0 1H.O*

0 c 0 11 0 .1 *

0 0 0 05 .2 *

2 c > 01 .9 *

0 0 2 0.0 *

0 01 J .1 *

c 09 . 5 *

001100

0

0

0

010

6. 0*0

5.9*0

5 .0 *0. 3*

0C

0001000

0

0It) .4 *

09 . 8 *

0

0

0

00

0

0

10

1. 1*0

1. 0*

0

0

011.0*

0010

9 . 7 *0

6.1*0

1.3*

14 15 16 1 7 18 19 20 21 22 2 3

0 0 0 1 0 03 .9 *

0 0 0 0 0 0 0 0

T OTAL

01.0*3.1*

26.8*

T O T A L t V E M S PLANT YEARS MEAN STD DEV CUN HEAH CUII STD DEV

t 8 5 5 6 4 C 5 1 3 1 1 1 0 0 0 1 0 0 0 0 5 123 23 23 23 22 22 2 0 20 4.5 11 10 5 4 2 2 2 2 1 1 0 2 * 1 .2 *

• 26 • 35 • 22 • 22 .2 7 • 16 • 0 0 • 25 • 07 .2 7 .1 0 .1 3 .2 0 .0 0 • 0 0 • 0 0 • 50 • 0 0 . 0 0 • 0 0 • 0 0 • 2 0• 5* • 71 • 42 .5 2 .6 3 • 50 •30 .5 5 .2 6 . 4 7 .3 2 .3 5 .4 5 .0 0 • 0 0 • 0 0 .7 1 • CO .0 0 • 0 0 • 0 0• 26 • 30 • 28 • 26 • 26 • 25 •2 2 • 22 • 21 .2 1 .2 1 .2 0 .2 0 .2 0 • 2 0 • 2 0 • 20 • 2 0 • 20 • 20 • 2 0• 54 • 63 .5 7 .5 5 .5 7 • 55 • 5 2 • 53 .5 1 .5 1 .5 0 • 50 .4 9 .4 9 . 4 9 . 4 9 • 49 • 4 9 • 4 8 • 4 8 • 48

E-29

REACTOR YEARS2 3 4 5 6 7 8 9 1C 11 12 13 14 15 16 17 16 19 26 21 22 23 TO TA L

The f i r s t 12 years of data a r t unavai lable 1 0 0 0 0 1 09*

23 .

The f i r s t 10 years of data are unavai lable 0 0 0 0 0 0 0 0 0 0 0 09 . 1 *

0 0 0 1 0 0 3 1 0 0 0 011 .0 *

3

1 1 1 C 1 u 0 I 0 0 1 0 0 01 .0 *

7

0 b 0 0 0 0 0 L 0 0 0 0 0 0.1 *

2

0 2 0 0 1 1 Q 0 0 0 2 0 06 . a*

6

0 0 1 1 0 1 0 2 0 I 0 09 .7 *

8

0 0 0 0 c 0 0 2 0 0 0 06 • i *

2

1 Z 0 0 1 0 0 2 c 1 1 01 . 5 *

9

0 0 1 0 G 0 3 0 1 0 01 . 1 *

3

0 c 1 1 0 3 0 0 0 0 01 . 0 *

6

0 1 0 1 1 C 0 0 2 01 0 .4 *

7

? 2 1 6 1 1 1 1 0 09 , 8 *

16

0 1 1 0 1 c 0 2 16 . 0 *

tt

0 0 0 0 0 1 3 0 05 .9 *

2

0 0 i 0 0 c 0 0 05 .0 *

2

0 0 3 1 c 0 0 C 0.3 *

4

0 1 0 c c a 3 01 1 .0 *

1

0 0 0 0 4 0 0 010.1 %

4

c 0 0 0 b 0 0 c5 .2 *

0

5 1 1 1 0 l 3 01 .9 *

10

0 0 0 0 0 2 3 0.0 *

2

0 1 1 1 0 •o

.*-4

5

1 2 2 0 0 0* .5 *

6

0 3 c o3#9*

3

0

10 17 14 13 10 10 1 12 3 3 4 1 0 0 0 0 1 0 0 0 11123 23 23 22 22 20 20 15 11 10 8 5 4 2 2 2 2 1 1 0 2 5 1 . 2 843 . 7 4 .6 1 . 5 9 • 45 . 5 0 .05 • 80 . 27 . 3 0 • 50 *20 • 00 .0 0 . 0 0 . 0 0 . 5 0 .0 0 . 0 0 . 0 0 .4 7

.12 • 92 .7 8 1 . 3 0 .9 1 •o 3 • 22 • 86 . 65 • 67 .7 6 . 4 5 • oc • 00 • 00 . 0 0 .7 1 . 0 0 • 00 • 0061 • 65 • 64 . 6 3 • 60 •59 • 53 • 55 . 53 • 52 • 52 • 52 •51 • 50 . 5 0 • 49 • 49 • 49 • 49 • 4 9

> 93 . 9 2 • 86 .9 7 • 96 • 94 .9 1 . 9 0 . 89 • 88 • 88 • 87 • 87 • 86 • 86 • 86 .86 • 86 • 85 .8 5

PLANTS

ORESOEN 1600704

816 ROCK P T .63C 329

H im t O L O T BAY 63CB01

9 R I L E P T . I 6 9 U 0 I

OYSTER CRE.EK 691228

ORESOEN 270C609

H U L S T C N E 1710312

N Q N T IC E L L C71C630

ORESOEN 3711 11 6

V T . YAHKfcE721 13 0

P ILG R IM 1721201

QUAD C I T I E S 1 73C218

QUAD C I T I E S 2 73C310

COOPER ST 4 .74C701

PfcACHBOTTCn 2 74C705

BROWN FERRY 1 74C601

PEACHBOTTCn 3 741223

OUANE ARNCLO 75C201

BROWN FERRY 2 75C301

F I T Z P A T R I C K75C728

BRUNSWICK 2751 10 3

HATCH 1751231

BROWN FERRY 3 77C3C1

BRUNSWICK 177C318

HATCH 279C905

SUSQUEHANhA 1 630608

TO TA L EVENTS P U N T YEARS MEAN STO DEV CUK REAM CUN STO OEV

c

0c

0102100

6.8*1823

• 78• 67 1.• 76• 67 .

E-30

PLANTS1 Z 3 4 5 6 7 3 9

r e a c t o r 10 11

YEAR*12 13 14 15

ORESDEN 1 The f i r s t 12 years of data are unavai lable 0 0 0600 70 4

816 ROCK P T .A i r t » o

The f i r s t 10 years of data are un a va lU bte 0 3 0 0 o

HUMBOLDT E i t 1 0 0 0 0 0 0 0 0 C 0 G 063C801 11*0*

9 R I L E PT* 1 1 e C 1 C C 0 3 0 0 0 0 0 c o691201 1 .0 *

OYSTER CREEK 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0691228 .1 *

ORESDEN 2 0 0 C 1 0 0 0 0 0 0 0 3 0 0700609 6 .8 *

R U L S T O N E 1 0 i 0 0 0 C 0 0 0 c 0 0 071C312 9*7*

R O N T I C E L lC 0 3 0 0 0 0 0 0 0 0 0 0 0710630 6*1*

ORESDEN 3 0 0 0 0 0 0 0 3 0 0 0 0 0711116 1 .5 *

VT* YANKEE 1 1 C 0 0 C 1 0 0 c 0 0721130 1 .1 *

P IL G R I R 1 1 0 2 0 c 0 1 1 0 0 0 0721201 1 .0 *

QUA3 C I T I E S 1 0 0 0 0 0 G 0 J 0 0 07 30 21 8 1 0 .4 *

QUAD C I T I E S 2 0 1 1 0 c C 0 3 0 0 0730 31 0 9 . 8 *

COOPfcR S T A . 0 0 C 0 c 0 0 0 074C701 6*0*

PEACHBOTTCP 2 0 0 0 0 c 1 0 3 0 074C705 5*9*

BftQMH FERRY 1 c 0 0 0 0 0 0 0 0 c740601 5*0*

PEAChB GT TC H 3 c 0 C 0 0 0 0 0 c 0741223 • 3*

DUANE ARNCLO c 1 0 0 c C 0 3 07*0201 1 1 .0 *

8RQVN FER RY 2 0 0 C 0 1 C 0 3 0750301 10*1*

F I T Z P A T R I C K c 0 0 1 0 0 0 0 075 , V28 5 .2 *

BRUNSWICK 2 3 0 0 0 1 0 0 0 0751103 1 .9 *

HATCH 1 2 0 0 0 0 0 c 0 0751231 .0 *

BROUN FERRY 3 0 1 C 0 0 0 077C301 1 0 . 1 *

BRUNSWICK 1 1 0 0 0 0 0 0770 31 8 9 . 5 *

HATCH 2 C 0 0 0 0790905 3*9»

SUSOUEHANNA 1 c83C608 6*8*

T O T A L EVENTS 1C 5 3 3 I 1 2 1 0 0 0 0 0 0 0p l a n t y e a r s 23 23 23 23 22 22 £ 0 20 15 11 10 8 5 4 2REAM *43 22 *13 *13 • 09 . 05 . 1 0 *05 . 0 0 . 00 *00 • 00 • 00 00 *00STD OEV • 79 • *2 •46 *34 *29 . 21 *31 *22 • 00 « 00 • 00 • 00 *00 00 *00cun mean *43 *33 *26 . 2 3 *20 •16 •! 7 *15 *14 13 *13 • 12 • 12 12 . 1 2CUR STD OEV . 7 9 .6 3 . 59 .5 4 *50 . 47 . 4 5 *43 . 4 2 •41 *40 • 39 • 39 3 9 . 3 8

16

10

17

C

u

16

00

19 20 £i

03 . 9 *3 Q 0

9 . 1 *

• 12• 39 * 36

0 4 / 0 0 * 2 1 1

00 .00 .00 *00 00 .00 .00 *00 12 .12 •12 «12

. 3 6 . 3 8 • 36

0 0

• 00 • 00 • 12 • 36

T Q tA l

I

ii

I

011003

5

01 0 1 0 0 1 1 14

2 1 1 0 0

26251*28

• 11

PLANTS REACTOR YEARS1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 ltt 19 20 d l 22 2 3 TO TA L

ORESOEN 1 The f i r s t 12 years of feta are unavailable 0 0 0 0 0 0 0 0e oc? o4 3*V*

B i t ROCK P T • The f i r s t 10 ! 0 G 0 G 0 0 G 0 0 G 0 063C3 29 9*1*

HUH C O IO T EAY 0 0 0 0 0 0 0 0 0 0 0 0 0 0630801 11*0*

9 f l iL E r r . 1 0 0 c 0 0 0 0 3 0 0 0 0 0 0 0 06 91 20 1 1 . 0 *

OYSTER CREEK 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 16 91 22 8 • 1*

DRESOEN 2 c 0 c 0 0 c c j 0 0 0 1 0 0 17 00 60 9 b*8*

H U l S T O M c 1 c 0 0 0 0 c 0 0 0 0 0 u 1 171C3X2 9*7*

H O N T IC E tL C 0 0 0 0 D 0 1 0 0 C 0 u 0 1

71C630 6*1*ORESOEN 3 c c o 0 0 0 0 0 0 0 0 0 0 0

712116 1 .3 *VT* YANKEE 0 0 0 0 0 c 0 0 0 0 0 0 0

721130 l . l *P IL G R lf l 1 0 0 0 0 0 0 0 3 0 0 0 0 0

721201 1 .0 *QUAD C I T I E S 1 c 0 c 0 0 c 0 0 0 0 0 0

73C2LB 1 0 .4 *OUAO C I T I E S 2 0 0 c 1 0 0 0 0 0 G 0 1

73C31C 9 .8 *COOPER S T «* 0 0 0 0 0 0 G 0 0 0 0

74C701 6 . 0 *PEACHBOTTCP 2 0 c c 0 0 0 G 0 0 G 0

74C705 5 .9 *BROUN FERRY 1 1 0 c 0 0 0 0 0 c C I

740801 5 .0 *PEACHBOTTCN 3 0 0 0 0 0 0 1 3 0 0 1

741223 . 3 *OUAHE ARHCLD 0 0 0 0 0 0 0 0 0 0

750201 1 1 .0 *BROWN FERRY ? c 0 c 0 1 0 0 0 0 1

75C301 1 0 . i *F IT Z P A T R I C K 0 0 0 0 0 c G 3 0 0

75C728 5 .2 *BRUNSWICK 2 1 0 0 0 G 0 G 0 0 1

751 10 3 1 .9 *HATCH 1 0 0 c 0 0 G G 0 0 0

7 5 I 2 3 I •0 +BROWN FERRY 3 c 0 0 0 0 c 0 0

77C301 13 .1 4BRUNSWICK 1 0 0 0 1 0 c C 1

77C31B 9 , 5 *HATCH 2 1 0 0 0 0 1

79C905 3 .9 *SUSQUEHANNA 1 c 0

83C608 6*8*

TO TA L EVENTS 3 0 1 2 1 c 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 11PLANT YEARS 23 23 23 23 22 22 20 20 15 11 10 d 5 4 ■> 2 2 2 1 1 0 2 3 1 «2 B

fICAH • 13 •00 *04 .0 9 .0 * • OC . 1 0 • 00 • 00 .0 0 .0 0 • 13 • OC . 0 0 . 0 0 • 0 0 • 00 .0 0 .0 0 . 0 0 . 0 0 • 04STO OEV . 3 4 •00 .2 1 . 2 9 • 21 • 00 • 31 • 04 • 00 .0 0 • 00 • 35 • GO • 00 • 00 • 00 • 00 . 0 0 • 0 0 • 0 0 • 00CUN HEAN • 13 •07 . 0 6 • 07 • 06 • 05 •06 • 05 • 05 .0 4 •04 • 05 .0 4 • C4 • 04 • 04 • 04 • G4 • 04 • 04 • 04CUM STO OEV • 34 •25 .2 4 • 25 • 24 • 22 •2 3 • 22 • 21 .2 1 • 20 • 21 • 21 • 20 • 20 • 20 • 20 • 20 • 20 • 20 • 20

E-32

P L A N T S R E A C T O R Y t A f t i I C 1 1 1 2 13

ORESOEN 160070*

The f i r s t 12 years of data are unavailable 0

B IG ROCK PT# The f i r s t 10 years of data are unavailable 0 0 063C329

HUMBOLDT BAY 0 0 c 0 0 0 0 0 0 C 0 0 063C801 1 1 .0 *

9 M IL E P T . 1 0 0 0 c 0 t 1/ 0 0 0 c 0 0641201

OYSTER CREEK 0 0 o 0 c Q 0 J 0 0 0 0 0691228

ORESDEN 2 0 0 0 0 0 0 0 0 0 0 0 0 07CC609

MILLSTONE 1 c 0 0 0 0 C 0 0 0 C 0 0 0710312 9 . 7 *

M0NY1CEL1X 0 0 o 0 0 0 0 0 0 0 0 0 071C630 6 . 1 *

DRESDEN 3 0 0 0 0 c c 0 0 0 0 0 c 0711 11 6 1 .5 *

VT* YANKEE c 0 0 0 0 c V 0 0 0 0 0721130 1 .1 *

P IL GR IM 1 0 0 0 0 0 0 0 0 0 0 0 u721201 1 .0 *

QUAD C I T I E S 1 0 0 0 0 0 0 0 0 0 0 0730218 1 0 .* *

OUAD C I T I E S 2 0 0 0 0 0 c 0 0 0 0 073C310 9 . 8 *

COOPER S T > . c 0 c 0 0 c 0 D 0 07 * C 7 0 l 6 . 0 *

PEACHBGTTCN 2 0 0 0 0 0 c 0 0 0 07*C705 5 . 9 *

BROWN FERRY 1 C 0 0 0 1 0 0 3 0 c7*0801 5 .0 *

PEACHBOTTCM 3 0 0 0 0 0 c G 0 0 c7*1223 • 3*

DUANE ARNCLO c 0 t 0 0 0 G 0 075C201 1 1 .0 *

BROWN PERRY 2 0 P 0 0 0 0 0 3 075C301 1 0 . 1 *

F I T Z P A T R I C K c 0 0 0 0 0 G 0 075C728 5 . 2 *

BRUNSWICK 2 0 0 0 0 0 0 0 I 0751 10 3 1 .9 *

HATCH 1 0 0 c 0 0 0 t 0 0751231 .0 *

BROWN FERRY 3 c 0 0 0 0 0 077C301 1J .1 *

BRUNSWICK 1 0 0 1 0 0 0 0770310 V . 5 *

HATCH 2 0 0 0 0 07 90 90 5 3 .9 *

SUSQUEHANNA 1 083C608 6*8*

1* 15— — - — — ———-

0 0

0 0

0 01 .0*

0

06 . 8*

9. 1*

16

00

1 7

01800

1 9 2 0

03 . 9 *0 0

Z Z 2 3

09 . 1 *

T OT A L

0000000

0000000 01 0 0 0 0

1 0 0 1 0 0

T O TA L EVENTS 0 0 1 0 1 0 0 1 0 0 0 0 0 c 0 0 c 0 0 0 0 3PLANT YEARS 23 23 23 23 22 22 20 29 15 11 10 8 5 * 2 2 2 2 1 1 0 2 5 1 . 2 0N U N •00 • 00 .0 * .0 0 •C5 . 0 0 .3 0 • 05 . 0 0 . 0 0 .0 0 .0 0 .0 0 • 00 • 00 • 0 0 .0 0 .0 0 • 00 .0 0 • 00 . 0 1STO OEV .0 0 .0 0 • 21 . 0 0 .2 1 .0 ' ' . 0 0 • 22 . 0 0 • GO •00 • 00 • GO . 0 0 • 00 . 0 0 . 0 0 • 00 , 0 0 • 00 • 00CUM MEAN . 0 0 • 00 . 0 1 . 0 1 .0 2 • 0 . J 1 • 02 • 02 .0 1 .0 1 • 01 . 0 1 . 0 1 • 01 • 01 . 0 1 .0 1 • 01 .0 1 • 01CUH STO OEV .0 0 .0 0 . 1 2 . 1 0 . 1 3 .1 2 .1 1 • 13 . 1 2 • 12 .1 2 • 12 .1 1 . 1 1 • 11 • 11 . 1 1 • 11 .11 . A l .1 1

m

P L A N TS

DRESOEN 160C704

816 ROCK * T .63C329

HUN0OLOT BAY 630801

9 N I L E P T . 1 691201

OYSTER C m * 691228

DRESDEN 2700609

MILLS TONE 17 10 31 2

H O N T IC E LLG71C630

DRESOEN J711116

V T . YANKEE721130

P I L G R I " 1721201

o u a o c i m s i730218

OUAO C I T I E S 2 T3C310

COOPER S T A .740701

PEACNBOTTCft 2 74C705

BROWN FERRY 1 74C601

PEACHBOTTOH 3 741223

DUANE ARNCLO 75C201

BRQttN FERRY 2 790301

F I T Z P A T R I C K75C726

BRUNSWICK 2751103

NATCH 1751231

BROWN FERRY 3 77C301

BRUNSWICK 1770 31 8

HATCH 279C905

SUSQUEHANNA 1 830608

fctACTOR YEARS

T O T A L EVENTS PLANT YEARS M A N STO OEV CUN MEAN CUN STD DEV

1 2 3 4 5 6 7 8 9 1C 11 12 13 14 15 16 17 18 i 9 20 21 22 23 T OTAL----------- —— . . . . . - - - . . . . . . . . . . — — . . . . . . . . . . . . . . . . •—

The f i r s t 12 years of data are unaval lable 0 0 0 0 0 0 0 03. 9*

The f i r s t 10 years of data are unavailable 0 0 0 0 0 0 1 0 0 0 0 19 . 1 *

c 0 0 0 C C 0 <7 0 c 0 0 01 1 .0 *

a

c 0 0 0 0 0 0 J 0 0 1 0 0 0 01 . 0 *

i

0 0 0 0 0 c c 3 0 0 0 0 0 0.1 *

0

0 0 0 0 0 0 0 3 0 0 0 c 0 0 06 .8 *

0 0 0 0 0 0 0 J 0 0 0 0 09 . 7 *

Q

0 0 0 0 0 1 u 3 0 0 0 0 Jb . l *

1

c 0 c 0 0 0 0 0 0 0 0 0 01 .5 *

0

1 0 0 0 0 0 0 0 a 0 0 01 .1 *

1

0 0 0 0 0 1 0 3 0 0 0 01 . 0 *

1

0 0 0 0 c 0 0 a 0 0 01 0 .4 *

0

0 0 0 0 0 0 u 0 0 0 09 . 8 *

0

c 0 o * 0 0 0 0 0 •o

o •o

0

0 0 c 0 0 0 0 0 0 0*>•9*

0

c 0 0 0 0 0 0 0 1 05 .0 *

1

0 0 0 0 0 1 c 3 0 0• 3*

1

0 0 c 0 0 G c 0 01 1 .0 *

0

c c c 0 I 0 0 0 01 0 .1 *

1

0 0 c 0 0 c 0 3 05*2 *

0

0 C 1 0 0 c c 0 01 .9 *

1

1 0 1 1 0 0 c 3 0.0*

3

0 0 0 0 0 0 0U . 1*

0

0 0 0 J 0 0 0J . 5 *

0

0 0 0 0 03 . 9 #

0

0 06 . 8 *

2 0 2 1 1 3 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1223 23 23 23 22 22 2 0 20 15 11 10 0 5 4 2 2 z 2 1 1 0 251 *2 8

. 0 9 . 0 0 . 0 9 • 04 • 05 .1 4 •0 0 • 00 . 0 7 . OC • 10 •00 . 0 0 00 • 00 . 0 0 • 50 . 0 0 . 0 0 • 00 • 00 • 05

.2 9 •00 . 2 9 .2 1 • 21 .3 5 . 0 0 .0 0 . 26 . 00 .3 2 •00 . 0 0 . OC • 00 • 00 • 71 • 00 • 00 • 00 • 00• C9 •04 . 0 6 . 0 5 .0 5 . 0 7 • 36 .0 5 •05 •05 • 05 •05 . 0 5 •05 • 05 .0 5 • 05 • 05 • 05 *05 • 05• 29 .2 1 .2 4 • 23 • 22 .2 5 •2 3 .2 2 • 22 . 22 .2 2 • 22 • 22 •21 • 21 • 21 • 22 • 22 • 22 • 22 • 22

E-34

P L A N T S REACTOR YEARS1 2 3 4 5 6 7 0 9 10 1 1 12 13 14 15 16 17 18

O ftE SD E H 1 The f i r s t 12 years of data are unavai lable 0 0 0 o

1 oi o

1

600704S I G ROCK PT* The f i r s t 10 years of data are unaval lable 0 0 0 0 0 0 U 0

630 92 9H U M O L O T BAY 0 1 0 0 0 1 0 3 0 0 0 0 0

63C801 1 1 . 0*9 N I L E P T . 1 0 0 0 0 0 0 c 0 0 0 0 0 0 0 o

691201 1 . 0*OYSTER CREEK 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0

691226 . 1 *O R E S O E N 2 c 0 1 0 0 0 0 0 0 0 0 0 0 0

70O t09 6.8*N IL L S T O N E 1 c 0 1 0 0 c c 3 0 0 0 0 0

71C312 9 . 7 *f lO NTIC E LLC 0 C 0 0 0 0 c 3 0 c c 0 0

71C630 to. 1*O R E S D E N 3 0 0 0 0 0 c 0 3 c 0 0 0 0

711 11 6 1 . 5 *V T . YANKEE 0 0 c 0 0 0 0 3 0 c 0 0

721130 1 . 1 *P IL G R I H 1 0 C 0 0 0 0 0 0 0 0 c 0

721201 i . o *OUAO C I T I E S 1 c 0 0 1 0 0 0 3 0 c 0

730 21 8 1 0 .4 *OUAO C I T I E S 2 c 0 0 0 c 0 c 3 0 0 0

73C310 9 . 8 *COOPER S T A . c 0 c 0 0 0 0 J 0 0

74C701 6.0*PEACHBOTTCH 2 c 0 0 0 0 c c 3 0 0

74C70P 5 . 9 *BROWN PERRY 1 1 0 1 0 1 G 0 3 0 C

74C601 5 .0 *PEActtBorrcft 3 0 0 0 0 c c I 3 0 0

741223 .3*OUANE ARNGLD 0 0 0 0 C 0 0 3 0

75C201 11.0*BROWN FERRY 2 0 2 0 1 0 0 0 3 c

750301 10 . 1 *F I T Z P A T R I C K c 0 0 0 0 0 0 3 0

75C720 5 . 2 *BRUNSWICK 2 0 0 0 c 0 0 0 3 0

7 5 1 1 0 3 1 .9 *H A T C H 1 0 0 c 0 c 0 0 J 0

751231 . 0*BROWN FERRY 3 C 1 0 0 0 0 0

77C301 10 . 1 *BRUNSWICK 1 0 0 C 0 0 c 0

77C31* 9 . 5 *HATCH 2 1 0 0 1 0

79C905 3 .9 *SUSQUEHANNA 1 0

63C608 6. 8*

i 9

3 . 9 *0

23

09 . 1 *

TO TA L

00

2

0

1

1

10

uo01 0

0

0

3

0

0

3

0

0

0 1

ti 2

0

T O TA L E V E M S 2 4 4 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15PLANT YEARS 23 23 23 2 i 22 22 20 23 15 11 10 e 5 4 2 2 2 1 1 0 2 5 1 .2 8HEAN . 0 9 .1 7 . 1 7 .1 3 • 05 .0 5 • V Vi .0 0 . 0 0 . 0 0 .0 0 .00 . 0 0 • OC . 0 0 . 0 0 .0 0 .0 0 .0 0 .0 0 .0 0 • 06STD DEV .2 9 • 4<J • 39 • 34 .2 1 . 2 a • 30 .0 0 .0 0 . bO *00 .0 0 .0 0 . 0 0 • 00 . 0 0 . 0 0 .OQ • 00 • 00 • 00CUN NEAN .0 9 .1 3 .1 4 .1 4 .1 2 .1 1 . 1 0 .0 9 .0 6 . 0 7 .0 7 .0 7 . 0 7 • 07 . 0 6 . 0 6 . 0 6 .0 6 .0 6 . 0 6 • 06CUN STD DEV • ?9 .4 0 . 3 9 .3 8 • 36 . 3 4 .3 2 .3 0 . 2 9 .2 8 . 2 7 . 2 7 . 2 7 . 2 7 . 2 6 • 26 • 26 . 2 6 • 26 • 26 • 26

E-35

J

P L A M S

ORESDEN 16 0C704

B IG ROCK P T • 63C329

HUHBQLOT GAY t 3 c e o i

* n i L E p t . l6 91 20 1

OYSTER CREEK 6 91220

DRESDEN 270C6 09

N I L l S T O N E 17 1C3 12

N O N T IC E L L C7 1 C 6 3 0

DRESOEN 3711116

VT* YANKEE721130

R I L 6R IN 1721201

OUAO C I T I E S 1 730210

OUAO C I T I E S 2 7 31 31 0

c o o p e r STA*74C701

REACH 0OTTCN 2 7 40 70 5

BROWN FERRY 1 74C601

P EACH BO TTC* 3 7 41223

DUANE ARNCLD 75C201

BROWN FERRY 2 750301

F I T Z P A T R I C K75C72B

BRUNSWICK 2751103

HATCH 1751231

BROWN FERRY 3 77C301

BRUNSWICK 1770 31 0

HATCH 279C9G5

SUSOUEHANhA 1 030 60 0

2 3 4 5 6 7 3 9

The f i r s t 12 years of data are unava ilable

The f i r s t 10 years of data are unava ilab le

REACTQ* Y E A R ) 10 1 1 12 13 14 15 16 17 10 19 20 21 22 23

0 C 0 0 0 0 03 . 9 *

0 0 0 0 0 0 0 0 0 0 0

C

C

0

0

00

C

0

c0

0

0

cc00

c0

0

10

c0

1*•0*

0 0 0 0 0 G 0 0 0

0 o 0 0 c G 0 0 0

0 0 0 0 c c 3 G G

p c 0 0 c G 0 0 0

0 0 0 0 0 0 3 0 0

0 0 0 0 0 J 0 G G

o c 0 0 c 0 3 0 1

0 0 u 0 0 u 3 0 0

0 0 0 0 0 0 3 0 0

0 c 0 0 0 0 3 c 0

0 c 0 0 0 0 3 0 1

0 0 0 0 c 0 J 0 G6. 0*

0 c 0 0 0 c 3 0 05 . 9 *

0 o 0 0 0 0 0 1 05*0*

0 0 G 0 0 0 3 0 0. 3 *

0 c 0 I 0 G 0 01 1 *0*

1 1 0 0 0 0 0 01 0 *1 *

0 c 0 0 0 0 3 05 .2 *

1 0 0 0 C c 0 C1*9#

0 c ▲ c 0 0 J 0. 0*

0 c 0 0 0 010 . 1 *

0 2 0 c 0 cV . 5 *

0 0 0 03 .9 *

0

0

0

1

00

0

00

110.**

09 .6 *

0

0

0

0

000

01. 1*

01 . 0*

011.0*

0

0

1

09.7*

0f c . l*

0a .5*

c6.4*

01.0*

0. 1*

T O T A L E V E M S 1 2 3 1 1 0 0 0 1 2 1 0 1 G 0 0 0 0 0 0 0p l a n t y f a r s 23 23 23 23 22 22 io 29 l b 11 1 G 6 5 * 2 2 2 2 1 1 0NEA N • 09 *13 . 0 4 • 05 • 00 • i} G • uO • 07 .10 ,1 C • OC • 2G • 00 .00 .00 • 00 • 00 • 00 • 00 • 00STD OEV .2 1 . 2 9 . 4 6 .2 1 .2 1 *00 •0 0 • 00 • 26 • 40 • 32 • 00 • 45 • GO .00 • 90 • 00 •00 • 00 • 00 • 00CUN HE AN . 0 4 .0 7 . 0 9 .00 • 07 • 66 • 33 • 0? • 05 • 05 • G6 • G5 •06 . 0 6 • 06 • 06 • 06 •Od • 05 • 05 • 05CU N STD OE V .2 1 .2 5 • 33 .3 1 . 2 9 .2 7 .2 5 • 23 • 24 • 25 • 2 5 • 25 • 2 5 • 25 • 25 • 25 • *!> • 2 5 • 25 • 25 • 25

TaTAi0

0

0

0

0

2

0

0

1

0

V

1

1

0

0

1

0

1

2

0

1

2 0

z

0

1

19251.2#

• 06

E-36

PLANTS REACTOR YEARS1 2 3 * 5 6 7 A 9 XO 11 12 13 14 15 16 17 16 1 * 20 21 22 23 TOTAI

ORESDEN 1 The f i r s t 12 years of data are unavailable 0 G 0 0 G 0 09*

060C704 3.

B IG ROCK P T , Tbe f i r s t 10 years of data are unavailable 0 0 0 G 0 1 G 0 a 0 0 I63C3 29 9 .X *

HUNBOLGT BAY 0 0 c 0 0 i C a 0 0 G 0 0 163C0O1 1 1 . 0*

9 n u e p t , i c 0 0 1 0 C 1 0 0 G 0 0 0 0 0 2691201 1 . 0*

OYSTER CREfc* 0 0 G 1 0 0 G 3 0 0 0 0 0 0 0 X691229 . 1 *

ORESDEN 2 0 C G 3 G G 1 J 0 0 0 0 0 3 170C609 6 . 0*

f f lLLS TO NC I c n 0 0 0 1 G 0 0 C 0 0 o X7 1 C312 5 .7 *

NO N TtC ELLC c 0 C 0 0 C 0 0 0 0 0 0 0 071C630 6. 1 *

ORESOE* 3 0 0 0 0 0 c C D 0 0 0 0 0 07 11 11 6 1 .5 *

V T , YANKEE 1 o c 0 G c G 3 0 G C G 1721130 1 . 1 *

P IL G R IM I 0 3 0 0 1 1 0 3 1 0 0 0 3721241 1 . 0*

OUAO C I T I E S 1 0 0 0 0 0 0 u J 0 0 G 0730*10 1 0 . 4 *

OUAO C I T I E S 2 0 0 o 0 C c C 0 c C 0 u73C31G 9 , 0 *

c o o p e r s r * . 0 o c 0 0 0 c 0 0 0 074C701 6 . 0*

PCACH0OTTC* 2 0 o o 0 Q c G 0 G 0 074C705 5 .9 *

BROWN FERRY 1 c o c c I : G J 0 G i74C0O1 5 .0 *

PEACHBOTTCn 3 0 I 1 0 0 0 G 1 0 0 3741 22 3 .3 *

OUANE AR*GLD 0 0 0 0 0 0 C 3 0 075C201 XX . 0 *

BROWN FERRY 2 c 0 0 0 c c 0 3 g 075C301 10 . 1 *

F I T Z P A T R I C K 0 0 0 0 G 0 C I 0 I75C728 5 . 2 *

BRUNSWICK 2 1 0 0 0 C G c J 0 X751 10 3 1*9*

HATCH 1 0 1 G G 0 C c 3 0 X751231 • 0*

BROWN FERRY 3 0 0 o 0 1 0 0 177C301 10 . 1 *

BRUNSWICK 1 0 0 0 0 0 0 0 0770318 9 , 5 *

HATCH 2 0 0 0 0 0 079C905 3 .9 *

SUSOUEHANNA 1 0 0B3C6O0 6 , 0*

T O T A L E V E M S 2 2 1 2 3 3 2 2 1 0 0 0 0 0 0 1 0 0 j w 0 19p l a n t y e a r s 23 23 23 23 22 22 20 29 15 11 10 6 5 4 2 2 2 2 X X 0 2 51 *2 8MEAN • 09 •09 , 0 4 • 09 • 14 • 14 • 10 •13 • 07 •GO *00 •90 .00 •OG .00 •50 • 00 • 00 • 00 •00 • 00 • 60S TD OEV , 2 9 . 2 9 ,2 1 • 29 • 35 • 35 • 3 1 •31 • 26 •00 .00 •OG . 0 0 •OC • 00 •71 • OG • 00 • 00 • 00 •ooCUN NEAH • 09 •09 , 0 7 • 00 • 09 • 10 • X (J « 10 • 09 . 09 . 0 8 •00 .00 . 00 • 00 •00 • 00 • 00 • 00 •oe .9 0CIM STO DEV • 29 .20 . 2 6 • 27 • 20 • 30 • 3G •30 • 29 •29 *20 •27 . 2 7 •27 • 27 •27 . 2 7 • 27 • 27 .2 7 . 2 7

E-37

PLANTS R E A C TO R Y E A R S1 z 3 4 5 6 7 d 9 10 11 12 1 J 14 15 16 17 18 19 20 21 22 23 TO TA L

0RES0£N 1 The f i r s t 12 years of data are unava ilab le 0 0 0 0 0 0 0 0eac 70* 3.9*

Blfc ROCK P I . The f i r s t 10 years of data are un ava ilab le 0 G 0 0 0 0 0 0 0 v' 0 063C329 9 . 1 *

HUHBCLDT SAY C 0 0 0 0 0 1 3 C C 0 0 0 163C601 11.0*

9 N I L E P T . 1 0 0 c 0 0 0 V 3 0 0 0 0 0 c 0 0691201 1*0*

OY STER CREEK 0 0 0 0 0 0 0 3 0 0 c 0 G G 3 0091226 .1*

ORESOEN 2 c 0 c 0 c c c 0 0 0 0 0 0 C 070C609 6.8*

N I L L S T O N E 1 0 0 0 0 0 0 0 u 0 G 0 0 0 071C312 9.7*

N O N T IC E L L C 0 0 c 0 0 0 0 3 0 0 0 0 0 071C630 6.1*

ORESDEN 3 c c 0 0 0 c 0 3 0 0 0 0 0 w711 11 6 1.5*

VT* YANKEE 0 1 0 0 0 0 0 3 0 0 0 0 172 1130 i . l *

P IL G R IM 1 c 0 0 0 0 0 G 3 & 0 0 G 0721201 1 .0 *

OUAO C I T I E S 1 0 0 0 0 0 0 c 3 0 0 0 073C2 18 1 0 .4 *

QUAD C I T I E S 2 0 0 0 0 0 0 c 3 0 0 C 073C310 9 . 8 *

COOPER S T a . 0 0 0 0 G 0 G 3 0 0 07 4 C 7 0 I 6 ,0 *

PEACHBOTTCN 2 0 0 c 0 c C 1 3 1 0 274C705 *•9*

BROUN F t R f t t 1 c 0 c 0 c c 0 3 0 0 074CE01 5.0*

PEACHBOTTGN 3 0 0 0 0 c G c 3 c 0 0741 22 3 .3*

DUANE ARNCLD c 0 c 0 c c c I 0 175C201 1 1 .0 *

BROUN PERRY 2 0 0 0 c 0 0 u 3 0 075C301 1 0 .1 *

F I T Z P A T R I C K 0 0 0 0 c 0 0 3 0 075C72B 5 . 2 *

BRUNSWICK 2 c 0 0 c c c c 3 c 0751103 1 .9 *

NATCH 1 0 0 0 0 0 0 G 3 0 0751 23 1 . 0*

BROUN FEftPY 3 c 0 0 0 0 0 a (d77C301 13 . 1 *

BRUNSWICK 1 0 0 0 0 C c 0 077C31B 9 . 5 *

HATCH 2 0 0 0 0 0 079C905 3 .9 *

SUSQUEHANNA 1 1 1B3060B 6.8*

TO TA L EVEN TS C 1 0 0 0 C 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0PLANT YEARS 23 23 23 23 22 22 I J 23 15 11 10 8 5 4 2 2 2 2 1 1 0NEAN • 00 .0 4 .00 .00 .00 • 00 • 10 • 05 • 07 • GO .OC • 00 •oO • OC • 00 • 00 • ou • 00 • 00 • 00 • 00s r o OEV •oc .21 .00 • 00 • 00 • 00 • 31 • 22 .2 6 • CO • 00 • 00 • 00 • 00 • 00 • 00 • 00 • 00 • 00 • 00 • 00CUN NEAN • 00 • 02 •01 • 01 •01 • 01 • 32 • 02 • 03 • 02 • 02 • 02 •02 .02 .02 • 02 • 02 •02 •02 • 02 • 02CUN STO OEV •cc . 1 5 • 12 • 10 • 09 • 09 .1 4 • 15 • 16 • 16 • 15 ♦15 • 15 • 15 . 1 5 . 1 5 • 14 .1 4 .1 4 • 14 • 14

62 5 1 . 2 *

• 02

E-38

PLANTS REACTOR YEARS1 2 3 * 5 fc 7 d 9 10 11 12 13

——— - - ——- ~ ————ORESDEN 1 The f i r s t 12 years of data are unav lable 0

600 70 4B I S *OCK P T . The f i r s t 10 years of data are unava ilab le 0 0 0

630329HUflBOLOT SAY 0 o c 0 0 0 0 0 G 0 0

630 60 1 1 1 . 0*9 B I L E P T . 1 0 0 C 0 c 0 0 0 c C 0 0

691201OY STER CREEK 0 0 0 0 0 0 0 0 0 0 0 0

691226DRESDEN 2 0 0 c 0 0 0 0 0 0 0 0 0

7 0 C t0 9R IL L S T O N E 1 c r c 0 0 c 0 0 0 0 0

710312 9 . 7 *H O M T I C U L C 0 0 0 o c c & 0 0 0 0 0

71C630 6 . 1 *DRESOEN 3 0 0 c 0 0 0 0 0 0 0 0 0

711116 1 .5 *V T . YANKEE c 0 C 0 0 0 0 0 0 0 0

721130 1 . 1 *M t G R I H 1 0 0 0 0 0 0 c 0 0 0 0

721201 1 . 0*QUAD C I T I E S 1 c 0 0 0 0 c 0 0 0 3

730218 10 .* *QUAD C I T I E S 2 0 0 0 0 0 0 0 0 0 0

73C310 9 . a*COOPER S T A . 0 0 0 0 0 0 c 0 0

7*0701 6. 0*PEACHBOTTCH 2 0 0 0 0 0 c 0 0 0

7*C705 5 . 9 *BROUN FEROY 1 0 0 0 0 0 0 U V 0 0

7*0601 5 • 0*PEACHBOTTCN 3 c 0 0 0 0 0 c 0 0

7*1 22 3 . 3 *DUANE ARftCtO c 0 0 0 c 0 0 0

750201 1 1 . 0*BROUN FERPY 2 0 0 o 0 0 c 0 0

750301 10 . 1 *F I T Z P A T R I C K c 0 0 0 0 0 0 0

75C728 5 . 2 *BRUNSWICK 2 G 0 0 0 0 0 c 0

751103 1 .9 *HATCH 1 c o o 0 0 0 0

751231 . 0*BROUN FERPY 1 c o o 1 0 w c

77C301 10 . 1 *BRUNSWICK 1 c c I c c 0 c

770316 9 , 5 *HATCH 2 c 0 o 0 0

79C905 3 . 9 *SUSQUtHAHH* 1 c

a u t o s 6*8*

t o t a l e v e n t s c 0 1 1 0 5 0 0 0 0 0 0 0PLANT YEARS 23 23 23 23 22 £2 Z C 20 15 11 10 B 5NEAN • OC .00 . 0* . 0* • CO • 00 ■ J C . 00 .00 *00 • 00 • 00 .00STO OEV • CO .00 #21 .2 1 • 00 • 00 • 00 .00 • 00 00 • 00 • 00 .00cuff m e a n • 00 •00 .01 .02 • 02 • 01 . J 1 • 01 .0 1 01 • 01 .01 • 01cun STO OEV • 00 .00 «12 • 15 • 13 • 12 •11 .11 . 1 0 . 10 • 10 • 10 . 0 9

14 15 16 17 16 19———————————---------

0 0 0 0 0 03.'

c 0 0 0 0 0

20 23

01 .0*

0.1*

06.9*

C 0 * 2

• 00 .00•00 .00•01 .01. 0 9 . 0 9

0 2

.00

.00 • 01 . 0 9

• Ou .00 .0 1 . 0 9

0 2

.0 0 • 00 .01 . 0 9

09*1*

0 I

.0 0

.00

.01 • 09

0 I .00 • 00• 91• 09

• 00 • 00 • 01 • 09

TO TA L

00

00

00

0

0

0

0

0

0

0

0

0

00

0

0

0

0

01

1

0u

2 • 01

E-39

PLANTS REACTOR YEARS23 TO TA L1 2 3 4 5 6 7 I 9 1 G 11 \2 13 14 15 16 17 18 19 20 2 1 22

DRESDEN l The f i r s t 12 tea rs of data are un ava ilab le 0 G 0 0 0 0 2 26 00 70 4 3 . 9*

B IO ROCK PT* The f i r s t 10 years of data are unaval lable C 0 0 0 0 2 G G 0 0 0 263C329 9 . 1 *

HUItaO lO T BAY c C 0 0 0 c 1 0 0 G 0 0 1630 60 1 11 . 0*

9 N I L E P T . 1 2 0 0 0 0 c 0 0 G 0 J 0 0 0 2691 20 1 1 . 0*

OY STER CREEK 0 1 0 0 0 i c 0 1 0 0 0 0 0 J691 22 8 . 1 *

12ORESOEN 2 c C 1 0 1 2 1 2 0 1 1 1 c7CC609 6. 8*

I I IL L S T O N E 1 0 0 c 0 0 C JI 0 0 1 0 2 4710 31 2 9 . 7 *

H O N T IC E L L C G 0 0 0 G 0 c 0 1 V 0 0 1710630 6 . 1 *

DRESDEN 3 0 1 1 0 2 c 0 1 C 0 0 0 6711116 1 . 5 *

VT* YAN KEt 0 0 0 0 0 c 0 0 2 0 0 2721 13 0 1 . 1 *

P I L G R I * 1 c C 0 1 c w 0 3 0 0 0 5721201 1 . 0*

OUAO C I T I E S 1 2 2 0 0 1 G 1 1 0 1 9

730 21 0 1 0 .4 *OUAD C I T I E S 2 c 0 0 0 1 1 0 1 0 0 4

73C310 9 . 8 *COOPER S T * . c 1 0 0 G i 1 0 1 4

740701 6. 0*PEACHBOTTCH 2 2 1 3 0 0 c 1 c 0 7

74C705 5 . 9 *19BROUN FERRY 1 3 0 2 1 2 4 1 2 0

74CS01 > . 0*PEACHBOTTCH 3 C 0 0 0 3 2 G 2 0 7

741 22 3 . 3 *DUANE ARNCLO 2 0 1 G 0 C 1 5

75C201 1 1 . 0*BROWN FERRY 2 C 0 1 1 1 2 3 1 9

75C301 10 . 1 *F I T Z P A T R I C K z 0 i 1 1 2 I 0 9

75C728 5 . 2 *12BRUNSWICK 2 2 1 1 1 1 S 2 0

751 10 3 1 . 9 *10HATCH 1 0 2 1 0 3 2 1 0

751231 . 0*BROWN FERRY 3 1 V 2 2 1 1 2 0 9

77C3 01 U . l *BRUNSWICK 1 0 1 o 1 0 1 0 3

77031 B 9 . 5 *K i T C H 2 2 0 0 0 0 2

79C905 3 .? *SUSQUEHANNA 1 3 3

63C606 6*6*----------------------------------------------- ——— ————— ————— ————— — ———

TO TA L EVENTS 16 12 14 7 17 24 15 13 12 4 2 1 0 0 2 G G 0 0 0 132PLANT YEARS 23 23 23 23 n 22 23 lt> 11 10 8 5 * 2 2 2 2 1 1 0 2 S1 . 2*

MEAN • 76 •52 -6 1 • 3v .7 7 1 . 0* . 7 * .59 • 80 . 36 #20 . 1 3 .20 .O C .00 1.0 0 • 00 .00 • 00 • 00 • 00 • 60

STD OEV 1 . 0 4 . 7 3 - 8 4 . 4 7 . W 1 . 2 7 • i ^ • 95 l . O i •67 #42 • 35 . 4 5 . 0 0 . 0 0 1 .4 1 • GO • 00 • 00 • OG • 00CUN nEAN • 7B »6 5 *64 • 55 • 60 • 68 •6 % • 66 .68 66 #04 • 62 •61 *60 •59 . 6 0 . 5 9 • 59 • 58 • 50 • 50c u n STO OEV 1 . 0 4 . 9 0 . 8 7 . 9 0 • 04 • 93 •4 2 .92 .9 3 •92 #91 . 9 0 •b9 « 8 9 •88 . 8 9 • bB . 0 6 • «8 • 08 • 88

PLANTSa

REACTOR YE AR i 1C 11 12 14

ORESOEN 160C704

B IG ROCK PT* 63C329

HUNBGLOT 6AY 63C801

9 *ue P7. I 691 20 1

OYSTER CREEK 691226

ORESOEN 270C609

M ILLS TO N E 1710312

ftONTIC CLLC71C630

DRESOEN 3711116

VT* YANKEE721130

R I L t R I N 1721201

tft/40 ClTZtS I 73C218

OUAO C I T I E S 2 73C310

COOPER S T* •74C701

PEACHBOTTCN 2 740705

S R O M N F E R R Y 1 74C801

PCACHBOTTCH 3 741223

OUANE ARNCLO 75C201

BROUN FERRY 2 75C301

f x t z h t m c k 75C728

BRUNSWICK 2751 10 3

HATCH 1751231

BROWN FERRY 3 77C301

BRUNSWICK 177C31A

HATCH 279C905

SUSQUEHANNA 1 B3C608

Dir f i r s t 12 years of data are unav

The f ir s t 10 years of data are unav

4

23

1

1

C

1

23

3

1

4

1

1

1

C

3

4

6

1

2 4

C6*8*

0

5

0

3

0

0

1

1

0

2

1

0

1

0

2 1

1

24

2

3

1

3

1

2

20

0

02

1c20012

12

10

3

2

11

0

0110

0

1

0

0

1

1

1

0

0

2c

0

1

1

23

20

13*9*

C1

01

1

11

0

z

b

3

20

0

1

2

6D

21

1U *1*

09,5*

liableliable

o

2

0

0

0

0

1

0

011.0*

310.1*

05 .2 *

C1.9*

0•0*

0

1

22

0

1

2

C

3

3

0

06. 0*

05 . 9 *

05 . 0 *

0. 3 *

0

0

1

0

0

2

0

0

0

2

01 0 .4 *

c9 .8 *

0

1

411.0*

0

0

1

09 . 7 *

1£>.1 *

01 . 5 *

14 15 16 17 l b 19

C 1 1 3 2 03 . 9 *

0 0 0 2 0 1

C\ 22 23

01.0*

0.1*

16 .9 *

01. 1*

C1. 0*

69 . 1 *

TO TA L

7

5

11

188

18

8

1113

5

16

15

9

3

9

15

5

8

17

9

19

23

9

7

T O TA L EVENTS 52 32 26 23 17 27 24 15 12 14 5 0 2 0 1 1P LANT YEARS 23 23 23 23 22 22 20 20 15 11 10 b 5 4 2 2HE AN 2 . 2 6 1 .3 9 1 . 1 3 1.00 .7 7 1 . 2 3 1*20 .7 ? • 80 1 . 2 7 . 5 0 . 6 3 . 4 0 • OC . 5 0 . 5 0STO OEV 1 . 5 7 1 .4 1 . 9 2 . 9 0 . 8 7 1.6 6 1 .4 4 .85 .86 1 . 1 9 . 8 5 • 92 .5 5 .00 . 7 1 . 7 1c u n NEAN 2 . 2 6 1 .8 3 1*59 1 . 4 5 1*32 1*30 1 . 2 9 1 .2 3 1 . 1 9 1 .2 0 1 . 1 7 1 .1 5 1 . 1 3 1* 11 1*10 1 .1 0CUN STD OEV 1 . 5 7 1*54 1*40 1*31 1*26 1*3 3 1 .3 4 1 .3 0 1*2 8 1 . 2 7 1 . 2 6 1 .2 5 1 . 2 5 1 . 2 4 1 . 2 4 1 . 2 4

1 1 0 2761 1 0 251 *2 8

,oo 1.00 .00 1 .1 0,00 .00 .0011 i . i .1 i . l l

.23 1 . 2 3 1*23

E-41

PLANTS r e a c t o r YEARS1 2 3 4 5 6 7 0 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 TO TA L

ORESDEN I T h t f i r s t 12 years of data are unavailable 0 C 0 0 0 0 0 0600704 3 . 9 *

B16 ROCK P T . The f i r s t 10 years of data are unavailable 0 0 3 G 0 0 0 0 0 0 0 063C329 9 . 1 *

HUNBOLOT b a t 1 G C 0 0 0 0 0 0 C 0 3 163C801 1 1 . 0*

9 N I L E P T . 1 0 0 0 0 0 c G 0 0 0 0 0 0 0 0691201 1 , 0*

o m e * c h e e k 0 0 0 0 0 c 0 0 0 I 0 0 G 0 1691 22 8 . 1 *

0PE50EN 2 0 0 0 3 1 2 C 0 0 Z 2 2 c 12700609 6 . 8*

N I L L S T O N E 1 C 0 c 0 G 0 C 0 1 0 0 0 2710312 9 . 7 *

N O N T IC E L L C 0 0 0 0 0 0 0 0 2 0 3 0 571C630 6 . 1 *

DRESDEN i 0 0 G 0 0 0 0 1 1 0 0 0 2711 11 6 1 . 5 *

V T . YANKEE 0 C 1 0 0 G 0 0 2 0 3 4721130 1 . 1 *

34P l L t R M 1 <s 6 4 z 3 1 z 1 1 3 0721201 1 . 0*

OUAO C I T I E S 1 0 0 0 0 0 1 G 2 3 2 073C218 1 0 .4 *

OUAO C I T I E S 2 G c 1 0 0 c G t 3 C 77 J0 3 1 0 9 . 8 *

COOPER S T a , 3 2 G 0 0 1 0 i 0 d740701 6 . 0*

PEACHBQTTCI* 2 0 0 0 0 0 2 0 0 0 274C705 5 .9 *

27BROWN FERPY 1 4 0 4 3 3 6 2 2 074C801 5 .0 *

PEACHBQTTCN 3 0 0 0 0 G 3 1 0 0 4

741223 • 3*OUAHE ARNCLD 1 0 2 0 0 1 0 0 5

75C201 1 1 . <i*26BROWN FERRY 2 1 3 3 4 5 5 4 0

75C301 10 . 1 *F I T Z P A T R I C K 0 0 0 1 0 1 0 0 2

75C728 5*2*15BRUNSWICK 2 1 1 2 4 1 4 2 0

751103 1 .9 *HATCH 1 0 1 2 1 1 3 1 0 12

751231 •3*19BROUN FERRY 3 e 4 i 2 2 X 0

77C301 1 3 .1 *BRUNSWICK 1 l 2 1 0 1 1 1 7

770 31 8 9 . 5 *HATCH 2 l 1 3 2 1 tt

79C905 3 .9 *SUSQUEHANNA 1 1 1

03C6O6 6 . 8*

T O TA L EVENTS 3C 20 25 22 17 34 12 12 9 13 6 5 2 0 0 0 u G 0 0 0 212PLANT YEARS 23 23 23 23 22 22 20 23 15 1 1 10 8 5 4 2 2 2 2 I 1 Q 2 S1 U 1MEAN 1 • 30 #87 1 • 09 • 96 • 77 1 .5 5 •bO • 63 • 60 1 . 16 • 6C • 63 • 40 •OG • 0 0 . 3 0 • 0 0 • 00 •00 • 00 • OC • 8 %

STO OEV 2 • 49 1 . 58 1 • 36 1 • 40 1 • 34 2 • 02 1 . 1 0 • 82 • 83 1 . 17 1 • 07 1 • 19 . 8 9 •00 • 00 • 00 • 00 • OG • 30 • 00 .00CUN NEAN 1 • 30 1 . 09 1 • 09 I • 05 1*00 L • 09 1 . 0 3 • 98 • 95 •96 • 94 • 93 . 9 2 . 90 • 90 • 89 • 88 . 8 7 . 8 7 • 87 • 87CUN STO OEV 2 • 49 2 . 07 1 • 86 1 • 75 1*60 1 • 74 1*66 1 • 61 1*56 1 . 54 1 • 52 1 • 51 1 • 50 1# 4V 1 • 4 9 1 • 40 1 . 4 6 1 . 4 0 1 . 4 7 1 • 47 1 . 4 7

E-42

PLANTS REACTOR YEAR*10 11 12 13

DRESDEN 1 The f i r s t 12 w a r s of data are unavai lable 060C704

•1C SOCK The f i r s t 10 years of data are un avai lable C 0 0630329

HUNBOLOT BAY 0 0 0 c 0 c 0 0 0 0 0 0 0630801 11 .0*

9 N I L E P T . 1 C 0 c 0 0 0 I 3 0 0 C 0 0691201

OYSTER C R t t K 0 0 0 0 0 c 0 3 0 0 0 0 0691 22 8

ORESDEN 2 c 0 0 0 0 0 St 3 0 0 c 0 070C609

M ILLS TO NE 1 c 0 0 0 0 0 0 3 0 0 0 0 07 10 31 2 9 . 7 *

NOHT1CE LLO 0 0 0 0 0 0 c 3 0 0 0 0 071C630 6 . 1 *

ORESDEN 3 1 c c 0 c c 0 0 0 0 0 0 07 11 11 6 1 . 5 *

V T . YANKEE 0 3 c 0 0 0 0 3 0 0 0 0721130 1.1*

P I L 6R IN 1 1 0 0 0 0 I 0 3 0 0 0 w721201 1.0*

QUA.Q C I T I E S 1 c 0 Q * 0 G 0 i c 0 073C218 1 0 . 4 *

OUAD C I T I E S 2 0 0 c 0 0 c c 0 0 0 073C310 9 . 8 *

COOPER S T * . 0 0 0 £ u c 0 3 0 074C701 6. 0*

P E A C H B Q TT L r 2 0 0 0 0 c 0 0 3 0 0740 70 5 5 . 9 *

BROUN f E R « Y 1 c 0 0 0 0 V 0 3 0 074C601 5 .0 *

PEACHBOTTCH 3 0 0 0 0 0 0 0 3 0 0741 22 3 . 3 *

OUANE ARNCLD c 0 c 0 c c 0 3 07*1201 1 1 . 0*

BROUN FERRY 2 c 0 0 0 3 0 0 0 075C301 1 9 .1 *

F I T Z P A T R I C K c 0 0 0 0 0 0 3 075C726 5 . 2 *

BRUNSUICK 2 0 0 0 0 1 1 c 3 0751103 1 . 9 *

HATCH 1 1 0 1 0 0 0 0 3 0751231 .3*

BROUN FE*fiY 3 c 0 0 0 c 0 077C301 13.1*

BRUNSU ICK X 2 0 1 0 0 0 077C318 9 . 5 *

HAT CH 2 0 0 c 0 c79C905 3 .9 *

S US Q U E H A N M 1 0630606 6 . 6*

14 15 16 17 10 19 20 21 22 23

c 0 0 C G 03 . 9 *

0 0 0 0 V 0 0 0

TO TA L

01. 0*0. 1*

cb .8 *

9 . 1 *

0

0

01

0

0

00

1

0

2

L

0■J00

0

03

0

2

2

0

3

0

0

T O T A L EVENTS 5 0 2 1 4 2 1 3 0 0 0 2 0 0 0 0 0 0 0 0 Si 15PLAN T YEARS 23 23 23 23 22 22 20 23 15 11 10 8 5 4 2 2 2 2 1 1 0 2 5 1 . 2 UMEAN . 2 2 • 00 • 09 • 04 • 16 .C 9 . 3 5 .0 3 • 00 . 0 0 . 0 0 • 00 . 0 0 . 0 0 . 0 0 • 90 • 00 • 00 • uo • 00 • 00 • 06S TD OEV . 5 2 . 0 0 . 2 9 • 21 .6 6 .2 9 . 2 2 .0 3 • 00 . 0 0 .0 0 .0 0 . 0 0 • OC . 0 0 • 0 0 • 00 • 00 • 00 • 00 • 00CUN NEAN • 22 .1 1 • 1C . 0 9 • 11 • 10 •10 • 09 • 08 . 0 7 . 0 7 . 0 7 • 07 . 0 7 • 06 • 06 • 06 • 06 • 06 • 06 • 06CUN STO DEV . 5 2 . 3 6 • 35 • 32 •41 . 3 9 . 3 7 • 35 • 34 .3 3 .3 2 .3 2 • 31 . 3 1 • 31 • 31 • 31 • 31 • 31 • 30 • 30

APPENDIX F FURTHER INFORMATION ON BOUND CALCULATIONS

The calculations producing uncertainty bounds for the transient event frequencies are described in general terms in Subsection 4.4. The purpose of this appendix is to provide additional inform ation on the m athem atical basis o f the m ethod and the form ulas used.

For each transient for each plant type, the set o f raw data is a sample o f annual occurrence counts, with mean xand sample standard deviation s. Two o f the three bound calculations were based on these statistics. The third calculation was based on T, the to ta l num ber o f years of data (including partial years) and n, the total num ber o f transients (including those occurring in the last year o f data for each p lant, which often is not a full year o f data). Each o f these calculations is described in subsections below.

Bounds Based on a Gamma Distribution

Suppose the annual occurrence rate, A, is characterized by a gam m a distribution as it varies over plants and over the starting point for a particular year o f observation. Let X be the number o f occurrences in a time period of length one year for a selected plant and reactor year. A member o f the A population, say A0 , pertains to the behavior o f X. Further assume that X given A0 (conditioned on A0) has a Poisson distribution.

Under these assumptions, the unconditional (or com pound) distribution o f X is negative binomial.*7** W ith a as the shape param eter and p as the scale param eters o f the underlying gam m a distribution for A, the mean and variance o f X area

E(X) = apt = ap (F -l)

Var(X) = apt (1 + pt) = ap (1 + P) (F-2)

where t is the length of the time period for observation o f X (one year). Using xand as estim ators of these quantities and solving for a and p produces the following estimated param eters for the A distribution

P = s /x - 1

- - AS = x/p.

(F-3)

(F-4)

The desired bound for A is the 95th percentile o f the resulting gam m a (S,/3) distribution. Since p is merely a scale param eter for a gamma distribution, this percentile can be obtained from tables o f percentiles o f gamma ( a , l ) distributions. Such tables have been generated numerically for a ’s in a range from 0.0100 to 4.5 by increments of 0.0025 and from 0.0100 to 1000 with a increments constant on a log scale, using software described in References F-2 and F-3. For a values <0.005, the 95th percentile o f the gamma (o ,l) distribution is M).95 raised to the 1/a p o w e r .^

A AIn summary, a bound is obtained by computing a and p [Equations (F-3) and (F-4)], identifying the 95th percentile, P , o f the gamma (£,1) distribution, and then correcting for the scale factor P, as follows:

Upper bound = p • P. (F-5)

a. In this appendix, E in equations denotes the expected value operator.

In the analysis described above, the fitted distribution is obtained by matching the moments o f the observed d a ta to the m om ents o f the unconditional distribution o f X, i.e ., the m arginal distribution o f X. For this reason this is called the m arginal m atching m om ents m ethod (M M M M ) (see Reference F-S).

However, there are times when the within-in-cell variation subtracted in Equation (F-3) results in a negative variance estim ate for A [the variance o f A with the gam m a (»,/?) distribution is <»$2, or s2 -x]. For such cases, the M M M M cannot apply.

The analysis approach for such situations is the prior matching moments method (PMMM). In this method, the observed sample o f counts is regarded directly as a sample o f the gam m a distribution for A instead o f a sample o f X. The discrete nature o f the sample is not specifically modeled. The equations

E(A) =-- aft = x (F-6 )

Var(A) = p ■ E(A) = s 2 (F-7)

are solved in place o f (F -l) and (F-2), resulting in equations for a and p like those above except that no subtraction is involved in com puting p.

In both o f these m ethods, distribution param eters are being equated to sample estimates with no consider­ation o f the sampling variance in the estimates. For both plant types, the estimates are based on large samples (407 and 239 cells for PW Rs and BW Rs, respectively). Techniques have been developed to incorporate the sampling variance in fitting gam m a distributions in the context o f maximum likelihood e s t im a t io n .^ However, applications o f these m ethods in analyses similar to the current one have shown relatively little im pact from these corrections (Reference F-7, page 10). This rem ains as a subject that would be o f interest in fu ture investigations.

Bounds Based on a Lognormal Distribution

The m ethod described in the previous section for fitting the m om ents o f the marginal distribution o f the num ber (X) o f occurrences in a one-year period to the observed moments and then solving for parameters o f an underlying distribution for A can be applied for a variety o f families o f possible A distributions. In each application, the idea that X has a Poisson distribution given A0, some member o f the A population, rem ains. The m arginal distribution o f X in each case is a com pound distribution form ed from the underly­ing A distribution and the Poisson distribution.

Let f(A) be the underlying A density. W ith com pound Poisson distributions, the following relations hold

E(XjA) = A (F-8)

Var(X|A) = A (F-9)

since the mean and variance o f a Poisson (A) variate are both A. From Equation (F-9) and the fact that any variance satisfies

Var (X|A) = E(X2 |A) - [E(X|A)]2

the following equation applies

E(X 2 |A) = A + A2 . (F-10)

Thus, for the com pound (m arginal) distribution o f X , we have

Var(X) = E(X2) - [E(X )]2

= f o°° E(X2 |A) f(A)dA - [ / “ E(X|A) f(A)d*J2

= f 0°° (A + A2) f(A)cU -1 Af(A)dA | 21A - j p ° Af(A)dAj:

[by Equations (F-10) and (F-8))

= E(A) + E(A2) - [E(A)]2

= E(A) + Var(A) .

Furtherm ore, for the com pound distribution

E(X) = J q°° E(X| A) f(A)dA = E(A) .

(F - ll)

(F-12)

W ith x and s2 as estimates o f the mean and variance o f the compound distribution for X, Equations (F-12) and (F - l l) show that

E(A) = x

Var(A)

(F-13)

(F-14)

in order to m atch the com pound distribution moments to the data . These equations held for the gam m a distribution o f the previous “ Bounds Based on a Gam m a D istribution” section; in the remaining paragraphs their im plications for the lognorm al upper bound are presented.

Lognorm al distribution param eters are generally expressed in term s o f the underlying norm al distribu­tion param eters, n and o2. The following equations apply for a lognorm al distribution o f annual occur­rence rates (A) am ong plants, reactor ages, and other random factors causing variation in occurrence rates

E<« - 11

Var(A) = |E ( « ] 2 (e° 2 - 1)

Upper bound = ef4 ezo

(F-15)

(F-16)

(F-17)

where z is a norm al distribution percentile corresponding to the bound desired (1.645 for a 95% bound).

Substituting from Equations (F-13) and (F-14) for the left sides o f Equations (F-15) and (F-16), solving for fi and o, and substituting these in E quation (F-17) produces the following upper bound form ula

-2x

U pper bound = ■ • exp

yV ar(A ) + x

1.645 y i nVar(A) + x2

(F-18)

As with fitting a gam m a distribution, whenever the sampling value o f s2 is < x , Var(A) from Equation (F-14) is negative and the prior m atching m om ents m ethod is used. In this case Equation (F-18) is used w ith just s2 as Var(A).

Bounds Based on a Chi-Squared Distribution

W henever the annual occurrence counts shown in the tables o f Appendices G and H are homogeneous am ong the plant-age com binations, the entire experience sum m arized in a table can be pooled. If all the X ’s are sampled from the same Poisson distribution, the upper bound is the confidence bound given by the form ula

X [2 (n + l) ,« ] (F-19)-----------2T —

where

n = total num ber o f occurrences

T - total time

a = confidence level

X^(a,b) = b1*1 percentile o f the chi-squared distribution with a degrees o f freedom.

If n is 50 or more, the following approximation is used for the chi-squared percentile

X2 (a,b) = 1 + z)2/2

where z is the b1*1 percentile o f the norm al distribution (1.645 for a 95% upper bound).

References

F -l. N. L. Johnson and S. Kotz, Discrete Distributions, New York: John Wiley and Sons, Inc., 1969.

F-2. D. E. Amos and S. L. Daniel, Significant Digit Incomplete Gamma Ratios, SC-DR-72 0303, November 1974.

F-3. Ibid. CDC6600 Subroutine fo r Bessel Functions, SAND-75-0152, September 1975.

F-4. R . A . W aller et a l., Gamma Prior Distribution Selection for Bayesian A nalysis o f Failure Rates and Reliability, LA-6879-MS, July 1977.

F-5. J. K. Shultis et al., Bayesian Analysis o f Component Failure Data, N U R EG /C R -1110, KSU 2662, Kansas State University, November 1979.

F-6 . C. L. Atwood, “ Approximate Tolerance Intervals, Based on Maximum Likelihood Estimates,” Jour­nal o f the American Statistical Association, June 1984.

F-7. C. L. A twood, Data Analysis Using the Binomial Failure Rate Cc nmon Cause Model, NUREG/CR-3437, EGG-2271, September 1983.

APPENDIX G TRANSIENT EVENT COUNTS EXCLUDING LOW POWER

AND SCHEDULED SCRAMS

This appendix contains detailed tables showing the effects o f excluding low power and scheduled scrams from the transient event counts o f the com bined data base. The 16 tables are in tw o groups, with each group containing four PW R event count tables and four BWR event count tables. In each set o f four tables, the first table has to tal event counts, the second excludes events tha t occurred w ith the reactor at £ 2 5 % o f its rated therm al power, the third excludes scheduled scram s, and the fourth excludes both low power and scheduled scrams.

The first m ajor group o f tables, Tables G -l through G -8 , are outputs o f E P R I’s PLU N G E program . They provide counts for each plant by reactor year.

The second group o f tables, G-9 through G-16, contains the counts by plant and transient event category. For each table, both plant and transient event category totals are provided.

2 4

TANNIC ItOVC 9 7 9610701

INDIAN M . 1 40 96 9 1661106!

SMI 0NCPM 1 4 2 7610161

MADCAP NECK 19 12 6600101

R . f . (INNA 9 9 4700701

POINT IIACH I IS 6 7701221

N 1 ftOltNSON 91 20 2 10710907

PALISADES 26 7 12711291

POINT |C ACM 2 19 4 •721001

TURKEY PT. 3 91 15 5721214

SURRY 1 29 16 19721222

MAINE YANKEE 9 9721226

su**r t 9 11 11790901

0C9NCI 1 16 9 T790715

INOtAN PT, 2 41 99 24790909

TURKEY PT, 4 19 7 19790907

PRA1RH IS . 1 20791216

I ION 1 21 90 19791291

KEMAUMCE 19 21 9740601

PORT C PL NOUN 9 9 4740620

9 N IK I S . 1 4 1 1740902

OCONI( 2 14 4 4740909

IION 2 44 22 6740917

OCONEE 9 11 6 9741216

ARKANSAS 1 12 7 4741219

PRAIRIE IS . 2 16 5 9741221

RANCHC SECO 4 4 6790417

CAtV. CLIFF 1 19 9 e790909

COOK 1 • 14 4790 R27

NIUSTCNE 2 42 9 1791226

TROJAP 19 19 6760920

INOIAN PT. 9 19 6 20760830

IEAVER VA l. 1 42 22 1T61001

ST. LiiC IE 1 19 7 6T6I221

CRYSTAL R1V 9 19 6 9770919

CALV. CUFF 2 14 10 4770401

S6LIN 19 12 19770690

OAVIS-tESSE 1 22 9 10771121

PARLEY 1 92 19 e7712*"

NORTH ANNA 1 10 9 9710606

COOX 2 19 14 2710701

9 NILE I S . 2 2791230 2 .9*

ARKANSAS 2 22 27 4600126 9 .

NORTH ANNA 2 21 4 1101214 .

SIOUOYAK 1 14 6610701 0*

FARLEY 2 16 1•10790 I#

SAIEN 2 21 7• 11019 6*

NC6UIRE 1 17 17•11201 0*

SK6U0YPH 2 6 I•20601 7.0*

S T . ItlC IC 2 4910909 4.1*

RC.ttTOR V IM S 10 11 12 1)

2 4 • 9 7

15 9 19 91.0*

4 4 2 1 9

9 9 2 4 7

2 C 1 2 16,0*

4 9 2 1 0.4#

19 6 9 99.94

1 19 2 0.04

1 19.0*

9 9 0• 6*

19 9 9.9*

9 0.1*

7 1C6.1*

7 99.6*

7 44.9*

7 09.14

9.5*

6 0.0*

97.0*0

6.49

1.7*1S.9*0• 9*0.4*0

9.0*0.4*

16 I T ie 19 20 21 22 23

J6.0*

012.0*

t o t a l

99

216SI

SI

40

54m1C7

42 116 196

90

97 11

210 1C3

97

124 79

34

690

134

42

59

59

44

73

92

79

79

66

H I

92

64

91

79

62

12

40

62

31

24

222136

7

TOTAL EVENTS 166 S SI 196 10* 216 267 214 192 137P U N T WARS 41 47 4 t 41 40 t l SI 29 29M AN l $ . l I t . 7 9 ,2 1*9 1*1 1*0 6.9 9 .2 9*9STO D f« 11.1 I0 .C 1 .2 9 .1 1 .9 4 ,9 5 .9 1 .9 « . l(U K M W l l . l 14*9 U . t 11*9 11*0 19*4 1 0 .0 9 ,9 9 .1CUM IT C 0*V 11.1 1 1 .6 10.9 9 .1 9 .2 l . l 1 .6 1 .4 9 .2

91 49 I t 19 1012 I S I t

6.4 4«| 9.6 2.6 » . ) 1,39.0 1.1 t«2 1.1 1.2 2*99.1 4 .0 | ,1 « ,• l . l | . |

1.0 1.0 1*0 T.9 7,9

11918

1.1

61

2.02.09.17 .9

21

2 .0.0

9.77.9

91

9*0.0

••77.9

II

1.0. 0

14,0

.0

71

7 .0.0

1 .6 l . l 7 .9 T .9

0 3974 0 411.19

•0 1 .99 .0

r M M i (Owe 610701

INDIAN PT. 1 621001

SAN QNOfftl 1 660101

HAD0AH NICK600101

*• C» 61NHA700701

POINT 6CACH 1 701221

H • R0I1NS0N 710307

PALISADES711231

POINT MAC* 2 721001

TURKEY PT. 3 721214

sw rry i721222

NAtNI TAHKU 721226

SUMY 2730901

0 C 0 H « l730715

INDIAN PT* 2 730105

TURKlY PT , A 730907

PRAIRIE IS * I 731216

210N 1731231

KEWAUNEfc740601

FUKT CALHOUN 740620

3 N ILE IS . 1 740902

OCONfcE 2740909

ZION 2740917

OCONEfc 3741216

ARKANSAS 1741219

PRAIR IE IS * 2 741221

ftANCNO SECQ7S0417

CALV. CLIFF 1 790506

CQQK I750627

MILLSTONE 2 751226

TftQ 4AN760520

1N01AN PT* 3 760930

StAVkR VAL* 1 761C01

ST. LUCIE 1761221

CCrSTAl * l \ t 3 770313

CALV* CLIFF 2 770401

SAiEP I770630

o A v is -i k s s e i 771121

f a k ie t 1771201

NORTH ANNA 1 760606

COOK ?760701

3 NILE IS* 2 761230

ARKANSAS 2600326

NOftTN ANNA 2 601214

SEQUOVAH 1610701

FAftUV 26107)0

SAL fcN 2611 Cl 3

HCftUlM 1611201

SiOUOTAH 2UObOl

ST* LUC1I 2

2

3 2

40 96 19

3 1

10 12

9

l i 4

% 11 1C

10 7

1

22 14 10

2< 9

9

7 7

13 7

46 33 1311 7

16 «

12 16

12 16

4

16*

1C 2

27 19

9 6

U 7

17 4 63 !

14 0 10

11 535 * 7

15 I

19 5 1

32 16 6

17 5 314 * U

13 9 t

17 11 617 9 3

29 9 91C 6 011

22*9*

8 4

19 16*

12 36*

9 4•

14

ie

1

•16

4

13

17*0*

REACTOR YEARS9 19 11 12 11 144 2 2 • 4 ’2

13 19 9 19 31*0*

9 3 4 2 0 39 3 9 0 4 4

2 0 0 I 2 16*0*

0 2 2 I 1 0• 4*

7 6 6 6 39*94

2 0 • 2 0• 0*

0 1 1 13*0*

0 6 ) 0»6*

6 6 4 1• 3*

4 3 9 0.1*

JO 4 66*1*

3 9 29*6»

6 4 44*9*

12 9 03*6*

1 2 0• 9*

I 6 0• 04

2 17,0*

2 06*4#

202

C1 2 * 0 *212*0*

9 23.7*

3 13*5*

2 0• 5*

7 0• 4*

3 04

6.9*3

7,9*1

4*2*0■ 2*

22 I t TOTAL

6 1 6T 6*09

U t

37

69it

40

9C

71

2699

M43 (2

202

• 247

0?6229

t37

46164<*3

31

if51

92

62

44

49

4*

tc41

97

1313

247

2C

1219

21

2 1

Y tN K It KOMI 3 7 7610701

i i o i a n M * 1 40 33 10621001

S m ONQFRK I 2 1610101

HAOOAfl m en 11 12 '630101

ft« I* OINHA 9 I 1700ro t

POINT ItA C H t 12 3 *701221

H 1 ftOllMlON 11 19 23710107

PAL ISADIS 21 7 0711211

POINT I t AC H 2 9 4 3721C01

TUIKCV p t * » 10 14 t t72121*

SUftKV 1 2* 10 19721222

HAlNt VANKft 4 6711111

S VM t 2 9 11 12710501

OCONtt 1 16 8 9710713

1 HO IAN PT* 2 *7 I I 17710103

TOtKIV PT* 4 11 7 •710*07

PRAIRIE IS* 1 16 9 1711216

11 ON 1 19 21 •711211

KIWAUNIC 11 21 67*0601

PORT CALHOUN 3 * J740620

1 M IC IS* t 4 t 0740002

OCONtt 2 12 4 2740909

ISON 2 I f 13 22740917

O tO N tf 1 11 6 4741216

ARKANSAS 1 11 6 274121*

p r a i r i i u * 2 16 3 e741221

RANCHO JICO * * 2730417

CAIV* C l i f f 1 1* 9 11730300

COOK I 11 (730127

NtllSTONt 2 11 3 1731226

r«OJAM 11 i t *760320

INDIAN PT* | I * 6 (76011C

•lAVtft v a l * 1 *0 21 11761001

IT* L U C It 1 11 6 9761221

C(VITAL ftlV 1 13 6 7770111

CALV* C U M 2 1* 9 3770401

SALIH 1 17 12 10770610

O A VlS-M SSi 1 I f • «771121

PARUY 1 12 i » 16771201

NORTH ANNA t 10 7 970 0 606

C03K 2 t l 12 7760701

1 NILft IS * 2 2701210 2*9*

ARKANSAS 2 22 27 9600126

NORTH ANNA 2 71 * 3• out*

UOVCfAH 1 1* 6 *• 10 701 6*0*

PAPIIV 2 16 1 3I1071C 3*1*

SALIH 2 21 6 0• n o t 1 2*6*

NCIO IRI t 17 t l 2•11201 1*0*

SMU07AH t 6 t•20601 7*0*

ST* LUCU 2 *

6 10«0« *••*M «**M *«*M **I

11*14

01

16

16

2624

0J

19

7

211

2t*5

T

3

M ACTOR VIARS 10 I t 12 t l

00

10

2to

4

3

24

t l

tt

9

19

1

7 7

6 62 6I

7,0*

I1.7*t1*9*0• 3*C• 4«0• 4*

2I

30I

3

tlt

I

•5

10 • *t*i3 .6*

44*9* 0

1 • 6*0.3*0♦0*

t l

221

2 9

2

227

t1.0* 0 • 6*I • >• 0 • 1*

1t .0*1s

iX

I9*9*0• C*

t6.0*

t6*0*0*4*

012«0*

I12*0*

! . ) »3 J

7*|*6 1

4.2*9 0

• 2*

4*

1*6

0*0*4*

99*7*6

9.0*

6*1*

1*1*0

2.0*

TOTAL I V I N T I • I I >11 112 297 217 236 201 1*1 129PLANT T I A I I 40 47 41 41 40 I I I I 29 23MAN U . 9 10*9 1*9 7*2 6*1 6«7 6*2 *#• 9*2SIO M V 10*1 9*4 •«C 4*9 1*7 4*6 3*2 1*7 1*1CUN MAN 11*9 11*9 12*4 11*2 10.* 9*9 9*4 9*0 • * 7C M STO O H 10*3 10*4 10*0 9*1 • • 7 • * l •«t 7*9 ?*•

10?to»*•4*6•*67*7

*2t l«•)

J .4ft* S 7*6

19•4*94*3 • •4 7*6

t l 3

2*6 l.l • •I 7.3

t lI • •0

1*0 ••I 7*3

•••■•••a

3I

1*71*3••27*3

21

2*0*06.1

7*3

31

3*0

lit7*3

0 I

• 0 • 0

• •! 7.3

2I

2*0•e

7*3

4 T C 11771 t 0 *11.M

*•0 7,c .o f*ci•o .0 «o•*t »*t t a

7*3 7.3 7.3••‘ ••••'•••••••••••a*********••*••*••••••••••••

1 2 |

VANRIK ROM 3 2 4610701

INOtAN PT* 1 40 99 30621001

SAN 0N0F9I t 3 1 0690101

HAOOAN NICK 10 11 9610101

R* t* 6INNA 6 • |700701

POINT MAC* 1 9 3 3701221

N • JOHNSON 9 10 7710)07

m i n o t s 1 7 C711231

POINT ICACH 2 7 i 3721002

lU RM t PT* 3 21 13 13721214

SURRT 24 9 U721222

NA1NI TANKCC 4 4 6721221

SUM * 2 7 7 1C730901

OCONK 1 13 t 9730715

1W1AN P I* 2 47 31 37730909

ruRKir PT. 4 9 7 7730407

H IM H E l i . 1 12 9 2731216

2 ION 1 10 19 6731231

KtWAUNlfc 12 19 t740601

PORT CAltfOUN ) 4 9740620

3 N ILS U . 1 4 I C740902

OCONK 2 9 2 2740909

tlOH 2 22 9 16740917

OCONii 3 9 6 3741216

ARKANSAS 1 10 6 2741219

PRAIKXC 15. 2 IS 4 6741221

RANCHO SICO 3 3 2790417

CAIV. CLirft 1 13 9 9790906

C03K 1 7 10 4750627

NIILSTONC 2 31 2 3791226

TROJAN 7 19 3760)20

I MU AM PT. 3 14 9 •760630

HAVES V AL* 1 31 17 H761001

J7# 1DCJI 1 12 3 7761221

CRYSTAL R1V 1 14 4 2770313

CAIV« C l l f t 2 13 1 3770401

SAlCft 1 19770630

O AVIS-RlSSt I 14 9 3771121

FAR I f 7 1 25 9 10771201

NORTH ANNA 1 10 7 6710606

COOK 2 U 6 6710701

3 M U I S . 2 2161230 2*9*

ARKANSAS 2 19 16 1900326

NORTH ANNA £ 12 3 4•01214

SCQUOrAH 1 4 3•107<11 6* 0*

PARUV 2 14 I 4• M W 9.1*

SA ltn 2 19 2 0• u o u 2 #6*

N M U JM 1 16 11 2911201 1*0*

tWUQYAH 2 3 X•20601 7.0*

ST* LO C H 2 4I 1 0 H I 4.1*

RlACTOR VCARS 10 II | | | | 19 I t

I

14

i4

0

1 9

120

02

19

J

26

0to

2I

1

6e

2 6 1 6

to

9

9

61203

4

9i

9

2

72

1

4

103

U112 2

2103

3

026

1b1

34

) 3

32 6

•II2011

6• ■1*29*6*

4*.9*0

3.1*0.9*0» 0 l

13,0* 0 • 6*1• 3*0. 1*

11.0*04

2 I

39.9* 0 • 0*

I*.0»

1*•0*0

0 0 11*0*

4 2w.o*

17,0*0

6*4*

1 6 9 23 .7*

11 • 3 1f.9 «

4 1 2 0• 9*

t 2 7 0• 4*

4 6 2 0• 44

4 3 48.9*

4 7 37 .M

6 1 I4.2*

• 1 0.2 *

3 67.44

1 04,1*

9 93.0*

1 0• 4*

59.7*

6V.0«

6.1*1

1.1*0

i.O *

total M INTS H M T T lttft MAPIsro o i*CUN H|AN CUN STO 01V••••••••••••a

134 403 199 222 21140 47 41 4| 40

I U t 1*1 4*9 9*4 9*39*12 l t d 7.0* 4,04 2*9511.2 10*9 1,1 I . T | ,19*11 1 ,P |«|9 •*23 ? , i )

191 192 112 101 90 >3 29 29

*919 ♦012 11

9

IC I I I I I I ICVAL

t *. * \ t t

221 3C

*9

39

39

«e

6« 24

92

14

47

63

t l

199

79

4C

72

60

29

t

39

• 636 47

44 >1

63

42

37

90

51

8019

49

43

99

44

97

32

31

2

47

20 12 19

i t

29

1 4 6 0 2(61 1 1 1 0 411.14

I 'C 4,0 6.0 .0 6.22•00 .00 *co ,00 6*1 6*1 ( , | 6*1

6*19 6 . I t 6*37 t* |7

U M T S S E » C T C R V E »R SI 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 IB 19 2C 21 ?2 23 T C T A l

OftESbefr i600704 The f i r s t 12 years of data are unava ilable 1 C 1 2 c 4 4

3 .9 *17

S I C RCCK P T , The f i r s t 10 years of data are unavai lable C 0 1 1 0 4 4 1 I I 0 13630329 V . l *

N U f t a o u r b a y 9 3 1 2 5 3 5 1 2 1 2 C 10 43630601 1 1 . c*

9 H U E P T . 1 23 13 6 10 3 7 4 1 5 1 4 2 0 1 0 80691201 1 . 0*

O YSTER CREEK 14 1 8 10 2 5 1 4 2 5 1 2 2 C 0 576 91 22 8 . 1 *

ORESOEN 2 9 <J 12 9 V 8 7 b 5 b 8 9 6 5 1027 00 60 9 • 6. 9*

R I L I S T C H E 1 19 z 6 b 6 5 15 5 4 2 e 3 5 867 10 31 2 9 .7 *

N O N T IC E L L Q 12 5 2 3 4 8 4 7 4 6 l 3 1 60710630 fe.l*

OftESDE* 3 10 LG 10 * *> 3 4 9 7 10 3 fc C 81711116 1 .5 *

V T . YANKEE 9 9 7 6 1 4 3 2 3 B 1 0 53721130 t . l *

P U C R t r l * ; B 15 7 9 12 11 6 8 7 <S 0 113721201 1 . 0*

OUAO C I T I E S 1 XI 5 5 10 8 8 3 «v 11 10 5 82730216 1 0 .4 *

OUAO C I T I E S 2 10 B 7 4 11 b 4 6 5 7 0 687 30 31 0 9 . e*

COOPER S T A . 28 9 1 3 2 5 4 2 6 3 63740701 6. D*

56P E ACN6CTT0H 2 15 fc 13 2 5 A 7 2 3 1740705 5 . 9*

B M W FERRY 1 20 0 20 9 20 22 7 17 8 0 123740601 5 . U*

PEA CH6CTT0P 3 5 9 3 5 e 10 5 I 4 1 517*1223 3*

DUANE ARNOLO 6 6 11 2 * 7 6 5 6 53750201 1 1 . 0*

6R0VN f€K** Z 1 11 19 12 21 1 ft ?0 5 10 117750301 10 . 1 *

f x t z p a t r i c k 15 n 6 5 5 4 5 0 557 50726 5 .2 *

BRUNSWICK 2 28 22 20 13 o 19 6 0 126751103 1 .9 *

HATCH 1 26 Z Z 12 7 I 7 1 * 13 0 120751231 . 0*

BROWN FERRY 3 23 20 9 8 11 5 79770301 10 . L*

BRUNSWICK 1 16 13 14 11 7 9 74770318 9 , 5*

HATCH 2 15 13 13 6 3 507 90 90 5 3 . 9 *

SUSQUEHANNA 1 8 86 30 60 8 6, 6*

TO TA L EVENTS 347 215 220 153 16 7 1 *P 130 106 77 63 37 25 10 2 1 6 9 1 1 0 1832P LANT YEARS 23 2 3 23 23 22 22 20 20 15 11 1C e 5 4 2 Z 2 2 1 1 0 2 5 1 . 2 8MEAN 1 5 .1 9 , 3 9 . 6 6 . 7 7 . 6 P . 5 6 . 5 9 .4 5 , 1 5 . 7 3 . 7 3 .1 2 . 0 . 5 . 5 3 .0 4 . 5 2 . 5 1.0 J . C • 0 7 . 2 9STD OEV 7 .5 1 6.0 1 5 . 7 0 3 .3 2 5 .5 4 5 . 5 0 * . 4 7 4 .0 1 2 . 5 0 3 . 23 3 . 4 0 3 . 0 4 2 . 3 5 .5 8 . 7 1 1 .4 1 . 71 2 .1 2 .CO .00 • OCCUN NEAN 1 5 .1 1 2 . 2 1 1 . 3 1 C . 2 9 . 7 9 . 5 9 . A 8 . 7 8 . 4 fl . 3 8. C ? . 9 7 . 7 7 . 6 7 .5 7 .5 7 . 5 7 . 4 7 .4 7 .4 7 .4CUN STO OEV 7 .5 1 7 , 3 2 6 . 9 0 6 .5 1 6 - * C 6 . 2 5 6 . 1 2 6 . 0 3 5 . 9 0 5 . 82 5 . 8 0 5 . 8 0 5 . 6 0 5 . 8 3 5 . 8 4 5 .8 3 5 . 8 2 5 .0 1 5 . n 5 .P 2 5 . 0 2

G-9

PLANTS

O R E S D E N 16 0 0 7 0 4

• 1 0 RCCK P T .6 3 0 3 2 9

H U n B O L O T SAY 6 3 0 0 0 1

9 H i l t P T . 1 691£01

o y s t e r CBEEK6 9 1 2 2 0

D R E S D E N 27 0 0 6 0 9

n t l l S T C N F 17 1 0 31 2

NQn T I C E L L O7 1 0 6 3 0

O R E S D E * 37 1 1 1 1 6

V T . Y A M E f7 2 1 1 3 0

P U G f f i r 17 2 1 2 0 1

OU AO C I T I E S 1 7 3 0 2 1 6

O UA O C I T I E S 2 7 3 0 3 1 0

CO O P E R S T A .7 4 0 7 0 1

P i A C H f i t T T Q l * 2 7 4 0 70$

• R Q » N F E R R Y 17 4 0 0 0 1

P E AC H B CT T O f* 3 7 4 1 2 2 3

D UA NE ARNOLD 7 5 0 2 0 1

•ROWN F E R R Y 2 7 9 0 3 0 1

F I T Z P A T R I C K750 72 8

• R U N S H I C K 27 5 1 1 0 3

H A T C H 1751231

• R O W FERRY 3 770301

•RUMS WICK 17 7 0 3 1 8

HATCH 2790W

S U S Q U E H A N N A 1 • 3 0 6 0 8

2 3 4 5 6 7 8 9The f i r s t 12 years of data are unavailable

The f u s t 10 years of data are unavailable

P faC TC R YFARS 10 11 12 13 14 15 16 17 I S ?G 21 ?i ?3

C 1 1 b 4 43 . 0 *

1 0 2 0 1 1 1 0

TO TA L EVENTS 259 162 180 109 129 137 97 86 64 48 31 19 9 2 1 3 h 5 I I 0P LANT TEARS 23 23 23 23 22 22 20 20 15 11 10 8 5 4 2 2 2 2 1 1 0NEAR 1 1 .3 7 . 0 7 . 8 4 . 7 5 . 9 6 .2 4 . 9 4 . 3 4 . 3 4 . 4 3 . 1 2 . 4 2.8 « 5 .5 1 .5 2 . 5 2 . 5 1.0 1.0 • 0S T O OEV 5 . 5 4 4 . 6 7 4 . 5 5 2 « 8C 4 . 7 0 3 . 5 2 2.66 3 . 3 9 2 *46 2 . P 7 3 . 3 5 2m 45 2 . 4 9 . 5 8 .7 1 .7 1 3 . 5 4 7 .1 2 . o r .o c . c cc u n REAM 1 1 .3 9 . 2 8 . 7 7 . 7 7 . 4 7 . 2 6 . 9 6.6 6 . 4 6 . 3 6 .1 6.0 5 . 9 5 . 8 5 . 6 5 . / 5 . 7 5 . 7 5 . 7 5 . 6 5 . 6

T O TA L

16

6

6 3 1 1 5 3 5 1 2 1 2 0 9 1 1 . G*

39

14 <5 b 4 0 6 4 1 4 1 1 1 0 1 0 1 . 0*

51

14 1 7 9 1 4 1 3 2 5 C 2 2 0 C• 1 *

50

5 6 10 t 3 6 6 5 5 5 8 6 6 56 . 6*

62

14 1 5 4 5 3 9 5 2 1 f 3 3 9 . 7 *

61

12 4 2 2 3 6 3 6 4 3 1 1 1t. I*

48

9 10 9 4 4 3 4 6 5 10 3 6 0 1 .5 *

75

T 6 5 1 C 3 2 1 4 1 C1 . 1 *

34

6 4 9 4 5 a 9 3 7 5 9 01 . 0*

68

12 3 5 P 6 p 3 3 11 e 3 1 0 .4 *

70

9 6 fc 3 <* f 4 5 3 5 C 9 .8 *

56

21 e 1 3 c * 4 1 5 36. 0*

50

12 b 12 ? 5 3 4 2 2 15 . 9 *

48

IS 0 19 9 16 15 7 14 6 •o

o •

100

3 7 3 4 ft 5 "* 1 4 1.3 *

38

5 4 10 1 4 6 4 4 51 1 . 0*

43

i 5 15 1 1 1 7 12 12 91 0 . 1 *

84

14 1C 5 3 5 3 3 5 05 .2 *

48

17 17 14 S «i 14 7 6 01 . 9 *

08

20 1 ft 7 5 1 3 0 5 10 0. 0 *

84

20 15 9 4 10 4 31 0 . 1 *

67

14 9 10 9 5 7 29 . 5 #

56

9 11 11 4 33 . 9 *

38

8 86. 8*

14002 5 1 . 2 8

5 . 6 0

CUN S T O 0€V 5 . 5 4 5 . 4 9 5 . 2 0 5*0 1 4 . 9 9 4 . 7 9 4 . 6 3 4 *57 4 . 4 8 4 *4 3 4 . 4 3 4 . 4 3 4 . 4 3 * . 4 5 4 .*6 4 . 4 6 4 . 4 6 4 . 4 5 4 . 4 « 4 . 4 « 4 . 4 5

0-10

PLANTS1 2 3 4 5 & 7 8 9

REACTCP 10 11

YEARS 12 13 14 16 17 18 19 20 21 22 23 TO TA L

D I E $ 0 EM 1 TH» f i r s t 12 w a r s of data are unavai lable 1 0 1 2 5 4 2 15* 00 70 4 3 . 94

I K KGCX P U Tbe f i r s t 10 tears of *a are unavai lable C O i l 0 4 4 1 1 1 0 13* 30 32 9 9 . 1 4

M U n iO L O T BAT 7 3 I 2 5 4 1 2 1 2 0 10 41*30601 1 1 .0 4

0 N I L ! P T . 1 20 13 6 9 3 4 0 5 1 3 2 0 1 0 74*91201 1 . 0 4

O Y S TE R CftEEft 12 1 7 1C 7 1 4 2 5 0 2 2 0 0 53* 91 22 8 . ! ♦

O K SO I * 2 8 8 12 5 7 7 6 5 6 6 8 5 5 89700609 6 . 0*

M I L S T C N E 1 19 2 6 t 6 15 5 4 1 e 3 5 85710312 9 . 7 *

H C M T I C R L O 12 5 2 3 4 4 7 4 4 l 0 1 55710 *3 0 6 . 1 *

OftfSOEft 3 10 10 10 4 5 4 8 6 9 3 6 0 747 U 1 1 6 1 . 5 *

V T . YANKEE 9 8 7 6 1 3 1 3 7 I C 50721130 1 . 1*

M L t f t i r 1 12 2 n 6 6 1 9 4 7 6 9 C 83721201 1 .0 4

OUAD C I T I E S 1 12 5 5 1C P 3 4 10 * 4 76730218 1 0 .4 4

OUAO C I T I E S 2 13 8 7 4 11 4 5 4 4 C 63730310 9 . 8 «

C O O K * S T A . 24 8 1 3 2 4 1 5 3 56740701 6 . 0*

P E A C H 8 0T T0 * 2 14 5 10 2 5 7 2 3 1 517 40 70 5 5 . 9 *

ft t o m F E M Y I 17 Q 15 6 17 I 6 17 8 0 98740801 5 .0 *

PEACMBCTTON 3 5 9 3 5 7 3 1 3 1 42741 22 3 • 1*

OUANC iffMOLD 5 6 11 2 4 6 5 6 49750201 1 1 . 0*

M W i F E M Y 2 I 8 16 9 15 1 18 4 10 97750301 10 . 1 *

F IT 2 P A T 8 1 C K 12 1 1 6 4 5 4 5 0 50750728 5 . 2 *

• W H S * 1C « 2 25 21 18 12 9 1 8 6 0 117751103 1 . 9 *

HATCH 1 25 20 1 1 7 16 1 7 1 1 0 1107 51 23 1 • 04

880MM F f M Y 3 16 16 7 6 10 3 63770301 10 . 1 *

BRUNSWICK 1 16 1 1 14 11 6 1 67770318 9 . 5 *

HATCH 2 14 12 12 6 3 47790905 3 . 9 *

SUSOUEM MNA 1 7 7830 60 8 6. a*

TO TA L EVENTS 305 1 92 198 138 14 9 156 121 97 71 52 33 21 9 2 1 6 9 5 1 1 C 1629PLANT Y E A tS 23 2 3 23 23 22 22 20 20 15 1 1 1C 8 5 4 2 2 ? 2 1 1 0 2 5 1 . 2 8NEAN 1 3 . 3 8. 3 8.6 e.o 6.8 7 . 1 6 .1 4 . 9 4 . 7 4 . 7 3#3 2 . 6 1 . 8 *5 • 5 3 .0 4 . 5 2 . 5 l . C l . C .0 6 . 4 8S TD OEV 6 . 4 0 5 . 5 6 4*7 3 2 . 9 5 4 . 5 7 4 . 3 3 4 . 1 1 3 . 95 2 . 2 5 2 • 83 3 . 2 7 2 . 9 7 1 . 9 2 . 5 8 . 71 1 .4 1 • 71 2 .1 2 .00 • CO . o cCUM H E * 1 3 . 3 10 .8 10 .1 9 .1 8.6 8 . 4 8 .1 7 . 7 7 . 5 7 . 3 7*1 7 . C 6 . 9 6 . 7 6. 7 6 . 7 6.6 6.6 6.6 6.6 6.6 -CUN S T O 0€V 6 . 4 0 6 . 4 2 5 . 9 7 5 • 65 5 .5 1 5 . 3 5 5 . 2 6 5 . 22 5 . 1 1 5 • 04 5 . 0 4 5 •C5 5 . 0 6 5 . OB 5 . 09 5 . 0 8 5 . 0 7 5 . 0 6 5 . 0 6 5 . 0 6 5 , 0 6

PLANTS1 2 3 4 5 6

O tC S O E b 1 Tbe f f r s t 1? years of data600 70 4

I K ftCCK P T . Tbe f i r s t 10 years of data6 ) 0 3 2 9

MUMB0LCT BAT 5 3 1 5 3630601

9 H U E PT* 1 11 9 5 0 6691201

O T S T f K C R E M 12 1 b 1 4691226

O K SO EM 2 * 5 10 I 4700 60 9

n a L S t C N E 1 14 1 5 5 3710312

V IO N TIC tLLO 12 4 2 3 b710 63 0

ORESOE* 3 9 10 9 4 3711 11 6

VT* V A M E E 7 7 5 0 3721130

r a w i p i 4 1 fc 4 7721 20 1

OUAD C I T I E S 1 12 3 5 6 7730 21 6

OUAO C I T I E S 2 9 6 6 9 67 30 31 0

COOPER S T A . 16 7 1 0 4740701

F U C H B C T T O * 2 11 4 9 4 1740 70 5

6 « H N FERRY 1 12 0 14 13 8740601

PEACH6CTTQH 3 3 7 3 7 27 41223

OUANE A#MOtO 4 4 10 4 3750201

BROWN EERRY 2 1 2 12 11 12755 30 1

F I T 2 P A I R 1 C K 12 10 5 5 37 50 72 6

BR UN SM C K 2 15 17 13 5 13751103

HATCH 1 19 16 7 13 7751 23 1

BROUN FERRY 3 13 11 7 9 47 70 30 1

B WINS li ICR 1 12 8 10 4 7770316

HATCH 2 9 1 1 10 3790 90 5 3 . 9 #

SUSQUEHANNA 1 7830608 6* S*

T O T A L EVENTS 228 14 7 161 114 116PLANT TEARS 23 23 23 22 22MEAN 9 . 9 1 6 • 34 7 . 0 0 4 • 2 5 .1 8 5 . 2 7STD OEV * . 7 5 4 • 64 3 .6 3 2 • 40 3 . 6 7 3 • 03CUR MEAN 9 • 91 8 • 15 7 . 7 7 6• 69 6 . 5 6 6. 3 5c m S I C OEV 4 ♦ 75 4 . 9 7 4 . 5 7 4 . 4 0 4 . 3 4 4 . 1 7

10

u n v i

i m v i

Qf ACT ft y e a r s9 10 1 12 13 14 15

Jable 1 0 1

lab le 0 3 1 0

2 1 0 91 1 . 0*

4 1 1 0 1 01 . 0*

2 5 2 2 0 0 • 1 *

5 5 t 5 56 . 8*

2 1 3 39 .7 *

4 3 0 16. 1 *

5 9 6

H* • o

I* *

2 4 01 . 1 *

7 5 01 . 0*

I*9 . 5 *

3

5

26

3

511. 0*

91 0 * 1*

05 . 2 *

01 . 9 *

0. 0*

17 18

10.**c

9 . 6 *

©•9*

0*3*

19

23 . 9 *1

21

09 . 1 #

TC

91 82 62 45 29 18 8 2 1 3 5 5 1 1 0 12720 20 15 11 10 8 5 4 2 2 ? 2 1 1 c 2 51 *2

4 . 5 5 4 . 1 0 4 . 1 3 4 « 0 9 2*9 0 2*25 1 . 6 0 . 5 0 . 5 0 1 . 5 C 2 . 5 0 2 . 5 0 1.0 0 1.00 .00 5*02 . 4 6 3 . 3 4 2 . 2 9 2 *55 3*07 2 . 5 5 2 . 0 7 • 58 .7 1 . 7 1 3 . 5 4 2 .1 2 .00 • OC .006 .12 5 . 6 9 5 . 7 5 5 . 6 6 5 *53 5 . 4 1 5 . 3 3 5 . 2 4 5 . 2 0 5 . 1 7 5 . 1 5 5 . 1 3 5 . 1 1 5 . 0 9 5 . 0 94*0 3 4 . 0 0 3*92 3*8 7 3 . 6 6 3 . 8 8 3 . 6 9 3 . 9 1 3 . 9 2 3*92 3 . 9 1 3 . 9 1 3 . 9 1 3 . 9 1 3 . 9 1

Tabl

e G-

9.

Coun

ts

by pl

ant

and

tran

sien

t ca

tego

ry

for

PWR

tran

sien

t ev

ents

3 3 K S 3 S S S 5 S 8 £ S R S "“ E S S E S 3 " S K K S = S !5 E C 8 8 ? 3 ~ S S S S 8 8 ,' * | HS — — — *» I tfl

~| « -o f o o o © © - © c o o o o o o o o o o ©— o o o o e e o o o c © — © e o c o o c o o o e o o o i

OCM^'fi nenoo O^^OOI

w«n«6',»tc o « c tnsn pin««0 — — — — r-- f. (\j»- ^

N « < A « 0 0 N » - ' * 0 © © © © © C M ^ O O

^ O O O n NOOM**

j r . N N # 9> fs. O <V O

© m e © © p« c *•

s-ooo o--—o— -«tr| «r> m <s» v> o< — u c *-

ONO i f ( M m 9 > * r o i n o ^ i r <m m t O o OJ n

OO — r-: C C © C © —

o © m — »- ©— ©wm

' lO’- O O ©— ©C © c e c o c

- o c o ^ o o » e*» c \ o «■

fs.C O C <M © © O — © © © — O O O O C O O | jr

O r- o •“ O — — C *- — m D O N O ( S t o e o D j ff

© C O O o O O'” O O o o o o o O O O O C | N

> - 0 — 0 0 o o w m o O O C O C I ©

N N M ttIA CO— » '■«- © OC «£> CC ifio>fuK>e

SSI o o o o o e o e o c © coo© o o o o o

© o o c o

810>| Cjrrt~ oo

OOOOO C.C©©© ooooo

e © f — o o o o o o © c © — c

N O C * » C O C O O O o o o o o

o o o c o o e ^ o c

o o o c o COC.OO

OOOCO c—©©»© O — C © o o c o c

OOOOO OOCOO OCOOOoo<*<s-o o o o o o e o o c -e

(\ — © © — OmO'-- OOOOOOCOCO OCOOO /-©COO

M o»* o o o

*1 © — OC —rfi I © m © «•< cm

S I o c o o o

Corv.CC o o o o — — O W O ©— — © © (S.O'" O O — — o O O-OM*iO O' NWn Of ©<\i —

O—Coo O © O ■— Q OOOOO— OOOO © <V & © <•» O— ©0«-| <v o © © c

CO«OQ OOOOOoooo — OOOCO© (\i (Ni c <? f * o * n

o©oc — COCCO00^«NCJ © c © — —

O O O O O O - O O C

c— © O o OOOOO©O — C © fsi— IVi<*C

o f- o o o o o c o o

o o > - ^ o o c v c e

C C Q O O j «*-

© — — ©Oj to

C O O O C j £

C O O o C j 9

O © O o ©| £

O O o C c j \£

c o o o o c o o c o j m

<*! o — © C COOcOj —OOOOO COOcCj «*

OO py cO( *-

— o o o o

O 0 O O O

SOOCv OOOoOl

OONw'w Nn. C r«C|

SI OOOOO oooc ooooo rnoOQQ oooco o © © © © mo>*C:o O © — O © oO—OO

ooooo

o -~ o s

O © O Q ©

c ^ w f-i rMTnC-

— OOOO OO & O o OC/ O O C O © O — 00—00 OOPWOO* C — n-, © f~- O u-1 VOOC" OOOOO

vg— OO© ©—<M©- © © o «ni ©

p <s.{VI—- — IS)

O — iNi © —

•r | —oo— omj oooooC*| ©*#>©©©— j © © c o ­

ol o o o o o

„| 0 0 -0 0

.1 ° ° 0 0 0 ***l C. o o — o

! nooom

0 0 —00 0 —0 —0 ooooo O——o-CCOOO ©OOO — OOOOO OOOOO ooooo3 0— O — O — "inOOOOOooooo

— — ooooOfv O 6

O o — — o

O O « oo ooooo

— (SI — — O

NIT I*)®1 lO

-OnCoOOOOO— O O O m

£2 *8r

© — ►.©»»>

OCODO'

0C0C0|— O O — — | 2

C — O ©Oj JO©OOOO) ©0 - -0 0 J -

u"i— « <n— | cd

OOOOO OOOOO OOOOOI

0 — 0 — 0

OOOOO

© n © O J

O © O © —ooooo

0 0 3 O O OOOOO

00 — 00

© o o o o

oooo©

o o o o — © © O -3 o OOOO©

3 ^ -0 0 000~0

3 0 0 0 0 o o o o o

S.O o o o

— O O O O O O O O O • O o o o — Q M © — — Or.

« l o o o o o

I lVlVN *0 rf>

rgt O O O O O

-I S

oo^oo

« © i^ iv *

0 -0 0 0

— O ^

©003©

— — <v «r

©00—0

« d O - - «

O O O O O r j o o o ©

» n « "»"i — »/■*<*w — ^

O O O O O © 0 0 — 0

-s ~ 3S

^1*! iisi« _ L H tl J i l l : K i j f « i l l S l i l i

r«n ^ -

f sf ?s=sS

o o o o o

— «- o o o

ooooo

ooooo

0 0—00

o o o o o

i/> m o ^

o— o o o

— o f'J **»

S s- i 2 *

:K-:i=a i u g t

o o © o «*

ooooo

- O — o ©

o o o o o

— 0 3 0 0

ooooo

ooooo

o o e* o o

OOOOO

O O " — ©

o o o o ©

© O n O O

o o o o o

o o o © ©

o o o o o

ooooo

ooooo

ooooo

0 0 0 ^ 0 — — 3 0 — 3 0 0 0 0

OOOOO

-v ©«'*>•>•

OOOOO

— — « o —

© O ' - o o

0 9 0 0 0

O O f " *

OOOOO

o o i% o o

O O O O O j —

© o o o o | jv

o o o o o j r*

© O O c O j (V

O O O O O I fMI

© O O © O j trv

O O O o O l o.

O O O ©0| —

0 0 O O 0| g

9 0 0 0 0 1 Pn

- ^ - o o j g

0 0 0 0 0 1 ISI

OfM " t o o l ^

T

e?C-I-J

l l s S 3 5 i s i I s s l I i s l l

— y

tota

l

Tabl

e G-

10.

Coun

ts

by pl

ant

and

tran

sien

t ca

tego

ry

for

PWR

tran

sien

t ev

ents

oc

curr

ing

betw

een

26 an

d 11

0%

po

we

r

~| t s s s g as& ss - a s s s kksss: jk s s s s s . t s s st-srjs srs;» '| g

—j v - c n o e o ©•- o © e e c e e e o c e c e » e e e e e e e o o e e " e e e e c e e c c o c Q o o o e | r*

» r'if'-OCa* — — £ — C « C m (V in * im^ C n Q M C O C — — O Oj J

r | R E 'S '0 8 S S S 'R f ' S t ’ c« 'S ~*. «*. = - • < v .» ,o u>c - « r. • '-o .o c j -

cp | — • w. •* o c — — o © p o o o o o *- — © c c e * * « " c c o c o * * m c o o n e o o ^ c c c - c c f t o o c c j ^

p | o o o e e e o N r - o o c m i^ o c «»• o c ^ — c - o % « e « o " 0 ^ c i v c o n o k o c c o | ^

«c| o — c o o c o " ‘ o — — © © — o n o ^ c o c — c c © e o c o e o o o c o © o c o c o o o c o o o c o c | »

wj >-0 * 0 “ C JO '- ’- N — © C © c c > - c - rv — © — — 0 « —(sr. — o — © © ©Ccs.*-© C O C O C | J

ob o r« a- — *s. n «o ■— 9 p. r^rw'' O' <j*~- w — c « w ^ ^ « « o C n •- » C <* C C o — C | JS

p.j C C O C o C O C O © © O O C Q O O C O C o c o c o C O (v O C O C O O O o a c o c O C C . C C C O C C C | «N

C C C C O C O O O C O C C t - C C O C O O O C O C O C O C C O o c n r v o O O O O C OC-OCO t '3 * * O C | «

C| CO — *“ — C O — C O C O C O c o o * —© O C C O C O — C C « (S.— O © — O M C - I- O O O C C C O C O C j

O'| ©'■“ — ©© fV 0 O — C 0 C 0 0 0 O C C C C c O - C O O C O C C C O O C O O O O O C o c c c o c o c o o j «

acj c r. c r- — o — — 0 — c — c in — c — — c c — — c — c — — o — — c — 0 0 — 0 0 0 — c O c c c c o c o o | ^

© — O C © C O C O O O O O C — — O I*1 O c o c — O c O O O O C o o o c o C — O o c — C O C O C © C © C| O

NC| © — C C — — " TV C O «s» c —- O c. — — C O C o c o c — C C . O O O ©— © c © o o o c c O O O C O c o o o c | £

ir | © f* C — © ' - © - ■ n c O ■— r>. © <s. C < s . C*- **CO ^ O ^ ^ © 0 — 0 © — — — «*i C u* C © C O C C C C O | g

j»| O C O C O © — c c c c c —00 C C O O O c o c c — C O O O O ©— © C C O O O O C C O O C O C C C C C j «

rn| O C C C C C — c O f'- ©*-©©**-• cv. © © © O O C — ^ C C C C — — o O >- P-C O n O O N O C O C O 0©«S<0C| jn

£| C — — C © — C O «f cs. rv — n (M ^ — - ©cv. O © — O O C — — O' — — — — N rg — © C C — C O C O C j

— j c c c r s i o — — — © — C OOO** - ’ C — O C O C N C O C O O O C 00 - C<V o o c o c c c o c o c o o c o j »

©| o c o c o C O O O C o c o c o *" C c c C O C O C O C O C O O O O O C O 00 — © O O O O C O C O O O O j «f

^ j O ' t ' - f ^ O J* " '---- «» - C O <N. ~ O Wl— O O — <-> fM G — « (M O — - f*i i S i O " C O — C O o - J g

CO | O C O O O O O C C C — O C O C O C O C O O O C O C 0 0 © - " - © 0 — 0 0 O O N C O O — © © ©| JO

r-| — O C © » O' - <VC ^ C i£ Mir O OCP^C— N O O O O rsiOnOO rv C O © •- © C O O O C C O O O| 2

vO| N - C C C O ■— fs, O C C O C O 0 — C>.0*“ C <N« ^ <v (\j < O — **■> — fi © C\< ©— rv © © — r* © cs, C “ O Q| so

j «»<»■) — — © i/> vf O «C C t\ £ flO «% © f'. a. ^ & >T 9> C) Q«t — <£ « O i t i * l « H >*» e 00

1 1 O O O O O o o c o o C O C ' - O O O C O O O — OC*- 0 0 — 0 0 " O f l O O O O O O O O O O O O O O O O © ! «

00 c o o o o o c o 0000— c o e c o o o c c o 00000 00000 o o o © « © o o o o a o o o o j —

/v| 0 ^ 0 0 © O O O O — ©O — ft. IV © O O O O — o 00 ©o<v ~ o » o o 00 — C O C O O O O j ©

— I O o o o ~ o o c o o — — O C O © 0^00 00— o c o — — 00 o o o — o — 00 o o 00000 o o o o o | —

0| O O O O O O O O O O OOf M^O O O O O O O O O O O O o o o O O O O O O O O O O O O O O C C © Q O O O |

j OO — 0 0 •” *“ O — — m O ^ O N o*“ ‘ 0 0 O O O O © O O O O O r-vOOOO O O O O O O O O O O O O O O ©| «

O O O O O o •-o — o — 000— o o o © ~ 0000 — — r - o O o O O O O — O O N O O O O O O O o o o o o j *-

^ I O O O O O O O O O O O O O O — 0 0 0 0 C I-J O O o O O O O O O O O O O O O O Q O O O O O O O 0 0 0 © 01 —

—OOOtNt 0 —0 0 0 O O O O O O O O O O O O O O O O O O O O —0 — 0 0 0 0 9 — O O O O O O O O O O Ol N»

O O O O O 0 0 3 0 0 ^ 0 0 0 © 0 0 — ©<S! C " " 0 IN 0 0 — 0 0 O O O O O — — 0 0 “* O J O O O O O O O O j £

«tl O O O O © 0 0 0 0 9 O O O O O O O O O O O O O O O 0 0 ^ 0 0 O O O O O O O O O O ----O O O O O 0 0 0 0 0 1 «

------ ------------------------~ 0 . ------------------------------------ - ------------------ - ~ ~ 0 0 | g

Ot I O O O O O O O O O O O O O “ O 3 0 0 0 0 0 0 0 — © O O O O O O O O O O 0 0 —0 0 O O O O O O O O O O I

( » « —<»— a o o ' i o —©■n—<v o o « ^ o o — o ‘*, ‘v<n ^ — -0 <v oO<vOO 0 <v ^ o Of 13

i s l s f j i 8 S I t

« « * • ' s f j i * t i t i *SisSl! s . i l l h L i

35O- , |

Hv t 5 u( ; s i . !X

\ £- 5 |5 ~

i i i i 1 1 1 H i * ! I 1 I S I i i i i i i H f ;

« •** r _ l - I =ii - .r i i

Plant i 2 j 4 5_ 6_ 7 9_ JO _nT«kw Rose 10 0 0 i 2 0 0 0 0 0Indian Point 1 8 0 •ic 0 0 0 0 0 0 0 0%m Onofr* \ \ 0 7 0 0 0 D 0 \ 0 0HMM fttck 0 0 6 I) 0 0 1 0 0 0 0M. £. Gtnna 1 0 0 0 0 0 0 0 0 1

Point teecn 1 0 0 3 o 0 0 0 0 1 0 0H. S. *o6tman 4 1 10 0 0 3 0 I 4 0 nPlIlSMft 1 c s ; 0 0 0 0 0 0 0Point Beach 2 2 0 2 0 0 0 0 1 1 0 0Twrtry Point 3 5 0 6 0 0 0 0 0 I 0 0

ivrrf I 8 0 I 0 7 0 1 1 3 0 1Maine Yankee 0 0 0 0 0 G 0 0 0 1Wr/ 2 1 0 i c 1 0 0 0 3 ? 0Ocuncc 1 \ \ lQ 0 0 0 J 0 0 0 0Indian Pomt 2 7 0 4 0 0 0 1 2 0 0

Turkey Point * 2 0 4 0 0 0 3- Q 0 0 0Prtirte Island 1 t 0 3 u 0 0 0 0 0 0 0*. ion 1 3 0 3 0 I 0 c 0 3 a 4Cevaunee i 0 3 0 0 0 0 0 o 0 0Ft. C«lnoun 3 u 3 c 0 G £ 0 0 0

TRI1 0 0 1 0 c 0 u 0 0 0 0Ocwnce 2 C 0 5 0 1 0 G 0 c 0 02 tun 2 5 0 c 0 1 0 0 0 0 0 1Oconee 3 5 ! \ 0 0 0 0 0 0 0 0Artansts * li 0 b t 0 0 \ 0 Q 0

1 0 S 0 0 0 0 1 0 0 0«and*o Seco U 1 3 0 0 0 0 1 0 0 1Calvert Cliffs 1 j 0 7 0 J 0 0 0 0 u JCook 1 2 0 0 0 0 0 G 0 0 0 0ftlllston* «: I 0 7 0 0 0 0 0 0 0 0Trojan 4 c 0 0 1 G 0 2 0 0Indian Point 3 2 0 C! 0 0 0 0 0 0 0 cSeaver r«Hey f 3 0 4 0 0 J 0 0 0 0 0St. l«ci*• 1 0 0 3 0 0 G 0 0 c 0 \Crystal River 3 1 0 7 0 0 0 0 4 0 0 0Calvert Cliffs 2 I 0 1 0 1 c 0 0 0 0 1Sales I } 0 > 0 1 0 0 0 0 n 0Qavis-Beste 1 6 1 4 u 0 I a 2 0 0 0Farley • 6 0 0 0 0 1 0 0 0 0 Gtortn Anna 1 £ G I 0 1 0 0 0 0 0 0Look 2 0 0 0 0 0 0 0 0 0 c 0TUI 2 0 0 0 0 0 0 u 0 0 0 0Arkansas i 2 0 V o 0 0 0 0 0 0 0Horui Anna 2 0 0 1 3 0 0 0 u 0 a 0Sequoyan 1 0 0 I 0 a 0 n 0 0 0 0farley 2 0 0 I 0 0 0 0 0 0 0 0Sales 2 2 0 J 0 0 0 0 0 0 0 0Hcfcuirr 1 3 0 0 0 0 0 0 0 0 0 0Scqwoyan 2 0 0 0 0 0 0 0 0 0 0 0St. lhcic 2 0 0 0 0 J) _0 n _0 _0 JO J)

TOTAL 11* s 201 ? 20 11 2 15 21 2 12

EPRI PW Transient Category

i £ 23 J4 is i* J7 J8 19 20 21 22 23 2£ 25 P6

0 0 1 5 2 1 0 0 0 0 0 1 0 0 015 0 0 13 1 0 4 0 0 21 0 0 0 10 0 0 ? 0 0 \ 0 0 0 0 0 00 0 1 11 0 1 0 4 0 ? 1 n 0 2 00 0 0 13 0 4 r 0 p 0 0 0 0 2 1

0 0 0 * Q 3 \ 3 0 \ ? 0 0 1 10 0 0 3fi 1 5 0 25 0 5 8 ? 1 0 1

0 0 ?5 ? I 2 1 0 4 t 0 0 7 20 0 0 3 0 3 1 0 0 0 0 0 n

0 0 n ? ? 0 1 0 JO 7 ? 0 n 0

0 0 25 0 1 0 TO 0 14 10 0 0 0 ?0 0 1 11 n 0 1 0 f) 7 1 n T 0

n 0 ?0 0 7 n 1? 0 7 3 0 0 ■> 10 1 1? 2 n 0 0 a r> 1 01 0 52 0 ’ 5 0 15 0 8 5 5 0 3 0

0 0 n ft 0 1 T 4 3 0 11 ? 0 n T0 0 0 19 X 3 0 \ 0 \ 2 0 a ? 1

0 0 ?8 ? 3 0 7 0 f> P 0 0 n 00 0 13 G 0 4 0 0 2 0 0 2 n

0 0 0 2 1 0 1 0 0 1 0 0 i 0

p 0 0 0 0 0 0 0 0 0 0 n0 1 6 5 p 0 0 0 n 3 0 0 i 00 I 44 1 1 0 10 0 13 6 1 0 2 0a 0 3 I 0 f 0 1 ? ? 0 n r

2 X) \ s 2 1 0 0 0 0 0 0 } 0 >

0 0 15 2 ? 0 0 0 0 ? 0 0 3 00 0 11 3 0 0 1 0 1 0 0 0 0 n15 1 11 5 0 0 5 n 1 3 0 n 4 00 0 u 0 0 0 * 0 0 0 1 0 4 0

0 0 0 17 0 0 ? 0 3 0 1 n 2 0

0 1 16 ? 0 1 3 2 1 0 0 0 00 0 0 15 1 7 0 5 0 1 1 0 i 0 in 0 13 3 4 0 1 1 4 1* 1 0 1 00 0 0 9 3 0 1 0 0 ? 1 ? n 0 ft

0 0 f, 2 0 1 1 0 4 1 0 0 0 0

1 0 0 \? 2 ? n f 0 0 1 0 0 ? 00 n n 19 1 n 0 5 0 2 2 ? n 1 05 0 0 4 ? 0 1 * 1 ? 5 r> 0 ? 00 0 0 30 8 0 0 4 n 3 4 0 0 4 0c 0 0 n 1 0 0 3 2 ? n 0 ft

0 0 0 10 0 0 0 6 0 0 3 0 n 6 00 0 0 0 1 0 0 0 0 0 0 n 0 0 0

0 0 8 7 0 2 2 1 2 0 0 0 1 00 0 0 4 0 0 0 0 0 5 0 n 0 0 00 0 0 9 3 0 0 0 0 3 ? 0 0 n 0

0 0 0 5 0 0 0 0 2 0 n 0 0 n0 0 0 )! 1 0 J 0 0 2 0 0 0 0 00 0 0 6 1 0 0 0 0 0 0 2 0 n 00 0 0 3 0 0 0 1 0 2 0 n n 0 0o o o ___1 0 _0 J \ \ _0 0 0 0 0 0 0

------ — — —

52 1 12 625 70 *8 IS 182 9 1?7 143 27 4 57 13

27 28 79 30 H 32 13 34 35 36 37 38 19 40 41 MJLo 0 0 0 0 0 11 8 4 0 0 2 34 6 1 911 2 3 0 0 0 12 9 3 1 3 4 59 9 0 ?vo 0 1 \ 0 0 7 2 2 0 0 6 6 3 3 44o 3 ft 1 0 0 13 5 5 0 O 4 ?? 0 059 1 0 1 0 0 5 1 2 0 0 0 5 0 39ft 2 n 0 0 f 2 2 0 \ 0 U \ 0 49ft 1 0 0 0 0 79 1 1 0 2 If 9 0 1917 1 ft 3 0 0 \? 4 7 1 ? n 1 > JO?(1 I l 0 ft 2 1 0 0 0 1 12 3 0 370 0 n ft 0 0 0 1 1 7 0 33 4 ft 113o 1 ft o ft 0 17 0 1 } 0 17 0 13*o 0 0 0 ft f 7 0 ft 0 0 70 ? 0 49ft 2 n ft 0 0 18 2 1 0 0 0 1ft 2 0 97o o 0 n 0 ?8 7 T 1 n 0 a n 301 n 0 0 0 9 3 0 3 0 29 ? 0 203f 1 ft ft ft 0 IB O 3 ? ft 37 1 0 98ft 0 ft 0 0 4 1 0 0 0 9 7 n 484 1 n c 0 0 11 5 ft 1 n 1 13 4 0 1090 1 0 1 0 0 7 2 0 0 3 0 20 ? 0 75

0 ft 0 0 7 1 3 0 1 ft 5 1 0 3«0 0 0 0 0 3 0 0 0 0 0 7 0 f(1 2 0 0 ft 0 11 4 0 I ft 0 3 1 48

1 l 0 0 0 13 1 0 3 1 14 0 141n 0 0 0 0 17 1 0 0 J 7 2 1 0 420 * 0 0 0 0 U 3 0 1 0 8 c 520 0 0 0 0 4 1 2 ft 0 0 9 s ft 530 1 0 1 0 0 9 3 1 0 1 o 2 1 0 43a 1 ft 0 0 7 \7 2 0 ft 0 10 1 0 72o 0 Q 0 0 7 r 0 4 0 II T 0 48n 1 ft e 0 0 15 i 0 ? I 10 ? 0 73

1 0 2 0 0 4 0 0 0 2 < 7 0 69o T 0 1 r* ft A ft 5 ft 13 0 64ft 1 0 0 4 0 22 1 1 0 0 ft ?n 2 0 107ft 0 ft 7 0 1 10 1 ft 1 ft 5 ? I 460 1 0 1 0 0 7 2 2 ft 0 2 11 0 6*ft 1 ft n 0 ft 13 1 1 ft 1 ft 7 c r. 501 0 3 0 0 1ft 4 0 0 1 0 15 ft 770 0 0 0 ft * 1 1 ft ft 9 ft *70 1 0 1 0 0 7 ’0 0 0 \ 4 ? 0 8?0 1 ft 1 ft ft «; 1 0 ft 1 ft 10 1 ft 381 0 1 0 0 0 4 0 0 2 0 •, 1 0 42ft 0 n 0 0 ft T fl 0 0 ft 0 0 20 0 0 0 0 0 3 5 2 0 0 1 IT 3 0 620 n ft 0 ft 0 3 3 0 2 0 5 0 0 310 0 0 ft 0 0 2 0 0 0 0 2 0 0 240 0 0 ft 0 0 3 3 0 n ? 0 7 0 ft ??ft 0 0 0 1 0 1 0 0 0 0 5 0 0 27ft 0 ft 0 T ft ? 4 0 0 0 ft 10 1 ft 300 0 0 0 0 0 0 1 0 0 0 0 ft 0 0 7ft _o J\ J) 0 2 0 _0 0 0 0 0 0 0 _415 35 9 7? 8 2 440 185 56 1? 47 3< 580 112 7 3377

Table

G-12.

Counts by plant

and

transient

category for

PWR transient

events occurring

oM■oe"3TJ0£.o<0o>c*530 Xabe

1a

S S R S S S 8 £ Sfc * 5 3 5 * R S K S S * K S » 5 i S - 8 K ; 5 R 3 S R K ~ 5 8 S ! f f f 5 R - - * j |

<jj "OMOO

£j fff N>- O

r| *«“»"— «* • o

O o © o

© — © © O

e o - e c oo coo

— tn— — «* «*>fs©CM

■ e«Nj) J£J2£**52© — — O © OO o c o

O O C O t s - o o c r i

o© — © — — © o — ©

j»rcs» — c I O " ©O — — CM

c o o o o o — o o o 00000 © o o — o e e e c e

-OMM1' «ONNM W (*>0 ^ c

©«S is. «m r>- « N O O « > N ^ « « e

O — «- o C GO^rnC COOO*- n OOON c o © — c

«s. o c oo«»*^ o ^ o v n o ^ o — o »- — c. — —

NO-CO O'- O O O OOOOC OOOCO OOOOO

© © O © l*< O C ^ O " «M — O — — © • - — «%!

o o o e o

»CNOO

V>C^V*N

© o — o o

N O O N O

o c o o o

o ci ec tsi— o

o o o o f l l

e o o o o |

NOOOO|e o o o e |

O O O Q Q |

O O f p-Ol

t t f S fM rs « « n ^ N JT .WNNie O o. »* — f* msi - -gj o o o o o

£ [ O O O O O

o| o o - - -

SI 0 - - C O

(01 O N O W — <m|

r*| o - o o o(Ml

*®l O - o o —

o o c o o

o o o o o

co* ' —©

«*wO o — o

oc © c o

oc o c o

C O © © © C O O O —

*f| 0 0 0 — 0 — O *- n O O ' - cs. ro r

O o C o o

C o o ©O

OO c — o

c o o O O

— o — — o

— O «•> oo

— — o O o

Ois, O N -

o o o o o

o o o o o

o o o o o

O C N O C

O O O O O

O O O O O

O O m N O

o o o o c

e ooo e O O Q O O o

O — 0 0 « N ' - O O - O M O ^ '

ao — o o o o o o o o c a o c

O'- O — o — o *— — C — Ofi

0 0 - 0 0

o c © C —

o o - o o

O C O O O

o o o o o

ooooo

O ' - O O O

o o — O O

O O C O C

*“ o o O —

0 — 0 0 ©

o o o o C

O C o o o

o o o o o

O O C O O

— O O © O

O O O O O

O o o o o o — o o o © o o — © O O C O O O C O O O O O C O C 0 ^ * 0 0 0 o o o o o

O C O O C ©— © © cm O — c O u Si o O O O 0 0 - < s . C o o o * - — © O — OlO C \ O C f

o o o o o

© C O O O

O — — O O » imO o « cgfM — «Cfs.^— — Q N n o o — © «n © C “ On — — — — — O O O —

O O O ^ V O

O O O O O

o « — <M O

O O C O O O O O O O

— o — O C

fr‘ O c o o

O O n O O O O O C O

O O O O O

o o o o o r - i O M « 0 O O O O C — O O O O O O O O O O O O O O

D - O — fViOrvox — m«Mwo o o — o — < ^ o o o o

0 0 < - C N

O© ©— — n C i O O

O O O O o

O o — © o

o — fs> O —

0>r> w o oo

o o o o c O — rs, c — ©P« — — r I^N * O - «'*<*llSO

— — — <c r O (S. « rsj ac ** oi O' O' O © «• — >o

•j j o o o o o

r>| O O O O O

rw| o ȣ o o o

— | O O O O —

o| O O O O O

*| o o - ° o

I O O O O O 031

r«| o o o o o

<«( — 0 0 © <M

I o o o o owl|

«f I o o o o O

0 0 0 - 90

j » 08 — «• —

3 0 0 0 0 0 0 0 — 0

o o o o o O O O O —

O O O O — O O — *Sf IV

o o o o o

o o o o o

— — O O O

o o <v o o

O'*© — O - © © © - '

K|e|I^Il­ls!:

OO O O O

Q o o o

o o o o o

0 0 * 0 0

f“g<— ^ — 4

O O O O O

o r t " - ' i >

:5Sifie^ • <A t* * * f « < 4 0 ) a. x ft- ft. »

O O O O —

o o o o o

i r i o o o o

o o o o o

— — (V O •

o o o — o

o o o — ♦**

I t 1 -2

O© O O O

© o o o o

O O O O o

o o m o o

O O O © O

©©«M © O

0 0 3 0 -

O O O O O

OQ O O O

o o — o m

o o o o o

O o O o O

™ Qfw- N

'Is i s5 “ J

0 0 — 0 0

o o o o o o o o o o

00 — 00 © *— — O o

O O O O O

o o o o o

o o o o —

o o o o o

o o o o o

O — — O <M

3 0 0 0 0

0 0 0 — 0

O S i A Q O

O O O O O

O O O O O

--------O O O

o o o o o

o o o o o

o o — o o

o o o o o

x"' r* <© O

O O O O O

— o

o o o o o

o o o o n

o o o — o

O O O O O

(MOOOO

o o o o —

o o o o o

— 0 — 0 0

o o o —

N O — N O

O O O O O

o O O O O

— o * o ©

— o o O o

o o o o o

O O O O O

o o M o o

o o o o o

o o o — o

o o o o o

o o o © o

CS. o — o o

O O (N.O o

O O O O O

O — r* o cm

o o o o o o o o o o

1 - O l ^ H N — — m O —

O O O O O 0 0 — 0 0

m — " i o « — —

o o o o a

o © o o o

0 0 — 0 0

O O O O O

o o o o o

o o o o o

OOOOO O O O O O

90 o o a

o o o o o

0 0 0 30

OOfN. - -

o o o o o

0 0 ^ 3 0

•>— m n N n p ^ O N l —

O O O O O O O O q OI

O — OOj «

o o o o c j

0 0 ' 9 0 0 | <0

O O O Q O | Jg

c O O o Oj 9>

o o c o o j m

O O © o Oj

o o o o o j «

O O N o O | vr

o o o o o j J

O O O O O j &

o o o o oj «

■*000^1 CD

=| £O — © o o j

O O O o oj <M

O — — o ©I“I a

I -

o o o o o

O OO O 0|

O O O o O j g

O O O Q O j —

o o o o o j «m

0 O O o oj £

o o o o O j —

000001 — 9 0 0 0 0 1 '»

O O O O O j £

9 0 0 0 0 1 <«

- m o o o | je

3 0 0 0 0 1

O IS* m o oj

sisii sin

i— O *4

filil 111*1 lllflU S '

. M. :!

1713438057

102886081S3

1138?686358

1235153

11755

1261207974508

1 2 3 4 5_ 6_ 7_ 8 9_ U> _n 12 13 _U 15

0 0 1 0 0 u ti 2 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 1 0 0 1 0 1

12 0 1 0 0 1 0 4 0 0 0 0 3 0 06 0 1* 0 2 3 0 4 1 2 0 2 1 1 17 u 10 0 4 2 1 6 1 0 0 0 2 0 0

6 0 14 0 4 3 0 4 0 0 0 1 8 0 06 0 14 0 4 0 2 2 10 9 3 0 2 2 06 0 4 0 3 0 7 1 4 0 0 3 4 06 0 13 c 2 4 0 0 1 0 1 5 7 02 0 4 0 0 0 3 i 2 0 0 9 1 0

9 0 5 - 1 1 \ 9 1 \ 2 1 2 0 04 0 12 0 3 0 0 0 1 0 5 1 01 0 7 0 1 3 1 2 0 0 0 0 1 0b 0 9 0 C 0 1 ? 4 0 IT 1 12 0 12 0 1 1 0 4 0 0 5 0 1 0

9 0 17 0 5 3 u 2 0 i 2 0 1 3 12 0 0 0 2 6 0 0 3 0 1 03 0 5 u 1 u 3 2 0 0 0 7 1 13 0 ft t 6 0 1 3 2 0 6 13 0 5 0 3 3 0 I 0 0 2 0 7 4 0

9 17 0 1 0 4 0 0 1 0 2 3 2) 0 12 0 ? 2 2 u 0 5 2 12 3 0

i. 0 10 0 5 0 4 \ 0 1 0 1 1 05 0 10 0 ? 3 0 3 0 1 2 2 4 1 42 0 3 0 J 4 2 3 0 0 0 0 2 0 10 0 0 c _1 _0 _ 0 0 _ 0 _0 _0 _0 0 _0 _0

112 214 67 51 14 102 20 26 33 9 103 44 13

ewti 6MR Transient Category

J i 17 i i i i 20 1 1 22 23 24 25 26 27 28 29 yo

0 0 0 1 0 0 1 2 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 0 00 i 0 0 0 0 1 0 3 1 0 0 0 2 00 1 0 0 4 1 1 1 7 2 0 0 1 0 00 1 1 0 1 0 3 I 2 0 1 0 0 1 0

1 0 0 0 2 0 0 5 6 1 1 } 0 1 22 1 0 0 1 1 0 1 8 1 1 0 0 1 01 0 0 0 0 0 3 1 2 0 1 0 1 0 00 0 1 0 1 0 0 2 9 0 0 0 0 0 10 1 0 0 5 0 0 1 3 3 0 0 1 0 0

0 0 0 0 0 0 1 1 6 «; 0 0 1 0 00 0 0 0 ? 1 0 ? 7 0 0 0 0 1 12 0 0 0 5 0 0 2 1* ? 1 0 0 0 11 9 0 0 ? n 0 1 8 0 0 0 0 0 00 0 0 0 ? n 0 4 ? 1 0 0 0 0 0

1 0 0 0 2 0 ? 3 ? 0 1 1 1 3 10 1 0 0 0 0 0 1 4 0 1 n 1 0 00 ? 0 0 2 0 2 1 1 1 0 0 0 0 1J 0 0 0 2 ? 0 1 4 1 1 0 J 3 20 0 2 0 0 0 0 3 0 1 0 0 0 0 0

3 1 0 0 2 1 0 4 10 4 1 1 1 0 12 0 0 0 1 0 2 8 2 2 n 0 3 0 20 0 0 0 0 1 0 0 5 1 0 0 0 1 00 0 0 1 0 0 ? 3 6 } 1 ? 0 0 20 1 0 0 0 1 0 4 3 0 1 0 0 2 0

J ) _0 _0 r _1 _ 0 0 _0 0 _0 _ 0 J ) _ 0 _0 _1

14 9 4 1 36 7 16 51 118 28 11 3 12 15 15

G-17

EPRI BWR Transient Category

P lan t ? I 3 4 s_ 6_ 7 8_ 9_ JO j2 I I 1 1 J4 i i i £ 22 i®

Dresden I 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0Btg Rock Po int 0 0 0 0 0 0 0 1 0 1 0 ft 0 0 1 0 0 0HwfcolOt Bay 12 0 1 0 0 0 0 4 0 0 0 0 3 0 0 0 0 0kine M ile Po in t 1 6 0 13 0 2 3 0 2 u 2 0 0 0 1 1 0 0 0Oyster Creek 7 0 9 0 4 2 1 6 1 0 0 0 1 0 0 0 1 1

Oresden 2 4 0 11 0 4 3 0 3 0 0 0 0 6 0 0 0 n 0M ills to n e 1 6 0 13 0 1 0 2 2 7 3 1 0 1 ? 0 ? ? 0MontlCello 6 0 4 0 2 1 0 6 1 4 0 0 2 4 0 1 0 0Ortsden 3 5 a U 0 ? 4 0 4 0 1 0 1 5 ? 0 0 0 1V t n m t Yankee 2 0 4 0 3 0 0 2 1 1 0 0 4 1 ft 0 1 n

P t lg r ia 1 S 0 4 0 2 1 0 6 1 1 2 0 1 0 0 0 0 0Q m a CH ie> * 3 0 12 0 0 3 0 8 0 0 0 0 3 1 0 0 0 0QMd C U Ie s 2 i 0 7 0 I 3 0 2 0 0 0 0 1 3 0 2 0 0Cooper S ta tion 0 7 0 2 0 0 0 1 1 3 0 9 1 1 0 0 0Pete* Bottov 2 2 j 11 0 ; 1 c 3 0 0 2 0 3 1 0 0 0 0

Browns Fe rry 1 9 0 15 0 4 3 0 I 0 0 0 0 I 2 1 0 0 0Bottoe 3 1 0 3 0 0 0 \ 4 0 0 3 0 4 1 0 0 1 0

Duane Arnold 3 0 4 0 1 0 2 1 2 0 0 0 7 1 1 0 2 nBrvans Fe rry Z 2 0 6 0 z 5 0 I 1 2 2 0 6 S \ 1 0 0fitz P * tr ic k 3 0 5 0 2 3 0 1 0 0 1 0 6 4 0 0 0 ?

trw isv tck 2 8 i 17 0 5 0 0 4 0 0 0 0 1 3 7 3 0 0Hatch 1 1 0 9 0 Z 1 1 7 Q 0 5 2 12 3 0 2 0 0B ro w s Ferry 3 2 0 * 0 7 5 0 3 1 0 0 0 1 1 0 0 0 0K r w M i a 1 4 0 8 0 1 3 0 3 0 1 0 ? 3 0 3 0 0 0

Kate* 2 2 0 3 0 1 4 2 3 0 0 0 0 2 0 1 0 1 0SvtqnenawM 1 0 0 0 0 1 J) 0 _0 J3 JJ _0 J) _0 _Q _0 JD J ) J )

T O W l 103 i 187 0 50 45 9 79 76 17 19 5 82 41 I? n 7 4

i i 20 21 22 23 24 25 26 ’ 7 ?8 21 30 31 32 n ?4 IS 16 37 411

0 1 0 0 1 2 0 n 0 0 0 0 0 0 0 7 7 0 0 160 0 0 0 0 n n 0 0 ft 0 0 1 ft 0 0 2 ft 0 60 0 0 1 0 3 0 0 0 0 2 0 1 1 0 1 9 1 0 39n 4 0 0 1 5 0 0 0 0 ft 0 1 0 0 1 8 0 1 S i0 1 0 3 1 2 0 0 0 0 1 0 0 0 0 2 7 0 0 e0

0 2 0 0 c 5 0 0 ft 0 1 2 1 0 0 11 1’ 11 0 *70 1 1 0 i 6 0 n 0 0 I 0 ) 0 0 2 6 J 0 610 0 0 2 i 2 0 0 0 0 0 ft ft ft ft 1 10 1 0 '80 0 0 2 Q 0 0 0 0 0 1 0 0 D 6 13 1 1 750 5 0 0 1 3 0 0 0 0 0 0 1 1 0 0 4 0 0 34

0 0 0 0 0 4 0 0 0 0 0 0 3 0 0 4 12 18 1 600 2 o 0 ? 7 0 0 0 0 1 1 0 0 0 7 14 5 1 700 5 0 0 16 0 0 0 0 0 1 0 0 0 4 6 2 0 560 2 0 0 0 fl 0 0 0 ft 0 0 ft ft 0 4 3 2 0 SO0 2 0 0 4 1 0 0 0 0 0 0 0 1 0 5 9 2 0 48

0 2 0 2 3 2 0 0 0 0 3 1 1 0 0 17 9 24 0 1000 0 0 0 1 4 0 0 0 0 0 0 3 0 0 6 3 2 0 380 ? 0 7 1 1 0 ft 0 ft ft 1 0 1 0 4 3 4 0 430 ? \ 0 1 3 0 0 0 0 1 0 0 0 0 5 14 20 3 840 n ft 0 ? n 0 0 0 0 0 0 1 0 0 9 9 0 0 48

0 2 0 0 4 8 0 0 1 0 0 1 1 0 0 7 14 S 1 880 1 0 ? 3 7 0 0 0 fl 0 2 1 0 n 8 14 4 ? *40 0 1 0 0 5 0 0 0 0 0 0 1 0 1 5 8 17 0 671 0 n 1 ? 6 0 0 1 ft 0 1 0 ft 1 2 6 3 1 *60 0 1 0 3 0 ft 0 0 0 0 0 0 0 7 6 4 0 38

_0 J> _0 0 n _0 __n J> _0 _0 -1 __3 0 \ _ft ___ 8

} 36 4 33 42 107 0 0 2 0 10 12 77 5 2 118 209 128 13 1408

G-18

EPRI 8WR Transient Category

P ) « l t 1 2 3 4 5_ 6__ 7_ 8 9_ jO

I 0 0 0 0 0 0 0 2 0 01*9 ftock Po in t 0 0 0 0 0 0 f> 1 0 IUMfcOlt l i / 11 0 1 0 0 1 0 4 0 0M b* R i le Pou .t 1 S 0 12 0 2 3 0 4 1 2Ojrst-r Creek 5 0 10 u 4 i 1 6 1 0

*>resoca 2 b 0 l i 0 4 2 0 4 0 0ftills to n e 1 6 0 14 0 4 0 2 2 10 9t a i t ic e i io 6 0 4 0 2 3 0 7 1 4urcsoe* 3 b 0 13 0 1 4 0 6 0 1tferaont Yankee 1 0 4 0 4 0 0 3 I 2

M l j r l a 1 9 0 5 0 7 1 ) 9 1 IOMd C it ie s 1 4 0 12 0 0 3 0 9 0 0Qv«0 C it ie s 2 1 0 / 0 1 3 I Z 0 0Cooper S ta tion 6 0 6 0 2 0 0 0 1 1f*«C» Bottoa 2 2 0 8 0 i I 0 4 0 0

•t o m is r e r ry 1 8 0 17 0 5 3 0 2 0 1Pete* Bottom J 2 0 5 0 0 0 2 6 0 cOm a e Arnold 3 0 4 0 I 0 3 I 2 0frowm fe r ry 2 3 0 5 I 2 6 0 6 1 3f H iP a tr ic k 3 0 4 0 \ 3 0 1 0 0

I r m a i c k 2 9 I 1b 0 6 I 0 4 0 0Hatcn \ 1 0 10 0 2 2 2 9 0 0growis f e r r y j 0 10 0 7 * 0 4 I 0ffruftsaicc 1 4 0 9 0 2 3 0 3 0 1rtatcn 2 2 0 3 0 3 4 2 3 0 0>a$qeehanm 1 ~Sl c 0 0 JO J ) 0 _c J>

TOTUt 105 1 190 1 b2 49 U 10? 20 26

22 1! 13 21 11 26 27 2! 29 70 22 27 73 74 75 l i0 0 0 c 0 0 0 0 0 1 P 0 1 7 1 00 0 1 0 1 0 r» 0 0 0 n ft A ft 0 ft0 0 3 0 n 0 0 0 0 0 0 1 3 1 00 2 1 1 i 0 i 0 0 i i 1 1 7 7 ft0 0 2 0 0 0 i 1 0 1 0 3 1 2 0 \0 I 8 0 0 I 0 0 ft 7 n 0 < f J 73 0 2 7 0 7 1 0 0 1 l 0 1 ft 1 10 0 3 4 0 1 0 0 0 0 0 3 1 ? 0 10 1 S 7 0 0 0 1 0 1 o 0 9 0 00 0 9 1 0 0 1 0 0 0 0 1 3 0

2 1 2 0 0 0 0 0 0 0 1 1 fi 5 00 0 5 1 0 0 0 0 0 ? 1 0 ? 7 0 00 Q 1 0 ? 0 0 0 5 0 0 2 If 7 14 0 11 1 1 1 0 0 0 ? 0 n 1 8 0 ft5 0 3 1 0 0 n 0 0 2 0 0 4 2 7 0

2 0 1 1 n 0 0 0 2 n ? 3 7 0 12 0 5 1 0 0 l 0 0 0 0 0 1 4 0 00 0 7 f 1 0 r 0 0 ? 0 7 7 7 7 02 0 6 1 1 0 0 0 2 1 0 1 4 ] 1

0 7 0 0 0 7 0 0 0 0 3 0 \ 0

Q 2 2 3 i 0 0 7 \ ft 4 10 4 15 2 12 0 2 0 0 0 1 0 7 7 7 ft

0 r t 0 0 0 0 0 0 T 0 5 r ft2 ? 4 1 3 0 0 0 1 n 0 1 ■j f i 10 0 7 0 1 0 1 0 0 0 1 ,n 4 3 n 1

_0 J) 0 JJ JJ _0 JJ JJ _n i _0 J) JJ n 0 _Q31 9 103 44 \-> 13 8 4 1 36 7 16 51 118 7R 10

?7 78 79 3ft 11 37 23 34 IS 36 37 A ll—

0 ft 0 0 0 0 0 1 7 0 0 1?ft t ft ft 1 ft ft 7 c ft ft 110 0 7 0 1 1 0 1 11 0 0 410 1 ft ft 7 ft 0 2 77 0 1 740 0 1 0 1 0 0 3 8 0 0 S3

0 ft 7 ? 7 ft 17 18 4 ft 890 0 1 0 1 ft o 4 8 1 0 850 1 ft 0 0 ft 6 1 0 0 *50 ft 0 1 0 0 0 6 13 0 1 780 1 ft ft 1 T 0 2 c 7 0 50

0 1 0 0 3 C 0 5 16 4 7 830 0 1 1 0 ft 0 8 15 4 1 760 0 0 1 0 0 0 4 9 2 0 filft 0 n 0 0 ft 0 4 3 4 0 56ft 0 ft ft 0 2 0 6 9 0 0 57

1 1 3 1 1 0 ft 18 1* * 0 980 1 0 0 3 0 0 4 5 0 0 4?ft ft ft 1 ft 7 ft S 8 3 ft 490 ? 3 ? 0 0 0 8 77 70 3 970 0 0 ft 1 ft ft a 9 0 0 <0

1 1 0 * 0 0 1? 18 10 7 1170 3 ft 7 1 ft ft 0 23 c 7 1100 0 7 fl t 0 I 8 9 4 0 «.*1 ft ft ? 0 ft 1 7 7 3 f 70 0 7 ft 0 0 0 2 8 ft 47

_0 0 _n 1 J J _ i J J 0 J J J ) ___ 7

3 T2 15 15 is f 2 74? 274 *6 1* 162?

APPENDIX GTRANSIENT EVENT COUNTS EXCLUDING LOW POWER

AND SCHEDULED SCRAMS

G-l

146

374747

7061477333

94*6554641

78323968•68381535137

7

EPRI BWR Transient Category

1 2 3 4 5_ 6_ 7 8_ 9_ ]0 n J2 _13 J4 J5 JI6 27 J8 2 1 20 11 22 23 24 25 26 27 28 12 30

o 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 I 0 0 1 2 0 0 0 0 0 00 c 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 n 0 0 0 0 0 0 0 0

I I 0 1 0 0 0 0 4 0 0 0 0 3 0 0 0 0 0 c 0 0 1 0 3 0 0 0 0 ? 0s 0 10 0 2 3 0 2 0 2 Q 0 0 1 1 0 Q 0 0 4 0 0 1 5 0 0 0 0 0 05 0 9 0 4 1 1 6 1 0 0 0 I 0 0 0 1 1 0 1 0 3 1 2 0 0 0 0 1 0

4 0 8 0 4 2 0 3 0 0 0 0 6 0 0 0 0 0 0 ? 0 0 b 5 0 0 0 0 1 26 0 13 0 1 0 2 2 ; 3 1 0 J 2 0 2 1 G 0 ) J 0 J $ 0 0 0 0 ) 0o 0 4 0 2 I 0 6 i 4 0 0 2 4 0 y 0 0 0 0 0 ? 2 0 0 0 0 0 0> 0 11 0 I 4 0 4 0 1 0 1 7 0 0 0 1 0 1 0 0 ? 9 0 0 0 0 0 11 0 4 0 3 0 0 2 1 1 0 0 4 1 0 0 1 0 0 5 0 0 1 3 0 0 0 0 0 0

8 0 4 G 2 J 0 6 1 1 2 0 I 0 0 0 0 0 0 c 0 0 0 4 0 0 0 0 0 03 0 U 0 0 3 0 8 0 0 0 0 3 1 0 0 0 0 0 2 0 0 2 7 0 0 0 0 1 1\ 0 7 0 \ 3 0 2 0 0 0 0 1 3 0 2 0 0 0 5 0 0 2 16 0 0 0 0 0 16 0 4 0 2 0 0 0 1 1 3 0 9 1 1 0 0 0 0 2 0 0 0 8 0 0 0 0 0 02 0 7 0 1 1 0 3 0 0 2 0 3 1 0 0 0 0 0 2 0 0 4 1 0 0 0 0 n 0

8 0 IS 0 4 3 0 1 0 0 0 0 1 2 1 0 0 0 0 2 0 2 3 2 0 0 0 0 3 1I 0 3 Q 0 0 1 4 0 0 2 0 4 1 0 0 I 0 0 Q Q Q 1 4 0 0 Q Q 0 03 o 3 0 1 0 2 1 2 0 0 0 7 1 1 0 1 0 0 2 0 2 1 1 0 0 0 0 0 12 o 4 0 2 5 0 1 1 2 2 0 6 S 1 1 0 0 0 2 1 0 T 3 0 0 0 0 1 03 0 4 0 } 3 0 1 0 0 1 0 6 4 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0

8 1 16 0 4 0 0 4 0 0 0 0 1 3 2 3 0 0 0 2 0 0 4 8 0 0 1 0 0 11 0 8 0 2 1 1 7 0 0 5 2 12 3 0 2 0 0 0 1 0 7 3 I 0 0 0 0 0 22 0 9 0 7 5 0 3 J 0 0 0 1 1 0 0 0 0 0 0 1 0 0 5 0 0 0 0 0 03 o 7 Q 1 3 0 3 0 1 0 2 3 0 2 0 0 0 1 0 0 1 3 6 0 0 1 0 0 12 0 3 0 1 4 2 3 0 0 Q 0 2 0 1 0 1 0 0 0 1 0 3 3 0 0 0 0 0 0

_0 0 0 0 1 _0 0 J ) _0 _0 _0 J ) J ) J ) J3 _0 _0 J ) _0 _0 _0 0 _0 _0 _0 J> J )

96 1 166 0 4? 43 9 79 16 17 18 5 82 41 11 11 6 4 1 36 4 13 4? 107 0 0 ? 0 TO \7

APPENDIX H TRANSIENT RATE TREND ESTIMATION DATA

H -l

APPENDIX H TRANSIENT RATE TREND ESTIMATION DATA

Tables H -l through H-4 in this appendix give transient event counts from the com bined da ta base and reactor critical time by plant and calendar year for PW Rs and BWRs. In addition, the critical tim e tables supply inform ation on the total number of hours (calendar hours) for each year for each plant between its date o f commercial operation and the end o f 1983.

H-3

T a b l e H -1 . P W R t r a n s i e n t e v e n t c o u n t s b y p l a n t a n d c a l e n d a r y e a r

Calendar Y «m

Plants 61 62 63 64 65 66 67 68 69 70 71 n 73

Yankee Rowe 5 2 10 8 1 5 1 1 2 4 2 6 9Indian Point 1 — — 54 50 25 18 20 20 12 12 17 16 0San Onofre 1 _ — — — — — 4 2 1 7 4 4Haddam Neck — -- — _ — —. — 13 12 9 6 4 1R. E. Ginna — “ — — — — — — — 6 10 3 2

Point Beach 1 _ _ _ _ _ _ _ _ _ — 15 6 5H. B. Robinson — -- — — — — — — — — 26 22 24Palisades -- — — — — — — _ — — — 26 7Point Beach 2 — — — — — — — — 1 14Turkey Point 3 — “ — — — — — — — — — 4 27

Surry 1 _ __ _ _ _ _ _ _ — — \ 24Maine Yankee — — — _ — — — — — — — - 5Sur:y 2 _ — — _ — — — — — — — - 6Oconee 1 — — — — — — — -- — — — - 10Indian Point 2 — “ — — — — — _ — — — — 13

Turkey Point 4 _ _ _ _ _ _ _ _ _ — — — 6Prairie Island 1 — — — — — — — — — — — - —Zion 1 -- -- — — __ — — — — — —Kewaunee — — — — — — — — — - —Ft. Calhoun — — — — — — — — — — — — —

TMI 1 _ _ _ _ _ __ __ _ _ _ _ _

Oconee 2 — — — — — — — — — — — — —Zion 2 — — — — — — — — — — - _Oconee 3 — — — — — — — — — — — - —Arkansas I — — — — — — — — — — — - —

Prairie Island 2 _ _ _ _ _ _ _ _ _ — —Rancho Seco — — — __ — — __ — — — — — —Calvert Cliffs 1 — - - — - - - — — — — - —Cook 1 -- — — — — — — — — — — — —Millstone 2 “ — - — — — — — __ — — - —

Trojan _ _ _ _ _ _ _ _ _ _ _

Indian Point 3 — — — — — — — — — — —Beaver Valley 1 — — — — - - - — — — — - —St. Lucie 1 -- -- — — — — — — — — — — —Crystal River 3 — — — — — — — — — — — - —

Calvert Cliffs 2 — — — — — — — — — —Salem 1 — — — — — _ — — — — — —Davis Besse 1 ~ - — — — - - — — — — - -Farley 1 — _ — — — — — — — — —. - —North Anna 1 — “ — _ — — — — — — — - —

Cook 2 — — — — — — — — — — _ _ —TMI 2 — — — __ — — — — — — —. __ —Arkansas 2 — — — — _ — _ — — _ —North Anna 2 — — _ — — — — _ — _. _ —Sequoyah 1 _ — — — — — — — — — — - —

Farley 2 — — — _ — — — — — — _. _ —Salem 2 — _ — — — — __ — — — _ — —McGuire 1 — — — — — — — — — _ --Sequoyah 2 — — — — — — — — — — — __ —St. Lucie 2 — — — — — — — — — — — - —

Total events 5 2 64 58 26 23 21 38 28 32 83 9) 157

H-4

_L C a l e n d a r Years

71 72 73 74 75 76 77 78 79 80 81 82 83 Total

2 6 9 6 4 4 2 4 2 2 4 2 7 9317 16 0 22 — — — — — — — _ 2 6 67 4 4 3 4 6 4 4 2 1 5 0 0 516 4 1 4 1 6 5 5 2 4 7 5 4 88

10 3 2 3 7 1 0 2 2 0 0 2 2 40

IS 6 5 7 2 2 3 3 2 3 3 2 1 5426 22 24 13 21 16 18 10 13 8 10 9 4 194— 26 7 0 12 8 9 16 9 4 2 12 2 107— 1 14 4 3 8 3 2 2 1 0 1 3 42— 4 27 16 16 4 11 10 8 8 0 10 2 116

— 1 24 18 23 10 10 4 2 4 10 19 11 136— — 5 5 6 5 3 3 4 7 4 3 5 50— — 6 9 14 10 13 2 0 10 9 1 1 13 97— — 10 8 10 9 6 9 6 4 2 12 5 81— — 13 54 42 19 21 6 17 14 8 5 11 2 1 0

— — 6 II 7 16 12 7 11 7 9 10 7 103— — — 21 8 4 3 4 7 3 2 2 3 57— — — 21 30 12 13 9 15 12 3 3 6 124- — — 7 20 10 8 7 9 9 2 3 4 79— — — 2 4 7 4 3 4 2 4 3 1 34

— _ _ — 4 1 1 0 0 _ _ __ 6— — — 4 12 3 1 8 4 3 0 9 6 50— — — 20 30 25 17 2 12 18 14 13 3 154— — — — 11 6 4 5 3 5 S 1 2 42— — — — 13 7 1 6 2 7 7 3 55

_ _ _ I If) J 5 5 6 3 6 7 3 59— — — — 3 3 3 4 9 5 7 6 4 44— — — — 13 6 11 12 8 4 7 6 73— — — — 4 5 14 8 4 7 4 4 2 52— — — — 4 38 5 3 1 10 7 10 79

_ _ _ _ — 9 23 1 8 6 13 8 7 75— — — — - 9 8 7 7 21 10 2 2 66— — — — — 12 36 19 II 5 10 8 10 1 1 1— — — — — — 18 7 9 6 3 9 0 52— — — — - — 14 3 10 6 1 1 11 9 64

_ _ _ — _ _ 10 12 7 2 7 4 9 SI— — — — — — 12 17 3 13 16 7 7 75— — - — - — 6 16 9 8 9 2 12 62— — — — — — 2 31 14 16 8 7 4 82— — — — — — — 6 5 14 8 5 2 40

— — — — — — — 8 10 11 5 5 5 44— — — — — — — — 2 — — — — 2— — — — - — — — — 17 29 1 1 5 62— — — — - — — — — 3 18 4 6 31— — — — — — — — — — 6 8 10 24

_ —* — — — _ _ _ _ 8 9 5 22— — — — - — - — — — 10 12 6 28— — — — •- — — — -- — 1 16 19 36— — — — - — — — — — — 4 3 7— __ — — — _ _ _ _ _ _ 4 4

S3 93 157 259 346 286 339 290 261 293 313 305 252 3574

Plants 61 62 63 64 65 66 67 68 69 70 71

Yankee Rowe 5 2 10 8 I 5 1 I 2 4 2Indian Point 1 - - 54 50 25 IS 20 20 12 12 17San Onofre 1 — — — — — — — 4 2 1 7Haddam Neck - - - - - - - 1 3 12 9 6R. E. C inna _ _ _ _ _ _ _ _ _ 6 10

Point Beach I _ _ _ _ _ _ _ _ _ _ UH. B. Robinson _ _ _ _ _ _ _ _ _ — 26Palisades _ _ _ _ _ _ _ _ _ _ _Point Beach 2 _ _ _ _ _ _ _ _ _ _ _Turkey Point 3 _ _ _ _ _ _ _ _ _ _ _

Surry 1 Maine Yankee Surry 2 Oconee 1 Indian Point 2

Turkey Point 4 Prairie Island I Zion 1 KewauneeFt. Calhoun

TMI I Oconee 2 Zion 2

#Oconee 3 Arkansas 1

Prairie Island 2 Rancho Seco Calvert Cliffs 1 Cook 1 Millstone 2

TrojanIndian Point 3 Beaver Valley 1 St. Lucie 1 Crystal River 3

Calvert Cliffs 2 Salem 1 Davis Besse I Farley 1 North Anna I

Cook 2 TM I 2 Arkansas 2 North Anna 2 Sequoyah I

Farley 2 Salem 2 McGuire 1 Sequoyah 2 St. Lucie 2

Total events 5 2 64 58 26 23 21 38 28 32

ro ta:

932 6 6

5 I8840

5419410742

1 16

136509781

210

10357

1247934

650

1544255

5944735279

7566

I I I5264

5175628240

442623124

22283674

74 75 76

6 4 422 - —

3 4 64 1 63 7 1

7 2 213 21 160 12 84 3 8

16 16 4

18 23 105 6 59 14 108 10 9

54 42 19

11 7 1621 8 421 30 12

7 20 102 4 7

- 4 14 12 3

20 30 25- 11 6- 13 7

I 18 53 3

- 13 6- 4 5- 4 38

99

12

259 346 286

77 78 79

2 4 2

4 4 25 5 20 2 2

3 3 2 18 10 139 16 93 2 2

11 10 8

10 4 23 3 4

13 2 06 9 6

21 6 17

12 7 113 4 7

13 9 15 8 7 94 3 4

1 0 01 8 4

17 2 124 5 31 6 2

5 5 63 4 9

11 12 814 8 45 3

23 I 88 7 7

36 19 II18 7 914 3 10

10 12 712 17 36 16 92 31 14

- 6 5

8 102

339 290 261

80 81 82

2 4 2

1 5 04 7 50 0 2

3 3 28 10 94 2 121 0 1 8 0 10

4 10 197 4 3

10 9 114 2 12

14 8 5

7 9 103 2 2

12 3 39 2 32 4 3

3 0 918 14 135 5 I7 7 3

3 6 75 7 64 7 67 4 4

10 7 10

6 13 821 10 2

5 10 86 3 96 I I I I

2 7 413 16 78 9 2

16 8 714 8 5

11 5 5

17 29 I I3 18 4

- ft 8

- * 9- 10 12- I 16— - 4

293 313 305

APPENDIX H TRANSIENT RATE TREND ESTIMATION DATA

Tables H -l through H-4 in this appendix give transient event counts from the com bined d a ta base and reactor critical time by plant and calendar year for PW Rs and BW Rs. In add ition , the critical tim e tables supply inform ation on the total num ber o f hours (calendar hours) for each year fo r each plant between its date o f commercial operation and the end o f 1983.

H-3

APPENDIX IORTHONORMALIZATION COMPUTER PROGRAM OUTPUT

i-i

Calendar Years

Plants

X

Humboldt Bay Nine Mile Point 1 Oyster Creek Dresden 2 Millstone 1

M onticdlo Dresden 3 Vermont Yankee Pilgrim 1 Quad Cities 1

Quad Cities 2 Cooper Station Peach Bottom 2 Browns Ferry 1 Peach Bottom 3

Duane Arnold Browns Ferry 2 FitzPalrick Brunswick 2 Hatch 1

Browns Ferry 3 Brunswick 1 Hatch 2 Susquehanna I

Total events

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 Total

4 5 2 1 3 6 3 3 2 2 0 2 6 4 437 17 13 5 10 5 5 4 1 5 1 4 2 0 1 80

14 1 9 9 2 5 1 4 2 5 1 2 2 0 579 6 12 7 7 5 9 4 8 4 10 7 8 6 102

17 3 7 5 6 5 16 4 5 2 7 3 6 86

6 8 4 3 2 9 2 8 5 4 4 4 1 603 8 10 10 4 4 5 4 8 7 9 3 6 81

2 7 11 5 6 1 5 2 3 4 6 1 534 20 6 14 7 10 11 11 6 8 7 9 113

12 4 6 7 10 8 4 5 10 10 6 82

10 8 6 5 11 5 5 6 2 8 2 6823 12 2 3 t 5 4 2 6 5 6311 8 9 8 5 1 6 5 2 3 5811 9 9 12 18 14 23 7 16 4 123

6 8 3 5 8 10 5 1 5 51

6 6 8 5 4 7 6 5 6 531 10 16 15 19 18 18 10 10 1177 12 9 9 1 6 4 4 3 554 26 21 20 14 11 16 9 5 126

26 22 12 7 17 16 7 13 120

21 21 9 9 11 4 4 7912 18 15 8 9 10 2 74

6 13 14 10 7 508 8

4 5 2 1 3 6 10 43 48 53 96 108 117 169 199 189 153 180 168 135 113 1802

a. Big Rock Point and Dresden 1 are not included due to unavailability o f early data.

H-6

Table H-3. PWR reactor critical time by calendar year

C r i t i c a l Ho<irs b y Calendar Year*

n a r\m * 61 62 63 64 6S 66 67 68 69 70 71 72 73 74 75 76 77 78 79 00 81 82 03

T M m I o m3*45/

44l6to

5923/876(f

6913/

v v f -7973/

07fi4e

6635/

076<f

7047/

076<f

0070/

076flc

7702/

8704c

7306/

«76flf

7434/

8760C

0546/

8760C

4830/

8704°

6365/

8 7 « f

6307/

8760c

7391/

876<f

7998/

8784C

6595/

8760^

7197/

8760°

7174/

876t f1970/

8784°

6597/076OF

6529/

v w F8064/

8760f

Indian Point 1 —1310/

2208C6256 4240 5611 5912 7080 8052 0131 2356 7296 6910 0 5852/

7296**

San Oncrrc 1 3839 6097 7376 8450 7043 5578 7609 7702 6254 5635 7157 7916 1979 2455 1374 0H M M B HKft 7968 0271 7082 7044 7978 5086 832? 7695 7587 7638 0618 7541 6776 7579 8701 6949

ft. C . f i tm u3257/

4416b6801 6428 8346 5602 6850 5301 7569 7164 6477 *720 7242 5243 6714

Point Mac» I214/

264b 7967 6507 5725 7490 6344 7444 7819 8003 6629 6918 6918 7219 6506

m . ft. lo fe in o n3739/

7200b 7587 6927 7422 6526 7579 7586 6631 6394 5558 6580 4494 6741

24/

24b 5367 4170 663 S850 5184 8129 4797 5369 3958 5201 5200 5337

Point toacf» 21354/

2208**6914 7245 8400 0065 7649 8124 7809 7653 7040 7668 6370

Terfcej Point 3282/

432b6954 6120 7251 6760 7186 7347 4697 703? 1459 5759 6506

S «r r j 1118/

240** 6195 4958 5772 6058 6763 6383 3052 3787 3496 7877 5187

Nalnc Yanfctc96/

96** 7833 fillS 7255 8396 7331 7515 6166 6546 7153 6313 7390

S n rry 24750/

5B80b3908 7121 4689 6094 7268 819 3284 7077 7814 5896

Ounce 12880/

4080**5447 6972 5344 5623 6489 6287 6772 3769 6612 6874

In ai jA Point 21164/

3576b5435 6801 3247 6716 5591 (5349 5869 4158 5836 7790

Turtey Point 42491/

2928^6751 6312 6076 5751 6875 6480 6185 6966 5876 4783

H-7

C r i t i c a l Hours by Calendar r t a r *

r m P l o t 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 8? 83

0/P r a i r i e Is lan d 1 ............................................................................................................................................................................................... 36Qb 4279 7745 69«9 758? 810* 6519 6959 7854 7995 7857

2 4m 1 ........................................................................................................................... — — ...................................... 5168 6267 5643 6688 7296 6047 7395 6454 5319 5801

4114/KCMMe e .............................................................................................................................................................................. — — j j j g b 7957 7216 7113 7901 7039 7320 7679 7750 7428

4501/F t . C i lM M i .......................................................................................................................................................................................................... <6eob 6168 6228 704? 6702 8437 5377 6461 7872 6S03

2583/ 1128/D O 1 ........................................................................................................................................................................................................................................ ?904h 7430 5839 7207 7546 ?0Bgfl

1970/0COMC 2 ............................................................................................................................................................. ...................................... ?7Jfb 66'3 5668 5461 6311 7597 5509 7104 4705 6400

1607/Zion 2 ................................................................................................................................................................................................................ ?544b 6502 5559 6775 7165 6027 6092 6645 6343 6541

184/Ocuwe 3 ........................................................................ — — ......................................................................................... 384b 6960 6258 6762 7602 4127 6509 6911 2907 8489

210/Arkansas 1 .......................................................................................................................................................................................................... 307b 6851 5064 6800 6781 4428 5652 6457 5760 4334

252/r r a l r t e is la n d 2 ................................................................................................................................................................................................................ ?6?b 7237 6840 7933 8181 8685 7253 6353 7872 7643

1897/■ K M Scco - ............................................................................................................................................................................................................................... 6192h 2966 6909 7295 7003 5423 3740 4807 4308

4765/C i l w t C U f f s 1 ................................................................................................................................................................................................................................. t712b 8400 6468 6385 6351 6497 7663 6496 6871

2613/Cook 1 ................................................................................................................................................................................................................................. 30>gb 7384 6845 6589 5750 6559 6752 5608 5736

94/M il lstone 2 ................................................................................................................................................................................................................................. )44h 7281 6066 6066 5551 6170 7338 6648 3110

2234/Trojan .................................................................................................................................................................................................................................................. * 7104 1830 517f 64*3 6702 4895 4492

2345/In a tan P o in t 3 ........................................................................................................................................................................................................................ - — M76b 6637 6679 5924 5165 5356 198S 334

H-8

C r i t i c a l Hours by Calendar Year

W* P\mt 61 6?

Valley I

S t . L u c i e I

C r j t U l l i v e r 3

C a l v e r t C l i f f s 2

S « l c a 1

Jtar»s tesse 1

f e r l e y 1

S o r t * A « u 1

Cook 2

TUI 2

Oortli Am m 2

Sequoyah I

Fa rle y 2

Seles 2

NcSuire i

63 65 66 67 68 71 7? 73 74 76 77 78 79 90 81 63

838/.b 4474 3748 IS 79 756 6533 3758 606?

2208

264/_ , b 7636 264 6722 6916 6404 8270 1367

6055/

5759/

660Qb

2544/

J> 3801 S293 4734 5565 6759 536?

7234 695* 8474 7148 6S33 7827

-6 5114 ?431 6341 7011 4285 5426

829/

984',b 4840 433? 3420 6147 4666 6607

545/7U** 7701 7692 6747 3800 7166 6976

4687/501(J> 5478 780B « 8 « J?9S «4 «4

3494/

44!*t> 5849 m 2 6738 6788 697?

46/ 1645/

48h >088d

5031/

6744b 5864 5262 5516

429/

432b 6986 5088 7144

2801/

44!7b 4734 6906

3680/

372 l b 7098 7758

1859/

1921b 8596 1253

4*/,b 7003 5390

______________________________________________________________________________________________ C r i t i c a l Hours by Ca lendar y e a r 3_________________________________

PM8 P la n t 61 62 63 6* >5 66 6 7 68 69 70 71 72 73 74 75 76 77 78 79 80 81 8 ? 83

3889/ScquojraD 2 — ......................................................................................................................................... — — — — -..................................................................................................... 5 )3 ^> 6*72

3227/S t . L u c ie 2 ^ -- " " - " " " 3M Qb

T o ta l R eacto r 0.44 0.83 1.43 1.39 1.40 1.57 1.73 3.14 3.49 3.16 5.78 IS.22 9.29 14.79 20.94 21.51 27.55 29.81 26.25 26.43 32.55 11.14 31.22 C r i t i c * ) Tioe( j * * r s )

T otal C « le *d«r 0.50 1.2S 2.00 2.00 3.00 2.00 2.00 4.00 4.00 4.53 6.82 8.34 13.9? 20.00 26.72 30.24 35.26 39.08 39.48 39.62 42.23 4S.44 46.37 T « (y «* rs )

a. D a u for 1963 through 1973 may include reserve shutdown hours.

b. Represents number of calendar hours from starr o f commercial operation to the end of the year.

c. Number o f calendar hours in the year. This applies to all plants except wherever notes b and d apply.

d. Number of calendar hours from the first of the year until the unit was taken out of ser»ice.

H-IO

Table H-4. BWR reactor critical time by calendar year

______________________ _________________ C r i t i c a l Hours by Calend ar Tear* _____________

M l H a a t * 63 64 65 66 67 68 69 70 71 7? 73 74 75 76

2982/ 7811/ 7005/ 7784/ 8002/ 8183/ 7866/ 7717/ 6675/ 7289/ 7820/ 7391/ 7418/ 4111/

9 lO l » 1 J 3672c 87B4d 8760d 8760d 8760d 8784d 8760d 8760d 8760d 8784d 87«0d 8760d 8760d 4416*

473/ 7877/•tae R i l e P otat I ................................................................................................ 744c 4080 5963 6167 668? 6176 6515 g7g4d

96/Q y t t e r Crcc* ................................................................................................ M c 7073 7194 7236 6497 6323 6617 7027

3899/Oresdea 2 ................................................................................................................... 4944c 6091 5471 7672 5613 5067 6873

5394/HI 1 ls toae 1 ..................................................................................................................................... 7008c 5254 4065 7087 6843 6853

2965/N o a t i c e l l o — ................................................................................................ — 44|gC 7367 6481 6970 6442 8228

567/Dresden 3 ..................................................................................................................................... 1128c 7839 5908 5696 4644 7363

744/W n aoat Vaakee ........................................................................................................................................................ 744c 6517 6729 7814 6940

382/P i l j r l a 1 ........................................................................................................................................................ 744c 7751 3550 6515 5463

6397/Quad C W e s I .......................................................................................................................................................................... 7584c 5364 7530 5948

6250/Quad c n t e s 2 .......................................................................................................................................................................... 7344c 7231 4732 7331

3540/Cooper S t a t i o n ............................................................................................................................................................................................ w l g c 7483 6756

3912/Peacn B ottoa 2 — — — — — — — — — — — A3?Qc 6780 6147

3166/Brtaais F e r r y 1 — — — — — — — — — — — 3672c 1593 *335

216/Peac# Bottoa 3 — .......................................................................................................................................................................... 216c 7635 7056

6548/Iteaae A r n o ld - - — — — — — — — — — — — M 1 6 c 7002

517/C r u m s Ferry 2 ............................................................................................................................................................................................................... c 2837

77 78 79 80 81 82 83

8760d 8760d 8760d 8784d 8760d 87«0d 8760d

5359 8404 5880 8213 5869 1874 4993

6236 6616 7618 3791 5546 5638 1010

6435 8434 7291 8401 5497 8224 5367

8125 7754 6898 6074 4795 7043 8467

7092 7759 8603 6988 6417 5698 8471

8344 6516 6057 6437 8363 5731 6454

7581 6854 7269 6377 7542 8465 6156

5850 7391 7933 5204 5849 59)2 7789

6984 8461 7381 5992 8393 6072 8384

7844 717 ? 7752 5704 6019 7412 5654

7676 7999 7782 6352 6297 7485 5632

5056 7429 8336 4 798 7191 5346 4609

5885 7252 8046 6529 4508 8075 2416

5693 7509 6 736 7317 3325 8442 2870

7005 3059 6951 6605 6310 6778 5679

72J4 6)50 7766 6259 7703 «847 6671

H-n

____________________________________________________________________________________ C r i t i c a l Hours by Calendar Year*________________________________________________________________________________ __

b « P la nt1* 63 64 65 66 67 68 69 70 71 7? 73 74 75 76 77 78 79 80 81 8? 83

2689/F t U P a t n c k .............................................................................................................................................................................................................. 3744c 6527 6218 6481 4568 6284 6637 6705 6273

1350/Srunsa ick 2 ............................................................................................................................................................................................................... M16e 5260 5358 7321 6036 3698 6145 3609 5951

24/Natch I .............................................................................................................................................................................................................. ?4c 7731 6316 6617 5090 7714 4879 4542 6573

6296/Bt o m i s F e r r y 3 ..................................................................................................................................... ................................................................................................ 7344c 6396 5816 7064 6496 5145 5475

4452/Brunswick 1 ................................................................................................................................................................................................................................................... 6916c 7859 5079 6413 4463 5623 2509

2664/Hatch 2 ................................................................................................ — - — — ................................................................................................ 2833c 5571 7064 5877 6064

3845/Susq ueh an na 1 — — - - — — - - — — - - — — - - - - — — — — — — — 4944°

T o t a l Reactor 0 .3 4 0 .8 9 0 .8 0 0 .8 9 0.91 0 .9 3 0.96 2 .6 0 3.98 5.44 8.22 9.01 11.84 14.31 15.64 17.06 16.84 15.69 15.40 15.36 14.53C r i t i c a l T tae(y e a r s )

T o t a l Calendar 0 .4 2 1.00 1.00 1.00 1.00 1.00 1.10 3 .5 6 5.43 7.17 10.70 12.44 17.35 19.50 20.63 21.00 21.32 22.00 22.00 22.00 22.56 T i a e (y e a r s )

a. Data for 1463 through 1973 may include reserve shutdown hours.

b. Dresden 1 and Rig Rock Point arc not included due to data unavailability.

c. Represents o f hours from s u n of commercial operation to the end of the year.

d. H w h tr of calendar hours in the year.

e. - ‘mill'll of calendar hours from the Tint of the year until the unit was taken out of service.

APPENDIX I ORTHONORMALIZATION COMPUTER PROGRAM OUTPUT

This appendix illustrates the orthonorm alization program output for the model given by Equation (15) o f the main text in which t is reactor age and the B3 X 3 term is excluded. The data of Table 29 are analyzed for the Maine Yankee, Calvert Cliffs 1, and Calvert Cliffs 2 plants. These plants have, respectively, 17, 46, and 25 events in Table 24, making a total o f 88 observations.

Table 1-1 shows how the design m atrix an d coefficient vector can be used to com pute selected fitted values, i.e ., values in the m odel vector. C olum ns o f the design m atrix co rrespond to term s in the m odel and a row is generated to co rrespond to each d a ta value. Five typical rows o f the design m atrix are presented. T o illustrate , the first row (Index 17) in T able 1-1 co rresponds to the reactor age (t = 143 days) and d a ta value (n(t,jc^) = 4] for M aine Yankee. Consequently, the values o f the dum m y variables are xj = 1 ,X 2 = 0, X4 - 0 for the respective p lan ts, and with a reactor age (t = 143) the values for t^ and t^ can be co m ­puted . The o rthono rm aliza tion program estim ates the m odel coeffic ien t, B values. M atrix m ultip lication o f the design m atrix and the coefficient vector then provides elem ents in the m odel vector. The su itab ility o f the m odel can be assessed by com puting the erro r. The erro r vector is the d ifference between th e m odel and the data . T able 1-1 shows the m axim um (3.8249) and m inim um (-5.9757) e rro r for the set o f d a ta . The negative e rro r (-0.0159) and positive e rro r (0.0870) values nearest to zero are also given.

f igure 1-1 is the o rthonorm ali/.a tion com puter program p rin tou t fo r the analysis o f the M aine Y ankee, C alvert C liffs I, and C alvert C liffs 2 d a ta o f Table 29. The follow ing types o f in fo rm ation are provided by the p r in to u t3 :

1. T he com pu ter design m atrix is labeled V E C T O R S T O O R T H O N O R M A L 1Z E w here

Input Vector I — M ain Yankee (x j,t)

Input Vector 2 — C alvert C liffs 1 (xo.t)

Input Vector 3 — Calvert C liffs 2 (x j.t)

Input Vector 4 — R eactor Age Squared (t^)

Input Vector 5 — R eactor Age C ubed (t-^)

2. I'hc cum ulative num ber o f transien ts data from T able 29 for the th ree plants form the V EC TO R TC) HI M l

3. T he estim ated model param eters are C O E F F IC IE N T S O F V ECTO R 1

4. The erro r is labeled, D IS C R E PA N C Y V ECTOR FOR V EC TO R 1. A n erro r difference is p ro v id ­ed lo r each o f the 88 d a ta values

5. The sum o j squares f o r f ittin g e rro r is labeled E R R O R SS and is equal to 2.93688700 E + 02 .

T he residual e rro r variance (s“ ) is then given by s^ - ER R O R SS/D egrces o f F reedom = (2.93688700 E + 02)/< 88-5) - 3.5384.

a. 1 he printout is marked with circled numbers corresponding to these items.

Table 1-1. Matrix illustration showing selected values from the orthonormalization printout

Index _________________ Design M atrix_________________ Coefficients3Rowum ber x it x2t X4 t t - t3

A

BM odelH(t,Jrt

D atan(t,x)

E rro reft,*)

17 143 0 0 20449 2924207 B] = 0.0295 3.7389 0.2620

19 0 147 0 21609 3176520 B2 = 0.0455 6.1751 10 3.8249b

31 0 0 363 131769 47832147 • B4 = 0.0438 = 13.0159 = 13 - -0.0159

59 0 0 890 792100 704969000 B* = -2.4591 x lO 5 24.9757 19 -5.9757c

65 0 961 0 923521 887503681 B6 = 7.8225 x 1 0 9 27.9130 28 0.0870

- • L J _

a. N ote that there are exactly five coefficients, and they are multiplied with every row o f the design m atrix (not just the five rows illustrated) to pro­duce the model values.

b. M aximum erro r.

c. M inimum error.

I U I * T f I F t I S L I S S T M i kt u n e if less tm«k l.cc t-c :H C . CF F C S S I I l i I l i l A l I C N SJ C » p a u i i E i s — > r • ; < « IB

© V E C t C P S 1C C t T ^ C k C i P A L W E F C l t C . Maine Yankee

•CCCOOE^OC •CCCCCE ^CC •CCCOCE^CO •OOOOOE^CO 1 .3 0 C O O E «C 1 •OOCOOE«OC •CCCCCE^OO •OOOOOE^CO # CCCCCB*OC •CCOCOE^OC•COCOCE^CC t . C C C O O E O l , C O C C O E «C C 9 « 1 0 C 0 0 E ^ C 1 .COCC OE+CC •OOCCCE^OC 1 ,4 3 0 0 C E + C 2 •CCCOOE^CO •OCCCCE^OC . C C C C C E ^ C C•CC COCt^OC •CCCCCE ^CC ♦COCOOE^CC •OOCOOE^CO •CCCCCE^CC •CC0CCE4CC •CC CC CE^CC •COOOOE^OO •OCCCCE+OC •CCCC CE^CO•CCCCCE ^CC •CCCC CE^CC •OOCCCE^CC •CCOOOE♦CC 4 «1 4 C 0 0 E ^ 0 2 •OOCCOE^CC aCCOOCE^CC ^ • 6 4 C 0 0 E ^ C 2 4 « 6 7 C C C E ^ 0 2 •CCCCCE +CC•CCCOOE^OO •CCCOOS^OC •COCOO f^CC •OOOOCE^CC .CCC OOE^C C •CCCCCE^CC 6 . 790CCE ^C2 t . 8 8 0 0 0 F * 0 2 •OCCCCE^OC •CC C C C EtC C•OOCOCE^CC •CC CC Ot^OO *OOOOOE«CC •OOOOOE^OO •COCOOE^CC •COCCCE^OC 7 . 9 4 0 0 C E ^ C 2 . C 0 0 0 0 6 * 0 0 •CCCCCE+CC •CCC CC E^CC.CCC O CE♦ O C 9* 15CCC E* C2 • c c c a o E ^ c c 9 « 5 6 C 0 0 E ^ C 2 •CCCCOE^OC X .C 4 3 C C E ^ 0 3 l * C ^ « . C C t * C i .COOOOF+OO •OCC CCc^CC •CCCCCE4CC

I . C 9 4 C C E ^ 0 3 .C C C C C I ^ C C 1 . 1 1 2 C C E ^ C 3 L « 1 4 2 0 0 E ^ C 3 •COCOOE^OC *CCCC C£4CC •CCOCCE^CC •COOOOf400 • C tC C C E ^ C C •CCCCCE^CC•CCCOCE♦OC •CCCCCE♦CC • CCCCCE ♦CC •OOOOOE^CO •CCCCCE^CC •CCCCCE^OC •COOOCE+CC • C 0 0 0 0 f * 0 0

t o « m r u t v e c t c p 1 « • i . c c e « o oC e W e r t O W t s l

2 .C 0 C C C E * 0 C .C C C C C E ^ C C •COCOC€«OC •coccci«cc ,

4«t8CQ0t^Q2 7 . i 5 c c c e * o r 7, 9 . C * C C C t « 0 2

• c c c c c t * o c x, 1 «3 * C C C E ^ C 3 1,

r e t J N f l T t f C I C t

c c c c c cCCCCCECCCCCECC CC CtfC C C C ?w c c o eCCCC Ctc s s c c t ■ ; t c c t

c ( •

♦ CC .OO O O CE^C C ♦cc t . e o c c o E - * c i♦ CC 1 «9 5 0 C C E *C2 ►CC .OO C C C E *C C ♦CC i*Ct>COCE*C2♦ C? 7 .2 5 C C O E ^ C 2♦ CC .C O C C C M C C

03 •COOOOt+CC♦ C3 1 . 5 8 2 0 C M C 3

l . C C C « 0 0

•COC CCE«OC 7 «* 0 C C 0 E ^ 0 11 . 3 6 C C C t ^ 0 2 1,3 . 6 3 C 0 C E « o r 3.

•ccccce«cc s,•COCOCE^OC•QCCCC €«CC , •CCCOCE♦OC •COCOCE^CC

FC* i N f t T *ECTC *

4«caccoe«cc i<5 .* 7 t < “C E « 0 3 e,? . 0 3 c C i « C 4 2,1 . 3 1 ? e t E * C 3 1,2 * 4 0 C C 4 i « C 9 2«3 . U « 2 S E « 0 3 5.• • i a e c « E « 0 5 t ,l « m * * E « 0 * J ,2 . 3 7 l 6 C t « 0 t 2.

FGR I M U I IE C 1 C * fct mm? lECTCfc

C C C C C (« C C C tC C C E ^ C C 6 « C C C ( « 0 2 7 tC C C E ^ C 2 CC C C C E «C 2 C C C C C I « C C CC C C C €«C C C C C C O («C O C C ( C C £ « C C

1 ۥ i

tcccc£«ci 4 C C CC£^C3 75*ect * t « 2 3 l ^ 0 5 5 C C C 0 I « 0 3 1 « C I « E « 0 3 3 T < 2 H « 0 ! 2ClbCt*Ct ^ l » C 3 i « 0 t

4 C** ( •

1 , * 0 0 3 C E « C 1• 0 0 0 0 0 ( « C C•0 ~4 0CE*CC

3 #7 7C C C 5 «C 2•o o o o o e k c• 0 0 0 3 0 I « C C

9 . 2 4 C 0 0 E 4 C 2 •COOCOE«CC• c o c o c e ^ c c

CCi*CC

X * 9 t 0 0 C E ^ C 2 7 , ? 4 4 0 0 E ^ C 3 3 .0 O 2 5 C £ + C<. ) . * 2 1 2 9 E ^ C 5 2 « 5 6 0 3 6 f « C 3 ! , 2 3 t 2 ) H C ; e . 5 3 7 7 6 E « C 5 1 « 2 3 6 3 4 £ * C « 2 . 3 0 2 7 2 f 4 C «

6. 2* 1-0 2l . C C E + O O

8 . C 0 C C C E K C* » C 3 2 2 * t « O S3 * 7 9 t 4 2 E « C 8* # 7 8 3 2 1 £ 0 7i.2350tt^ce3 v e 3 ! 2 6 t « C 67 « 3 3 t 7 1 f c « C tX . 3 0 9 3 U K 93 . f e 5 2 2 t C ^ C 9

«•

«•

FC* I N F t T V E C T f *

FO* IN P U T *ECTCF

*C C C Q E«Q 1 21 2 C C Q e ^ C i t5 7 4 3 0 E « C t 72 7 ? * * E ^ C 7 5i*ccct+ce s <aec2f «c<> tecti*«ce i3 2 7 3 7 f c O t J 7 <C C 3 E ^ C 9 3

* ۥ C .7 2 E

5 £• l * C C E

• 7 4 4 0 0 IM C 3 •8 14 72 £^C 3 • 4 1 4 8 8 (4 0 6 •3 9 8 2 6 E ^ C 7 •2 Q 55 4E * C6 •6 1 O 7 8 S «C 0 •eeestE+ce• 3 7 3 C 4 M C 9 •9593XE+ C9•C3

CO

• C 0 C 0 0 l « C C•OOCOOI^OO

2 . 2 3 0 0 0 E K 23 .9 * C O O E ^ C 25 » 1 0 C O O t * C 2

•OOCOOE^CO•COCOOC^CC• o c c o o i « c o

1 . 6 1 2 0 0 E « C 3

1 . 4 C C 0 0 t « C l •OOOOOE♦GC• o o o o o e « c c•OOOOOE^CG •C0C00C4CC

7 * 6 6 C O O l ^02 •OOOOOE«CO •OOCOOE+CG •CGCOOE^CO

1 » 9 6 C 0 0 E * C 2 8 ,2 & 1 0 0 c + C 3 4 . 9 7 2 9 0 E ^ C * 1 . 5 5 2 3 6 C *05 2 . 6 0 1 0 0 f « C 5 3 » « t ? 3 * E * C 5 9 . I 3 9 3 6 E ^ C 5 1 .3 0 * l f e E * 0 6 2 . 9 9 8 3 4 E ^ 0 6

2 «7**00fc4C3 7 . 5 3 5 7 1 E 4 C 3 1 « 1 C 8 9 6 E ^ 0 7 6 * 1 16 30 E +C 7 1 . 3 2 6 5 1 6 4 C 8 4«49439C406 6 « 7 3 7 2 3 c * C 6 1V40936E4O9 4 . 1 0 8 8 3 E ^ C 9

•CCCOOE^CC •COCOOE^OC

i . 4 C C 0 C E * C 2 .CCCOOE^O C ,C C C 0 0 6 * 0 C

7 . e 2 C 0 0 E ^ 0 2 S . t l C C O £ + C ? 2 # lt »9 00 E ^03 J #t 3 lC C E ^ C 3

•COCOOE^CC1 .2 6 C 0 0 E 4 C 2

•COCOOE^CC•CCCOQE«CC

S « 2 4 C 0 0 E ^ 0 2•CCCCOE^CC•COCCOE«CC«CCCGQE*CC•CCCCCE«QC

; - , 2 5 C 0 0 E » 0 2 1 .5 8 7 t C E * C ^ . ; . 7 6 C 0 0 6 * 0 ^ 1 « 7 1 3 9 6 E * C 5 2 . 7 4 5 7 6 E 4 C 5 t , 1 1 5 2 4 E ^ 0 S 9 *2 3 5 2 1E^ C9 l , 3 6 t 5 6 £ * 0 t ^ i 66C U ( « 0fc

3 ,3 7 * 0 0 E ^ C 3 2'COC3fefc*Ce 1 , 3 8 2 4 0 E ^ C 7 7 *C9*79E+C7 1 ,4 3 € 7 8 E « 0 8 4 « 7 8 2 1 2 f ♦ C e t , t 7 S C * E * 0 E 1 , 5 9 7 5 1 £ 4 C 9 4«33E72E 09

.C C C C C E + C C1 . 3 0 C C C E 4 C 2

•OOCCOE^OC•C0CCCE40C•COCCCE^OC

7 .8 3 C C C E * C 2•OCCCCE+CC

1 .2 5 1 C C E * C 31 « 6 4 8 C C E ^ C 3

1 «6 0 C C C E ^ C 1 •C 0 C C C E «00

2 • 7 3C C C E^02 A*53C C C £^C 2 6 .5 9 C C C E ^ C 2

•C OOCCE «CC •COSCC E^CC •COCCCE^CC •CQCCCE^CC

2 . 5 t C C C £ « C 2 U 6 9 0 C C £ * 0 < . 7 * 4 * 2 9 C E ^ C 4 2 . C 3 2 C 9 E 4 C 3 4 « 3 4 2 8 1 E « C 5 f c . ! 3 C 8 9 E * 0 3 1 «C 8 7 0 3 E ^ O 6 1 . 5 6 5 C C £ * C t 2 » 7 1 3 9 0 E « C 6

^ .C 9 e C C £ + C 3 2 .1 9 7 C C E + C 6 2 . C 3 < i t^ £ * C 7 9 « 2 9 S 9 7 E ^ 0 7 2 . 6 6 1 9 1 E + C 6 4 * 8 0 C 4 9 E « 0 8 l « 1 3 4 t 3 E * C 9 1*9 37 82 £4 C 9 4 « 4 7 3 f l £ ^ C 9

S .e O C C C E ^ C X .C C O C C E *C C » C C 0 C C E « C C .C O O C C l* C C •CCCCCE ^CC •COOOCE♦OO • CCCCCE 4CC

1* 266CC E♦CS 1•739CCE «C 3

C a lv e r t

3 .7 0 0 0 0 E * C X l* 4 4 C Q Q E « 0 2

.C O O O O f^ C O

.COOOO£*C O .COCOOE+OO

8«C 9 O O 0C * O 2 1 .C 6 5 0 0 F 4 0 1 1 .3 1 5 0 0 E * 0 3 X . 7 r ? 0 0 E « C 3 C H f f s 2

•COCCCE^OO •OCCCCE^CC

2* 7 70 0C £ ^C 2 4 .5 9 C C C E 4 C 2

. C C C C C t t C O •CCCC CE^CC •CC CCC£«OC •COOCCE+CC •CC CC CE«CO

•COOOOE^CO •COCOOE«CO

3 ,2 6 0 0 0 E * 0 2 •CCOOOE^CO •COOOOf♦OO , 00000f *00 .C O 0 0 0 * * 0 0 . C 0 C 0 0 F * 0 0 •COOOOt^OO

Age squared

1 . 2 9 6 C C l ^ C 3 2 « C 4 4 9 C E ^ C 4 7 « t 7 2 9 C E ♦ O ^ 2 « 2080 2 E^034 . t l C 4 1 £ * C 5 t*3 C «»3tfc »C 5 1 « C C 9 9 4 E ^ 0 8 l . t 5 8 ^ 4 £ * C t 3 «C 9 4 C 6 E ^ C 6

A ^

4 » 6 6 3 6 C E ^ 0 4 2 v 9 2 4 2 1 E ^ C e 2 « 1 2 3 3 9 E ^ C 7 9 . t 7 C 2 t E - * C 7 3 . 1 3 C 4 7 I * C 85 .C 05fc eE^C 6 l « 1 3 7 8 f E « C 9 2 .13 fc7 2£ +C 9 ^ • 4 4 2 4 S E « C 9

1 « 3 6 9 0 0 E ^ C 32 .C 7 3 6 0 E * 0 41 « 0 6 2 7 6 E ^ 0 52 * Z 3 2 9 6 E ^ 0 5♦ .7 3 3 4 4 F * C 5t » 3 4 4 8 1 E * 0 91 . 1 3 4 2 3 E + 0 61 . 7 2 9 2 3 F * 0 63 * 1 7 9 0 9 P ^ 0 6

cubed

3 « C 6 5 3 0 t + 0 * 2 » 9 8 9 9 0 f « 0 6 3.4fc4fcOE*C7 9 . 9 8 9 7 3 E ^ 0 ? 3.25661E408 S « 2 9 4 7 5 E « C 9 l « 2 0 7 9 3 f « C 9 2 .2 7 3 9 3 E 4 0 9 5 . 6 6 8 3 2 E + C Q

6* l C C C C E ^ C l 1.4 .7 C C C E 4 02 3 «3 C C C C E 4 0 2

•CC C C C E«C C 6 . 9 5 C C C E ^ C 2

•CC CC CE^CC X * 0 t 3 C C E « C 3 ! • 3 19C C E^C 3

•GCCCCE+OC •OOCOCE^OC •0CCCCE4CC •OCC CCE^CC • CCCCCE+CC

8 » 9 C C C C E « 0 2 •OCC CCE«OC •OCCCC E^CC

3 - 7 2 1 C C E + 0 3 2 « l t C 9 C E ^ C 4 !• 0 8 9 C C E ^ 0 3 2 » 1 6 0 8 9 E « C 3 ♦•83 c ; ; m o ; 7 .9 2 1 C C E * C 5 X » 1 3 4 2 3 E « 0 C 1 . 7 3 9 7 t E * C 6

2*2t«8lE^Ct 3 . J 7 t 5 2 £ « C t 3 «9 9 3 7 C E ^ C 7 1 . 0 1 » « 8 E * C 8 3 .3 S 7 C 2 E 4 0 8 7 . 0 4 9 6 9 E «C € 1 .2 C 7 S S £ * C 9 ?*29«74E^C9

8 * 7 C C C C E « C 1•CC CC CE^CC•CC CCCE^ CC•ccocoi^cc•CCCC CE ^CC

9 * C C C C 0 E ^ C 21 . C 7 1 C C I 4 C 31 . 3 3 * C O E « C 3

•CCCCOE+CG 1 . 4 7 C C C M C 2 3 * 4 7 C C C E « C 2 4 . 7 8 C C C E « C 2 6 .9 9 C C C E 4 0 2

•CC OC OE«CC •CCCCOE«OC •CC CCOE^CC

4 . 4 8 9 C C E ^ C 32 « U C 9 C E * C 41 . 2 0 4 C 9 E « C 92 .a 4 M H C $4.0«6C1HC50 .1 C C C C E 4 C 3l « l * 7 C * E * C e1 . 6 3 6 C 3 E 4 C 6

3 .C 0 7 6 3 E ^ C 33 « 1 7 6 * 2 E 4 C 64 . 1 7 0 1 9 E « C 71 . C 9 2 3 3 E + C *3 « 4 1 5 3 2 i « C E7 . 2 9 C C C E « C 8l « 2 2 e 4 S E 4 C 92 * « 8 7 E ] E « C 9

Figure M . O r th o n o rm a liza tio n p ro g ram o u tp u t

)

O U U U g g Q O N O U U g H H N O M r i H M U O Q N N N M N M M D I N N « ( N N N N f 4u u u u u w o u w u e u o u u w w o o t f e u e o o o u o u u o o u o u v o u o o

IM M II I M l IM M l It f i l l M l M M l St l2l ^ ^ IM ^1 JS l 2 M 2 iL JL ^ J | ^ |^ ^ ^ A ^ J | ^ ^ ^ ^o o u o o o o o n g w j u m N c o « « ^ « u e o f b « > f 4 « > N n o 4 o « * « t « a ^ i vu u u u o u u u ^ u o u m c i w u M < M W < M < S W O O w n n « n n t «u a o u o u u o n u o o w u « * • t f « » A H o e e n « n i n i » i 4 n « n Au u e u o u o o H u o o w « N # t f n « 4 » « o o e h n « « « m o Nu w o u u u u u u u u u w c i i i u u < r n w u u u g f u n « M « N « w u w « N M * i m• • • • • • • # * • • • « • • • • • • • • • • • • • • • • • • • • • • • • • • •

* 4 h ^ * n « m i n t • < « I i l i i • iU O W H O w o U A N N O M U M H O U U O W H U O N N M N H N H NQ O O O O O O O o o o o o o o o o o o o o o o o O O O O O O O O 0 0 0 0 0 0 9 0♦ ♦ ♦ I ♦ ♦ ♦ ♦ I I t ♦ I ♦ I I I I I I I « I • I I I I I I I IHI ^ HI HI ^ H I I | | HI ^ l y ^ | m >U ^ ^ m i n I I I ^ ^ y | ^ ^ | ^ ^ ^ ^ ^ ^ w ^ | y ^ | y I I Iw g w N u u w w « M A g v i i n h w u u o w m o w « » ^ « « N n v n n # n ^ i t N «w u u m w o u w H » 9 U f u i « 4 i w u u u o m w uw o w « w u o w o H h o g g v m g g g g o s g g g N O N « A N 9o g w « w u o w n n « o » o o » w o g o o v w g • < f > o r » m » N 4 J N « a » # N n »0 0 0 * 0 0 0 0 n n » o o o « 9 o o o o o o o o m n n n « n N « > « o # n m N a #• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

H 9 N < r # 4 f * P4 r n V% m « 4 mt m « 4 » 4 m• • • I t 4 1 I I I

0 9 S S ? 9 5 2 2 *2 5 i S 2 9 i S 5 rt 2 5 H2 2 5 0 0 0 n n m m n n n m n m h h m n n h m p ho o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o♦ ♦ ♦ I I ♦ ♦ ♦ ♦ I I ♦ ♦ ♦ I I I • ♦ ♦ ( ♦ ♦ ♦ ♦ ♦ ♦ I I I I I I I I I I I I I I • I I I

W H i UJ U l m I k I I I U i UJ I M I U I M I U I W I M I M I U M U l l i l w W t t i U l i l t t I H I I I W t t U l M i w W I H I U I m ■ | | l Mi W Ml W t t Mi2 2 S t i t 2 9 2 9 « S i $ 9 9 f ^ M ° 9 9 2 2 2 2 0 0 « A « M » # n r N o *»««m + **0 oo o o o r » o o o o m n d o o # N « o o o o o o o o o o | # ^ « « n n p 4 « « o * 4 o r » m o « o mO O O O O O O O O N « O O O N » M n O O N O O O O O O # n O « U N M « « o o n m o r » * * oo o o r » « o o o o o n o o o n o o i ^ o o n o o o o o o « N r * « n « N t » m D « « o N « n e «o w o ^ h o u u o n * 4 O o o N 0 9 « o o ^ o o o o o o v > e m m « M g K « 4 # o o « « > N m i n < n

< • « « « « « • « a A A a a A * * *# • • • • • • • • • • • • • • • • • • « • • • • • • • « • • » • • • •H ' X * * *>i r t H H N P4

! • • • • ! • • I l l

O N O O H H H O O ( * I O O O O O O p 4 H O O H H O O O O W N N N N ^ N N N r t N H H N N N N H Mw o o w o w w u u o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O♦ # ♦ ♦ ♦ ♦ * * # I ♦ ♦ ! ! ♦ ♦ ♦ ♦ ♦ f l l f l l t t l 4 f I f • I I I Iy | | g m i n m | | | ( i i m m i n h i m ^ m m ^ m ^ | U ^ | ^ | | ^ m h i HI i i i ^ HI l U ^ ^ h i u h i Ml W M M Ml Ml U H U U t V f l l U U H W W W W O g H l * ! 0 0 0 4 * 0 0 0 0 0o < r o o h h « o o « u o o o g o « s o o « m + o o o o o W M * f » 0 0 « * 0 n # O A « » N « WO N O O H h N O O # 4 0 0 0 0 0 0 0 0 O O K I O O O O O O O C N f » * > fO n Q O « N N O O 4 ’ W U O W O O # ^ O O M H O O O O O H < f « « 9 N « « N N m i y o O # * A »w « w « « « « g g « o w o w o w v « o o n u o o o o o # h 9> n < 4 i # » a « i o «■ * • • • ■ • * * • • « • • • * > • • • • • • « • • • • • • • • • • • • • • • • • • • • •

h n H # < r « i M n n m NI I I I I I I I I

n O r i r f H O O O O n N M N i f * * N N H N N H I V N ^ N H HO O O O O O O O O O O O O O O O O O O O O O O O O O O

♦ <M <m m m *4

O O O O O O H O O 0 N g o o ^ o Ho o o o o O O O O O O 0 0 0 0 0 0 O♦ ♦ ♦ ♦ ♦ ♦ 1 ♦ ♦ ♦ 1 ♦ ♦ ♦ I ♦ 1 1^ I M I M W i M HI Mi Ml Ml Ul Ml Ml Ml I M «M Ml 41 MlO O O O O O O O O O «> O O O r 4 O O n00 0 w w O <41 O O O O O O O €*O O 0o o o o o O O O O 0 <r 0 0 0 m O O Oo o o o o O H O O O 0 O O O O O O Oo o o o o 0 m O O 0 0 0 O O *4O O *

• • • • • • • • • • • • • • • • • •m *4 *4 H M

n o w h u 0 0 O O 00 N U O H P4 H *4o o o o o 00 O O 0 0 O O O O O O O1 ♦ ♦ 1 ♦ ♦ t ♦ ♦ ♦ ♦ • ♦ • 1 1 1 1

y i h i h i m i i i Ml Ml HI Ml Ml Ml Ml Ml m4 Ml Ml Ml Mlo o o o o O O O O O O O O O O m m OM 0 0 0 0 O O O O O O 000 0 * 0 <M«r 0 0 f* 0 O O O O O O r > 0 0 »4 At <M 111N U O h O O O O O O O M O 0 0 A O Or > o o n w 0 w O O O O O 0 0 p4 ♦ N <r

• • • • • « • • • • • • « • • • • •< " • m i m ■4 **1 IM

v w W w w w w mm W W W W W W W w V v w w w w w w w w| ♦ | I I ♦ ♦ ♦ ♦ I I I I I I I I I | | | | I | I I I — V

H I HI Ml Ml Ml Ml Ml Ml Ml Ml CM M l M l Ml Ml M l M l Ml M l M l Ml Ml M l M l M» Ml Mlo o o r * « o o o o » O N « « > » « n i A M y < 4 « M A « u n G O O P » * H < r W O O O 3« o n # « u o o o n # « n o N « n v > «si o <m <r o « r » m m co o o o o o o o o o # <m « * k o m o < r > So o H ^ s o o o u in o * o *» « v o « > o S

• • • * • • • • • • • • • • • • • • • • • • • • • • • cr** p4 « 4 m # « # n A N n # « 4 O

I I • I l I t * I I «

O N O O H O O g g n N H M N ^ ^ N M N N H M N I t N M No o o o o o o o o O O O O O O O O O o o o o o o o o o •• I ♦ ♦ ! ♦ ♦ ♦ ♦ t • • • I I f I i i l l l l l l l l T Ml Mf Mf Mf I M Ml Mf Ml I I I Ml Ml Ml Ml Ml I I I Ml I M Mf I M I M Ml I M I M *M I M Mf Mf ^o f - o o r \ o o o o t » A M n « N N A # o o M r * n M n N «0 0 0 0 * 4 0 0 0 0 p4 ( B N | A N 4 <0 # iA O O O * *4 O f * O Vo o o o m o o o o « i o r * f* m m r » *4 *# m « M N n N n n N 50 * 4 0 0 0 0 0 0 0 | t O N » N ^ O » « <0 O O O O f * 1*1 O tfl g ,O m O O N O W W W N h O a l M N A ^ M 99

• • • • • • • • • • • • • • • • • • * • • • » • • • • r T«* « ***I • I I I I • • I I I

O N O O O O H l i O O O N N N O O O H A O O P O H O O O N N f 4 « l « 4 N N N N o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o♦ • ♦ ♦ ♦ ♦ I I ♦ ♦ ♦ I • I ♦ ♦ ♦ I ! ♦ ♦ ♦ ♦ » ♦ ♦ ♦ I l l l l l l l l t I « t I I • I I IM i l l Ml Ml I M Ml Ml Ml Ml *41 Ml Ml Ml I M Ml Ml Ml l i t Mf I M Ml Ml I M Ml Ml I M M Ml M Ml Ml I H M t f i M Ml ^ ^ ^ ^ | y ^ ^ h i u jo m o o o o « « o o e a n « o o o « s o o o o n o o o » 40«4o * i o o o o N r » o O M N n ^ n >

g r t O 0 O 0 N N O 00 « m « e o o m o o o o o h o o o o o m o i n o *4 o o O N o O N i n o N oO O O O O M + O O O U A f O O O t N O O O O A O O O A « 0 « A N « M O « « «

0 0 0 0 0 0 * 1 * 1 0 O O M n O O O O m « I O O O O « A O O O 0 0 0 m * « \ 0 * 0o v o o o o o o o o o m o r » o o o < r n o o o o m o o o « N o n M < i t f ) N N• • • • • • • • • • • • • • • • « • • • • • • • • • • - - - - - -

N m m A A h <g o mI • I I I I I I I

7 W W O O O O H O O N I V U N H V O H n o W H O W H O W n N N N M H N N

H O * 4 » 4 « 4 ^ N I

w>*niwivn«rwn r r v w p r v v n v v pirw i«nm n n m (y m a4 N H IW H rv iyo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ♦ ♦ ♦ ♦ ♦ ♦ ♦ • ♦ I « » « + ♦ I + + I l l l l l l l l I l l l l l l l l Ml M Ml MJ Mi Mi IM 1U y| IM Ml Ml IM Ml Ml Ml Ml Ml Ml Ml W HI Ml Ml Ml Ml Ml Ml M IM M Ml Ml Ml Ml IM ||f M M Ml Ml Ml M M Ml 0 0 0 0 0 0 0 * 0 o M m o o < r o o o o o o o o o r » o o H « n o N » # « # OOOUOOOMO O M#O N«O ON OOONOOHOO 0 0 OMi»ininNV«9 OOOOOOOOO 0 0 f - © 0 * 0 0 ~ N O O ^ O O SO O « t « * 0 * 0 0 0 0 0 • 0 « A # f > N # 0 o o o o o o o m o 0 m * 0 + 0 0 Q0 m o o « % o o * o o * 0 ©f*wmoN0 » t N « « n N # n 0 0 0 0 0 0 0 * 1 0 o m o o o o o o m ^ 0 0 4 0 0 0 0 0 o * mni* oof* * H(nN»N or»<HA A A A A A A A A • a a a « a a a a _ - — — _ * — .

# O O U O H O H » « O O N H H O O O O m N N N N H N M M f O N N M N N N H AO O O O O O O Q O o o o o o o o o o O O O O O O O O O O O O O O O O O O• ♦ ♦ ♦ ♦ • ♦ • • ♦ ♦ ! • ! ♦ ♦ ♦ ♦ I l l l l l l l l I l l l l l l l l

M fM fM iM fM IM fM IIM M I IM IM Mi Ml Ml Mf Ml Ml IM Mf Mi Ml Ml Mi Ml Ml Ml ■ M Ml M IM Ml Ml W Ml uH Q O g u m o l t o o o M m o o o o n h t i o ^ o n h « y m f m h m o ^ oo o o o o r » o ^ « m 0 0 0 ^ 0 0 0 0 0 n « » o c m o o o o w o o ov w w w w # « w « t w w o w m w w w u w M f M m n i i w ^ f i M o# u w u u w u « i t g o ^ # v o o u g o m m a < v v o r ^ - f w w ^ N i n n w w w w w w w « f i w 0 N « H 0 w w g M « A N * « 0 ^ H n 9 n « w ^ # n f <1

1-6

CCIFF IC I E M S Cf C*1HC fcECTCIS F C U O m

AUtREkT«TlCk « C K * 1

3 .1 8 3 8 C E -C *

«JC»EI>T4TJCfc V I C I f f !. c o c c c m c c i . : i i i C E - c *

*UCPEMT«TIC*> « C T C ( 3

•tCCCCE*OC .CCCCCE'CC * . 3 8 0 0 t E - C *

M>t»Ei>1«TlCk VECU* *

- 3 . 8 9 I 1 9 E - 0 * - 3 . * t C 5 3 E - C * - 2 . 6 6 C 9 1 E - C 4 t . 0 * 9 6 7 E - 0 7

« u » e n i « t i c > > v tC T C t 5i . c 7 ; « 2 £ - o j i . : i * t 2 E - C 3 * . » ; 9 ? u - c * > i . 9 3 8 3 2 E - c t t . * i « * 7 E - i o

IfcFCHPAlIC* CC»CE*KIt>C FIT CF «ECTO* 1 ^ . J V I C T C * IC (E F i t

i . c . c c o e «oc«.CCCCCE«OC7.00COQE«OC1 . 3 0 C 0 0 E « 0 11.tCCOOE«Cl2.C(>CO0E«01 2 .7 0 C C C E « 0 l l . S O C O O t « O l3 .CCCC0£«01

;.CCCCCE»CC!.C((C C E*O C».CCCCOE»00I.*CCCCE«flli . « ; c c c o t * c j; . i c c c c E * o i1 .1CCC 0£«013 .2C£C0E»C1*.CCCCCt«Oi

1.0000CE«CC7 .00000E «C C1 . 1 0 0 0 0 i « C l1 . 5 0 0 0 0 E « 0 11.70CCCE«C12.20C0CE«C12 .5Q 0 0 0 £ « C 11 . 6 0 0 0 0 E 4 C 1^ .10C0CE«C1

2 .0 0 0 0 0 E * C C3 . o e c o o c « c o1 .2C 000E *C 1l.SCOOOE*Cii . e o o o o t « o i2 . 3 0 0 0 0 E » 0 11 . 2 0 0 0 0 E « C 11 . 7 0 0 0 0 E « C 1* .2 0 0 0 0 E « C 1

l.CCCCOE*CCi.COCOOE«CC1.30COOE«CI13.COCOO£«OC: . c c c o o e « c ii.3GCOOE*Cl2 « (C C 0 0 E * 0 I3.3CCOCE*Cl* .30C00E «C1

3°C0CCCE*008.C0CCCE*CC9.C0CCCE«00 1.60CGCE*<U 2.10CCCE*C1 2 .40CC0E*C1 l .3QCCCt*Cl 3.«OCOCE*Cl 4.4CCCCE*C1

3 . c o o c c t * c e4 . C C 0 0 G E « C 0 l . C O O O C E « C l ) . 7 C O O C E « C X 8 . C C C 0 C E « C 0 l . C C C C C E « 0 1 1 . 4 C 0 0 G E « G 1 3 . 5 0 0 C C E « C 1 4 . S 0 C 0 C E « C 1

4.COOOOE»009.COOOOE*001.100001*016 . 0 0 0 0 0 E » 0 09 .C<!000E«002 . 5 0 0 0 0 E « 0 12.9OOO0E«O13 . e 0 0 0 0 E « 0 14 . 6 0 0 0 0 E * 0 1

5.0CCCCE«CCl.O C C C G E 'C li . 4 c o c c e «c i7.0CCCCE«0C1.9CCCCE«C11.9CCCC£«C13.0CCGCE«01a . 7 c c c c t « o i

C.CCCCCE«CCe . c c c c o E « c cl .ZCCCOt*Cll.CCCCCE«Cl2.2CCCCE«C12.6CCCCE«C13.1CCCCE»C13 . t C C C C F « C l

FOtVIEt COEFFICIENTS.VECTO* 1

*.20<«1E«01 1.8I9C*E«C2 7.13e97E«Cl -1.57672E«C1 t.29t*2E«CC

EMU* SUNS OF SCUMfS *cCTCF 1

3 .ta«00E *04 i.7iC9*E»C3 t.2871t£<C 2 3.80112E»C2 2.93i*9E«02

*CC7 HUH I e u i i s f C I t »»C» 5 1

2*112?0E«01 a.l77««£*OC 2.71«b«E"CC

3. )C OEFF1CIEHTS CF »(CTC» 1

2 . 9 V t t l E - C 2 4 . : 4 ! 3 2 E - C 2 « .3 7 I 2 C E - C 2

[ • - f e lS C R E F A k C I « C U t FC» t E C l t * X

& C

© » i9 . C 9 1 9 2 E - 0 I•««3C41E-017 . 4 3 4 2 9 E - C 1

- i . s a e c A E - 0 2-l.SC 327E«00- 2 .7 * 7 0 6 E » 0 C

2.6T900E-011 .9 1 9 9 3 E « 0 C

• l .Z « C 6 4 E « 0 C

i . c k : i e * cc- 2 . C 6 3 1 2 E - 0 1

1.379C1E»CCt . 3 t * 4 2 E - 0 12 . 2 9 3 t 4 E « 0 C

• l .C 31C C E *00- J . 3 ? ’ 5Sc«OC1 .3 t« lC E « C Ct . 3 U C 3 E - C l

2 . 1 2 7 2 4 E « C 0 l . e t : C 7 E * O C

■ 2 .« 9 0 f c £ - C » 7 .8 2 2 4 3 E -O S

3 . 9 2 2 7 1 E - C 13 .1«S21E «C C3 .C 1367E «C 01.58139E«CC

-7.16697E-C 1- 1 . 0 0 9 1 4 E « 0 0- t . C 3 0 4 2 E - C l

2 .*S1S2E «CC- 3 . 3 5 1 0 5 E - C ]

1 .3 9 2 2 7 E * C 0 S . 1 3 S 9 7 E - 0 1 3.OOOO5E«C0 * .3 0 3 2 3 E > C 1 1 . 7 7 2 0 2 E - C l 3 . 9 M 0 3 E - C 1

-5 .5 8 fc 9 9 E -C l 3 .7 3 9 2 1 E « C 0 1 . 3 8 0 2 7 E - C 1

: . 6 3 C 6 S E - 0 1- 1 . 3 7 M 8 E - C 1

3 .3 4 « S 0 E * 0 C■ 3 . i 5 1 7 2 £ « 0 0<.70C46E«CC

■ 1.2 47«9E*0Ct . e e « 5 3 E - c 29 . 7 3 2 4 1 E - 0 13 > « i ; i l E - 0 1

2 .3 0 e 2 3 £ * C 02 . * e « * 7 E « 0 C

- 1 . 2 7 C 7 « E * 0 0« . 9 9 3 6 4 E - C 16 .C 7 9 « 2 £ - C 1

- 2 . 6 I C 3 2 E - 0 1l . i c e s t E - c i3 . 0 7 3 5 0 E - C 18 . t « 9 C l £ - C l

2 . 3 9 S l f » * 0 02 . C 2 0 3 9 E - C 1

- 3 . 9 8 7 « 8 E - 0 11 » 3 4 2 1 S E « 0 0

• 3 . 1 3 9 3 7 E « C 0• 1 . 8 3 2 7 t E « 0 C

1.1C713E«CC5 . 3 6 2 2 8 E - C 1

■ l .^ + 0 6 1 E « 0 0

2 . 3 5 1 5 0 E * 0 02 . 9 * 1 2 9 E » 0 0

- 9 . 2 C 7 7 6 E - 0 1> 3 . I 7 3 3 7 r * 0 0• 2 .2 0 0 9 7 E » C 01 . 6 0 6 0 1 E - 0 1

■ 9 .6 S M 2 E - 0 19 . 6 3 9 1 « E - 0 1

• 1 .2 0 7 6 2 E * 0 0

2.317CC E»0C3.a2«9C E«CC1.39723E *C C

- Z . Z Q H 3 H C C- 3 . 3 3 ( 1 3 E « 0 0- 5 . 9 7 J t t £ « 0 C

3 .4 4 1 E C E - 0 2l .S 7 8 3 7 E * C C

3 .C t2 t7 E * C C7 . ^ 9 t 7 7 E - C 2

- 5 . « 7 8 ; C E - C 11 .85077E »C C7 . t 0 7 ? ; E - C l

- t . 9 2 1 1 6 E - C l« . l t 2 « t E - C l2 .C9««7E *CC

Figure 1-1. (con tin u ed )

QN FITTING VECTOR 1 t ^ TOTAL SS — > 4.C6060COOE404

EST S S ---- - 4 , C 3 1 2 3 U 3 E « 0 4ERROR SS — > 2*S36887CCE*02 REL ERROR -> 8,98071543E-13

ALL VECTORS FTTsCOVARIANCE MATRIX FOLLOWS

COVARIANCE MATRIX RCW I

1 »40441E—Ot K 2 9 1 8 1 E - 0 6 1.05109E-Ct -2.25898E-09 9.C2803E-13

COVARIANCE MATRIX RCU 2

I*29101E-O6 1.33230E-0'; 1.03324E-C6 -2.19047E-09 6.46180E-13

CCVARIANCE MATRIX RCti 3

1.05109E-06 1.C3324E-06 1.04230E-06 -1.83691E-C9 7.42978E-13

COVARIANCE MATRIX RCW 4

-2*25€98E-09 -2.19C47E-09 -1.83691E-0S 3.99902E-12 -1.647t2E-15

COVARIANCE MATRIX RCW 5

9.C2603E-13 6*4618CE-13 7»42978E-13 -1.64782E-15 7.C6C33E-19

JOB 1 COMPLETED# OET- 4.2227E-04# CONTINUE IF MORE JCIS

Figure 1-1. (co n tin u ed )

Then, the standard deviation is se = 1.8811. Exam ination o f the respective error magnitudes and the stan- ( dard deviation (se) indicates that the model provides an adequate representation o f the data . However,v these error terms do not provide an overall estim ate o f the variability in the estimates due to the highly

correlated nature o f successive values for the cumulative num ber o f transients (item (2) in the list above).

The orthonorm alization com puter program provides o ther inform ation for verifying calculations and for further statistical analysis.

A-2323

1-9

Table B-1. EPRI and other source PWR transient event comparisons

EPRI Data Other Source Data

Event Date Category Title Category Title

Haddam Neck Reactor Year 6 (1/1/73 through 12/31/73)

02-22-73 19 Increase in Feedwater 19 Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Source Event Description

Manual trip on uncontrolled incre.ise in steam generator level due to feedwater con­trol valve failure. Sources list date as 02-02-73.

Haddam Neck Reactor Year 8 (1/1/75 through 12/31/75)

02-01-75 15 Loss or Reduction in 15 Feedwater Flow (1 Loop)

03-26-75 Not Listed 39

Loss or Reduction in Feedwater Flow (1 Loop)

Auto 1 rip—No Tran­sient Condition

During isolation of con­denser waterbox for clean­ing tube sheets, condensate pumps cavitated on low hotwell level. Low feed pumps suction pressure resulted in plant trip.

Packing gland leakage from the letdown system stop valve to the val /e stem leakoff header in the con­tainment in excess of administrative limits caused the plant to be removed from the line. During the manual shutdown of the reactor, a spurious high startup rate signal from the Nuclear Instrumentation System Channel 22 tripped the reactor.

Indian Point 1 Reactor Year 9 ^10/1/70 through 9/30/71)

02-17-71 37 Loss of Power to Necessary Plant Systems

03-14-71 39

05-28-71 40 T

07-02-71

07-09-71

07-10-71

07-12-71

40 T

39

39

40 T

Auto Trip—No Tran­sient Condition

Manual Trip—No Transient Condition

Manual Trip—No Transient Condition

Auto Trip—No Tran­sient Condition

Auto T r i p - N o Tran­sient Condition

Manual Trip—No Transient Condition

40 T Manual Trip—No Transient Condition

40 T Manual Trip—No Transient Condition

39 Auto Trip—No Tran­sient Condition

39 Auto Trip—No Tran­sient Condition

40 T Manual Trip—No Transient Condition

No sources available.

No sources available.

Deliberate shutdown to locate and repair primary to secondary leakage.

Deliberate shutdown to eliminate gland seal leakage to component drain system.

Spurious scram caused by instrument setpoint drift.

Spurious scram caused by instrument setpoint drift.

Scheduled outage for steam generator repairs.

B-4

Table B-t. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Indian Point 1 Reactor Year 9 (10/1/70 through 9/30/71) (continued)

08-11-71 22 Feedwater Flow 33 Instability-Miscellaneous Mechanical Causes

08-11-71

08-18-71 40

CRDM Problems and/or Rod Drop

Manual Trip—No Transient Condition

40

Turbine Trip, Throttle Valve Closure, EHC Problems

CRDM Problems and/or Rod Drop

Manual Trip—No Transient Condition

Source Event Description

Auto Fast Insertion via "Both Superheaters Tripped" initiated by exces­sive differential expansion of turbine during startup.

Blown fuse in No. 4 C.R. control circuit.

Manual scram initiated by operator due to loss of six power channels as a result of a blown fuse.

08-27-71

09-10-71

09-13-71

39

39 T

Auto Trip—No Tran­sient Condition

Auto Trip—No Tran­sient Condition

CRDM Problems and/or Rod Drop

39

40 T

Indian Point 1 Reactor Year 12 (10/1/73 through 9/30/74)

01-19-74 39

01-20-74

01-23-74

33 T

Auto Trip—No Tran- 39 sient Condition

Turbine Trip, Throttle 33 T Valve Closure, EHC Problems

CRDM Problems and/or Rod Drop

Auto Trip—No Tran­sient Condition

Manual Trip—No ' Transient Condition

CRDM Problems and/or Rod Drop

Auto Trip—No Tran­sient Condition

Turbine Trip, Throttle Valve Closure, EHC Problems

CRDM Problems and/or Rod Drop

Spurious scram caused by instrument setpoint drift.

Deliberate shutdown to repair primary coolant pump vent line leak.

Stuck control rod while group being withdrawn.

Spurious scram caused by false indication from the gross gamma monitor.

Turbine overspeed trip test.

Scram occurred due to a defective scram solenoid valve on the No. 12 control rod.

01-28-74 40 T Manual T r ip -No Transient Condition

138 kV feeder grounding troubles. Listed as a manual shutdown.

02-05-74 39 Auto Trip—No Tran­sient Condition

39 Auto Trip—No Tran­sient Condition

Spurious trip of channel 16 fl'ix amplifier while channel 11 was being calibrated.

02-21-74 39 Auto Trip—No Tran- 39 sient Condition

Auto Trip—No Tran­sient Condition

Spurious trip of channel 16 flux amplifier while channel 11 was being calibrated.

03-22-74 39 T Auto Trip—No Tran­sient Condition

Scheduled weekend maintenance. Listed as a manual shutdown.

03-25-74 Not Listed —

05-04-74 39 T Auto Trip—No Tran­sient Condition

34 Generator Trip or Generator Caused Faults

Unit trip due IG lightning arrester lailure on a 138 kV feedei.

Scheduled maintenance. Listed as a manual shutdown.

B-5

Table B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Indian Point 1 Reactor Year 12 (10/1/73 through 9/30/74) (continued)

06-03-74 39 Auto Trip—No Tran- 39

07-07-74 26

Auto Trip—No Tran­sient Condition

Steam Generator i-eakage

Auto Trip—No Tran­sient Condition

Source Event Description

Scram inadvertently initiated while technicians were checking the cause of a scram pulser failure.

Leakage of the No. 5 downcomer on the No. 11 steam generator. Listed as a manual shutdown.

07-16-74

07-19-74

07-28-74

34

22

Generator Trip or Generator Caused Faults

Feedwater Flow Instability— Miscellaneous Mechanical Causes

CRDM Problems and/or Rod Drop

CRDM Problems and/or Rod Drop

Repaired disconnect switch on the generator side of the generator breaker. Listed as a manual shutdown.

Failed rupture disks in the excess makeup system. Listed as a manual shutdown.

Replaced a defective lower limit switch on the No. 20 control rod.

08-09-74 40T Manual Trip—No Transient Condition

Repair leaking pressure con­nection on the main feed-water supply line and overhaul of controllers on aerator level control valves. Listed as a manual shutdown.

08-11-74 22 Feedwater Flow Instability-Miscellaneous Mechanical Causes

Repair aerator regulator controls. Listed as a manual shutdown.

08-13-74

08-14-74

08-22-74

09-02-74

39

39

33

40T

Auto Trip—No Tran­sient Condition

Auto Trip—No Tran­sient Condition

Turbine Trip, Throttle Valve Closure, EHC Problems

Manual Trip—No Transient Condition

39

39

Auto Trip—No Tran­sient Condition

Auto Trip—No Tran­sient Condition

Disturbances on the 13.8 kV system caused flux flow computer scram.

Disturbances on the 13.8 kV system caused flux flow computer scram.

Repair a control oil leak on the main turbine. Listed as a manual shutdown.

Repair leaking tubes on steam generator and feed-water heater. Listed as a manual shutdown.

Indian Point 2 Reactor Year 3 (8/5/75 through 8/4/76)

08-12-75 17 Full or Partial Closure 17 of MSIV (1 Loop)

Full or Partial Closure of MSIV (1 Loop)

Reactor trip due to low level on No. 22 steam generator caused by No. 22 main steam valve closing.

B-6

• ' I

B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Indian Pomt 2 Reactor Year 3 (8/5/75 through 8/4/76) (continued)

08-13-75

08-14-75

08-17-75

08-17-75

08-22-75

08-22-75

08-22-75

08-29-75

09-07-75

09-29-75

10-04-75

10-05-75

10-11-75

10-16-75

10-31-75

11-09-75

17

39

19

19

15

15

15

19

17

34

19

23

Full or Partial Closure 17 of MSIV (1 Loop)

Auto Trip—No Tran- 39 sient Condition

Increase in Feedwater 19 Flow (1 Loop)

Increase in Feedwater 19 Flow (1 Loop)

Loss of RCS Flow — (1 Loop)

Loss of RCS Flow 22 (1 Loop)

Inadvertent Safety Injection Signal

Loss or Reduction in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (i Loop)

Not Listed —

Increase in Feedwater Flow (1 Loop)

15

15

19

19

19

Full or Partial Closure 15 of MSIV (1 Loop)

Generator Trip or 34 Generator Caused Faults

Increase in Feedwater 19 Flow (1 Loop)

Loss of Condensate 15 Pump (1 Loop)

Full or Partial Closure of MSIV (1 Loop)

Auto Trip—No Tran­sient Condition

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Feedwater Flow Instability— Miscellaneous Mechanical Causes

Inadvertent Safety Injection Signal

Loss or Reduction in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Generator Trip or Generator Caused Faults

Increase in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Source Event Description

Reactor trip due to low level on No. 22 steam generator caused by No. 22 main steam valve closing.

Reactor trip due to spurious overpower AT protection signal.

Turbine trip due to high level on No. 21 steam generator.

Reactor trip due to high level on No. 21 steam generator.

Not listed in sources.

Reactor trip due to No. 24 steam generator mismatch.

Reactor trip due to safety injection signal caused by low Tavg and spurious high steam flow signal.

Reactor trip due to No. 21 steam generator low level with steam flow/feedwater flow mismatch.

Reactor tripped due to No. 23 steam generator low level mismatch caused by trip of No. 21 main boiler feed pump.

Reactor tripped due to high level on No. 23 steam generator.

Turbine trip—boiler feed­pump control trouble.

Turbine trip—high level No. 21 steam generator.

Turbine trip—low level on No. 22 steam generator.

Generator trip-fault.

-generator

Unit trip—high level No. 23 steam generator.

Unit tripped due to No. 24 steam generator low-level mismatch.

B-7

Table B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title Category

Indian I'oint 2 Reactor Year 3 (8/5/75 through 8/4/76) (continued)

11-14-75 39 Auto Trip—No Tran­sient Condition

Title Source Event Description

Unit taken off to replace two defective control rod drive mechanism cooling fans. Listed as a manual shutdown.

11-17-75 19 Increase in Feedwater Flow (1 Loop)

11-17-75 19 Increase in Feedwater Flow (1 Loop)

11-17-75 19 Increase in Feedwater Flow (1 Loop)

19 Increase in Feedwater Flow (1 Loop)

11-27-75

11-28-75

23

21

Loss of Condensate Pump (1 Loop)

Feedwater Flow Instability—Operator Error

IS Loss or Reduction in Feedwater Flow (1 Loop)

21 Feedwater Flow Instability—Operator Error

Unit tripped due to high level No. 21 steam generator.

Turbine trip due to high level No. 22 steam generator. Reactor remained critical during outage.

Turbine trip due to high !:vel No. 22 steam generator. Reactor remained critical during outage.

Unit tripped due to No. 24 steam generator mismatch caused by control failure of No. 22 heater drain tank pump level control valve.

Poor feedwater control at low power levels.

11-28-75 21 Feedwater Flow Instability—Operator Error

21 Feedwater Flow Instability—Operator Error

Poor feedwater control at low power levels.

12-13-75 15 Loss or Reduction in 15 Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Unit tripped due to No. 22 S/G low level mismatch.

12-23-75 17 Full or Partial Closure 17 of MSIV (i Loop)

12-23-75 21 Feedwater Flow Instability—Operator Error

21

Full or Partial Closure of MSIV (1 Loop)

Feedwater Flow Instability—Operator Error

Unit tripped—No. 22 S/G low level due to No. 22 main steam isolation valve closing.

Unit tripped due to No. 23 S/G high level.

12-23-75 21 Feedwater Flow Instability—Operator Error

21 Feedwater Flow Instability—Operator Error

Unit tripped on No. 21 S/G high level.

12-27-75 23 Loss of Condensate Pump (1 Loop)

0)-04-76 28 Miscellaneous Leakage in Secondary System

23 Loss of Condensate Pump (1 Loop)

Unit trip due to No. 24 S/G low level caused by No. 22 condensate pump deterioration.

Unit shutdown due to excessive packing leakage from valve 741 in the RHR suction line from Loop 21. Listed as a manual shutdown.

u I-06-76 19 Increase in Feedwater 19 Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Unit trip-No. 21 S/G high level.

B-8

a' •> i

•f"--.ji 7^1-

Table B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title Category

Indian Point 2 Reactor Year 3 (8/5/75 throi-.gh 8/4/76) (continued)

01-26-76 28 Miscellaneous Leakage — in Secondary System

01-26-76 19

01-26-76 19

02-27-76 33

02-28-76

03-09-76

03-10-76

15

19

19

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Turbine Trip, Throttle Valve Closure, EHC Problems

Loss or Reduction in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Increase m Feedwater Flow (1 Loop)

Indian Point 2 Reactor Year 6 (8/5/78 tnrough 8/4/79)

02-15-79 39 Auto Trip—No Tran­sient Condition

19

19

33

15

19

Title

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Turbine Trip, Throttle Valve Closure, EHC Problems

Loss or Reduction in Feedwatei Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

39 Auto Trip—No Tran­sient Condition

Source Event Description

Unit taken off bus due to blown packing on No. 23 S/G F.V/. Regulatory Valve. Listed as a manual shutdown.

Unit trip—No. 21 S/G high level.

Unit trip—No. 24 S/G hii?h level.

Unit trip due to failure of relays in the turbine redun­dant overspeed protection system.

Reactor trip due to No. 24 S/G low level and steam flow/feed flow mismatch.

Unit trip due to high level on No. 24 S/G.

High level on No. 22 S/G. Turbine trip only.

Spurious signal to Rx trip breaker.

02-15-79

02-16-79

02-26-79

02-27-79

02-28-79

03-09-79

03-10-79

04-12-79

04-23-79

28

Not Listed

15

15

19

39

28

17

25

Miscellaneous Leakage in Secondary System

Loss or Reduction in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Auto Trip—No Tran­sient Condition

Miscellaneous Leakage in Secondary System

Full or Partial Closure of MSIV (1 Loop)

Loss of Condenser Vacuum

28

15

15

15

19

39

28

39

25

Miscellaneous Leakage in Secondary System

Loss or Reduction in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Auto Trip—No Tran­sient Condition

Miscellaneous Leakage in Secondary System

Auto Trip—No Tran­sient Condition

Loss of Condenser Vacuum

Main boiler feed pump (MBFP) header nipple leak.

MBFP oil pump.

No. 24 S/G feedwater regulator closed.

No. 24 S/G feedwater regulator closed.

No. 22 high level.

Trip loss of No. 23 instru­ment bus.

MBFP header nipple leak.

Spurious indication of MSIV closure.

Malfunction of condenser steam du'np system.

8-9

Table B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title

12-27-75

12-29-75

12-30-75

12-31-75

01-01-76

01-03-76

01-31-76

23

15

33

33

15

33

Category Title

Millstone 2 Reactor Year 1 (12/26/75 through 12/25/76)

Loss of Condensate 23 Pump (1 Loop)

Loss or Reduction in 15 Feedwater Flow (1 Loop)

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Turbine Trip, Throttle 33 Valve Closure, EHC Pioblems

Loss or Reduction in — Feedwater Flow (1 Loop)

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Loss of Condensate Pump (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Turbine Trip, Throttle Valve Closure, EKC Problems

Turbine Trip, Throttle Valve Closure, EHC Problems

Turbine Trip, Throttle Valve Closure, EHC Problems

Turbine Trip, Throttle Valve Closure, EHC Problems

Source Event Description

Loss of condensate pump, trip on low S/G level.

Low steam generator level.

Turbine control valve spurious closure.

Spurious turbine trip from turbine EHC system.

Spudous turbine trip from turbine EHC system.

Not listed in source.

Unanticipated turbine con­trol valve transient during test.

02-12-76 39 Auto Trip—No Tran­sient Condition

33 Turbine Trip, Throttle Valve Closure, EHC Problems

Turbine trip/reactor trip due to Unit 1 electrical transient.

02-17-76

02-26-76

03-13-76

03-14-76

03-14-76

03-23-76

1 T

15

37 T

33

Loss of RCS Flow 1 T (1 Loop)

CRDM Problems 3 and/or Rod Drop

Loss of RCS Flow 1 T (1 Loop)

Loss or Reduction in 15 Feedwater Flow (1 Loop)

Loss of Powei to 37 T Necessary Plant Systems

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Loss of RCS Flow (1 Loop)

CRDM Problems and/or Rod Drop

Loss of RCS Flow (1 Loop)

Loss or Reduction in Feedwater Flow (1 Loop)

Loss of Power to Necessary Plant Systems

Turbine Trip, Throttle Valve Closure, EHC Problems

Partial loss of flow trip test.

Manual trip due to dropped rod.

Loss of flow trip test from 40%.

Low S/G level—loss of a feed pump.

Loss of normal power trip test.

Failure of turbine intercept step valve during test.

04-09-76 34 T Generator Trip or Generator Caused Faults

34 T Generator Trip or Generator Caused Faults

Genera:or trip test.

(M-13-76 33 Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Turbine Trip, Throttle Valve Closure, EHC Problems

TurDine EHC system noise.

04-23-76 40 Manual Trip—No Transient Condition

39 Auto Trip—No Tran­sient Condition

Operator error during RPS calibration.

B-10

SSL 11

Table B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Millstone 2 Reactor Year I (12/26/75 through 12/25/76) (continued)

05-01-76 39

05-04-76 30

05-10-76 3P

05-24-76 40

05-25-76

06-03-76

06-07-76

06-08-76

06-10-76

06-19-76

06-21-76

OV-05-76

07-21-76

33

33

33

19

37

08-10-96 35

08-13-76 33

08-24-76 33

Auto Trip—No Tran- 39 sient Condition

Loss of Circulating Water

Loss of Power to Necessary Plant Systems

Loss of all Offsite Power

30

Auto Trip—No Tran- 39 sient Condition

Manual Trip—No 39 Transient Condition

CRDM Problems 3 and/or Rod Drop

CRDM Problems 3 and/or Rod Drop

CRDM Problems 3 and/or Rod Drop

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

CRDM Problems 3 and/or Rod Drop

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Increase in Feedwater 19 Flow (1 Loop)

37

35

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Auto Trip—No Tran­sient Condition

Loss of Circulating Water

Auto Trip—No Tran­sient Condition

Auto Trip—No Tran­sient Condition

CRDM Problems and/or Rod Drop

CRDM Problems and/or Rod Drop

CRDM Problems and/or Rod Drop

Turbine Trip, Thiottle Valve Closure, EHC Problems

Turbine Trip, Throttle Valve Closure, EHC Problems

CRDM Problems and/or Rod Drop

Turbine Trip, Throttle Valve Closure, EHC Problems

Increase in Feedwater Flow (1 Loop)

Loss of Power to Necessary Plant System

Loss of all Offsite Power

Turbine Trip, Throttle Valve Closure, EHC Problems

Turbine Trip, Throttle Valve Closure, EHC Problems

Source Event Description

Spurious noise in RPS from RCP surge capacitor.

Loss of circulating water pumps, loss of vacuum.

Trip due to spurious RPS noises.

Trip during RPS surveillance due to incom­plete procedure. Listed as an automatic scram.

Dropped rod.

Dropped control element assembly (CEA).

Dropped CEA.

Spurious turbine runback signal resulted in a plant trip.

Spurious turbine runback signal resulted in a plant trip.

Dropped CEA.

Spurious turbine runback signal resulted in a plant trip.

Decreasing power to repair No. 2 feed reg valve; tripped on high S/G level at 12% thermal power.

Load shed due to a previously laised und'.-r-voltage setting resulting in a loss of normal power and reactor trip.

Loss of switchyard due to hurricane.

Turbine transient due to initial pressure limit setting caused reactor trip.

Inadvertent turbine trip caused by intercept valve closure during maintenance.

B-11

3 I* il i' r l i li iMj

Table B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title Category

09-19-76 33

09-21-76 30

10-22-76 38

Turbine Trip, Throttle Valve Closure, EHC Problems

33

Loss of Circulating Water

30

Spurious Trips-Unknown

-Cause 39

Title

Millstone 2 Reactor Year 1 (12/26/75 through 12/25/76) (continued)

Turbine Trip, Throttle Valve Closure, EHC Problems

Loss of Circulating Water

Auto Trip—No Tran­sient Condition

Source Event Description

Switching load from NSST 6 RSST for maintenance on NSST resulted in loss of buses 24A and 24C due to faulty timer which caused both NSST and RSST breakers to open. Resulting loss of power to EAC lead to reactor trip.

Instrumentation preventative maintenance adjustment of condensate pump pit sump level setpoints inadvertently opened the circulating water pump trip relay due to an unknown ground in the cir­cuit. All circulating water pumps tripped and the reac­tor was manually tripped.

Spurious RPS noise, high power trip channels A and C.

10-27-76

11-17-76

30

15

Loss of Circulating 30 Water

Loss or Reduction in 15 Feedwater Flow (1 Loop)

Loss of Circulating Water

Loss or Reduction in Feedwater Flow (1 Loop)

Loss of circulating water.

Commenced reducing power to plug condenser tube leaks; reactor tripped on S/G level.

11-17-76

12-03-76

15

25

12-07-76

12-08-76

34

21

Loss or Reduction in 15 Feedwater Flow (I Loop)

Loss of Condenser 25 Vacuum

Generator Trip or 34 Generator Caused Faults

Feedwater Flow 21 Instability—Operator Error

Loss or Reduction in Feedwater Flow (1 Loop)

Loss of Condenser Vacuum

Generator Trip or Generator Caused Faults

Feedwater Flow Instability—Operator Error

Returning to 100% rated thermal power following trip, reactor tripped on S/G level at approximately 10% power.

Condensate surge tank level controller instrumentation frozen resulting in surge tank going dry and loss of vacuum; unit manually tripped.

Ground fault on lightning arrester on main transformer; generator trip resulting in reactor trip.

Low stesm generator level trip at 16% power while recovering from generator trip.

Millstone 2 Reactor Year 4 (12/26/78 through 12/25/79)

03-10-79 Not Listed — 40 T Manual Trip—No Transient Condition

Power was reduced from 93 to 8% and the reactor was manually tripped for an in core detector response test.

B-12

Table B-1. (continued)

EPRI Data Other "iiource Data

Event Date Category Title Category

Millstone 2 Reactor Year 4 (12/26/78 through 12/25/79) (continued)

05-22-79 33 T Turbine Trip, Throttle 33 T Valve Closure, EHC Problems

Title

Turbine Trip, Throttle Valve Closure, EHC Problems

Source Event Description

Turbine overspeed trip test.

Robinson 2 Reactor Year 3 (3/7/73 through 3/6/74)

05-16-73 Not Listed — 33 Turbine Trip, Throttle Valve Closure, EHC Problems

Turbine electiohydraulic control placed in auto with governor tracking meter not zeroed.

05-16-73 23 Loss of Condensate Pump (1 Loop)

23 Loss of Condensate Pump (1 Loop)

High condensate temperature tripped conden­sate pump during turbine load test.

05-17-73 34 Generator Trip or Generator Caused Faults

37 Loss of Power to Necessar>' Plant Systems

4 kV circuit breaker tap set-points improper; reactor tripped while switching aux­iliary power to auxiliary transformer.

05-17-73 34 Generator Trip or Generator Caused Faults

37 Loss of Power to Necessary Plant Systems

4 kV circuit breaker tap set-points improper; reactor tripped while switching aux­iliary power to auxiliary transformer.

05-17-73 34 Generator Trip or Generator Caused Faults

37 Loss of Power to Necessary Plant Systems

4 kV circuit breaker tap set-points improper; reactor tripped while switching aux­iliary power to auxiliary transformer.

05-22-73

05-27-73

33

40

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Manual Trip—No Transient Conditio!

39

Turbine Trip, Throttle Valve Closure, EHC Problems

Auto Trip—No Tran­sient Condition

Low hydraulic oil pressure caused turbine trip.

Operator error while work­ing with nuclear instrumentation.

05-27-73

05-27-73

05-27-73

06-20-73

06-20-73

39

33

15

39

Auto Trip—No Tran- 39 sient Condition

Turbine Trip, Throttle 39 Valve Closure, EHC Problems

Loss or Reduction in 39 Feedwater Flow (1 Loop)

High Pressurizer — Pressure

Auto Trip—No Tran- 33 sient Condition

Auto Trip—No Tran­sient Condition

Auto Trip—No Tran • sient Condition

Auto Trip—No Tran­sient Condition

Turbine Trip, Throttle Valve Closure, EHC Problems

Voltage transient while shifting instrument bus to emergency power supply.

Voltage transient on instru­ment bus while starting feedwater pump.

Voltage transient on instru­ment bus while starting feedwater pump.

Not listed in sources.

Turbine tripped from test signal and defective relay.

B-13

Table B-1. (continued)

EPRI Data Other Source Data

Event Date Category Title Category

Robinson 2 Reactor Year 3 (3/7/73 through 3/6/74) (continued)

06-20-73

07-01-73

07-02-73

15

15

15

Loss or Reduction in 39 Feedwater Flow (1 Loop)

Loss or Reduction in — Feedwater Flow (1 Loop)

Loss or Reduction in 15 Feedwater Flow (1 Loop)

Title

Auto Trip—No Tran­sient Condition

Loss or Reduction in Feedwater Flow (1 Loop)

Source Event Description

Voltage transient on instru­ment bus while starting feedwater pump.

Turbine balanced. Listed as a manual shutdown.

Steam generator low level; steam flow/feed flow mismatch due to rolling tur­bine too fast.

07-21-73 33 Turbine Trip, Throttle 33 Valve Closure, EHC Problems

Turbine Trip, Throttle Valve Closure, EHC Problems

Turbine trip.

07-23-73

07-23-73 15

08-25-73 21

08-26-73 21

C8-26-73 15

Low Pressurizer Pressure

Loss or Reduction in Feedwater Flow (1 Loop)

Feedwater Flow Instability—Operator Error

Feedwater Flow Instability—Operator Error

Loss or Reduction in Feedwater Flow (1 Loop)

Low Pressurizer Pressure

39

39

15

Auto Trip—No Tran­sient Condition

Auto Trip—No Tran-srient Condition

Loss or Reduction in Feedwater Flow (1 Loop)

Pressurizer low pressure trip due to valve lifting and injecting auxiliary spray into pressurizer.

Not listed in sources.

High steam flow—low Tave/steamline pressure trip due to incorrect setpoints.

High steam fiow—low Tavg/steam line pressure trip due to incorrect setpoints.

RV-1 stuck open, feedwater block valve would not open. Low SG level with steam flow/feed flow mismatch.

09-09-73 Not Listed 34 Generator Trip or Generator Caused Faults

Blown fuse in generator metering circuitry caused erratic indication.

12-03-73 15 Loss or Reduction in Feedwater Flow (1 Loop)

15 Loss or Reduction in Feedwater Flow (1 Loop)

Low level in steam generator coincident with steam flow/feed flow mismatch.

01-09-74

01-09-74

01-09-74

01-2(V74

19

19

19

Increase in Feedwater 19 Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater 19 Flow (1 Loop)

Loss of RCS Flow — (1 Loop)

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater F'ow (1 Loop)

Increase in Feedwater Flow (1 Loop)

High steam generator level while increasing load after weekly turbine valve test.

High steam generator while recovering from previous trip.

High steam generator while recovering from previous trip.

Electrical and secondary system repairs. Listed as a scheduled, manual shutdown.

B-14

Table B-1. (continued)

EPRI Data

Event Date Category Title Category

Robinson 2 Reactor Year 3 (3/7/73 throt;,;h 3/6/74) (continued)

01-25-74 34 Generator Trip or 34 Generator Caused Faults

Other Source Data

Title

Generator Trip or Generator Caused Faults

Source Event Description

Turbine trip caused by voltage regulator failure. Daie listed as 01-26-74 in

02-23-74

02-24-74

39

39

Auto Trip—No Tran- 12 sient Condition

Auto Trip—No Tran- 39 sient Condition

02-24-74 Not Listed —

Robinson 2 Reactor Year 8 (3/7/78 through 3/6/79)

04-20-78 33 T

04-24-78 33

04-25-78 Not Listed

07-10-78

07-10-78

07-31-78

08-01-78

33

39

19 Increase in Feedwater Flow (1 Loop)

40 T

Turbine Trip, Throttle — Valve Closure, EHC Problems

Turbine Trip, Throttle 33 Valve Closure, EHC Problems

— 17

Turbine Trip, Throttle Valve Closure, EHC Problems

Autc Trip—No Tran­sient Condition

Loss of RCS Flow (1 Loop)

19

Pressure/Temperature/ Power Imbalance—Rod Position Error

Auto Trip—No Tran­sient Condition

Manual Trip—No Transient Condition

Tuibine Trip, Throttle Valve Closure, EHC Problems

Full or Partial Closure of MSIV (1 Loop)

High Pressurizer Pressure

Loss of RCS Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

While shutting down for maintenance, received inter­mediate range trip cause by power in top of core.

When returning to power received steam flow/feed flow mismatch when main steam isolation valve was opened.

Manually tripped to verify Control Rod E-11 bottom bistable operation.

Not listed in source. Occur­red during a refuel­ing/maintenance outage.

Excessive vibration in tur­bine bearings No. 4 and No. 5.

" C " MSIV solenoid coil failed causing valve to drift partially shut.

PZR high pressure trip and turbine stop valve did not close.

Not listed in source.

4160 bus 4 P.T. panel cover opened causing loss of Rx coolant pump.

Loose screw in S.G. level circuitry caused high level alarm which caused the FWRV to go full open.

10-16-78

01-06-79

01-07-79

02-06-79

15

19

19

9

Loss or Reduction in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Inadvertent Safety Injection Signal

15

19

19

9

Loss or Reduction in Feedwater Flow (I Loop)

Increase in Feedwater Flow (1 Loop)

Increase in Feedwater Flow (1 Loop)

Inadvertent Safety injection Signal

" C " feedwater regulator valve failed closed—low S/G level.

" C " steam generator high level.

" B " steam generator high level.

Reactor trip due lo Safety Injection Hi Containment Pressure indication Iransmil ter bumped by construction worker.

02-21-79 40 Manual Trip—No Transient Condition

39 Auto Trip—No Tran­sient Condition

Reactor trip while perform­ing test on S.G. controls. Listed as an automatic scram.

B-15

Table B-2. EPRI and other source BWR transient event comparisons

EPRI Data Other Source Data

Event Date

Browns Ferry

03-22-75

Category Title Category Title

2 Reactor Year 1 (3/1/75 through 2/29/76)

36 Manual Scram-No 34 Out-of-Tolerance Condition

Browns Ferry 2 Reactor Year 5 (3/1/79 through 2/29/80)

03-18-79 10

03-25-79

04-27-79

05-26-79

05-28-79

05-29-79

05-30-79

06-23-79

07-29-79

08-12-79

08-31-79

09-17-79

10-29-79

10

36 T

28

26

25

3 T

36 T

36 T

36 T

35

Pressure Regulator 10 Fails Closed

Pressure Regulator 10 Fails Closed

Manual Scram—No — Out-of-Tolerani e Condition

High Flux Due to Rod — Withdrawal at Startup

High Feedwater Flow — During Startup or Shutdown

Low Feedwater Flow — During Startup or Shutdown

Inadvertent Closure of — One MSIV (Rest Open)

Turbine Trip 3

Manual Scram—No — Out-of-Tolerance Condition

Manual Scram—No 36 Out-of-Tolerance Condition

Manual Scram—No 36 Out-of-ToIerance Condition

Main Steam Isolation 5 Valve Closure

Spurious Trip Via 35 Instrumentation, RPS Fault

Scram due to Plant Occurrences

Pressure Regulator Fails Closed

Pressure Regulator Fails Closed

TUibine Trip

Manual Scram—No Out-of-Tolerance Condition

Manual Scram—No Out-of-Tolerance Condition

Main Steam Isolation Valve Closure

Spurious Trip Via Instrumentation, RPS Fault

Source Event Description

Cable tray fire during penetration leak test.

APRM high flux due to pressure regulator problems.

APRM high flux due to pressure regulator problems.

Listed as a manual shut­down for refueling.

Not listed in sources; unit shutdown for refueling.

Not listed in sources; unit shutdown for refueling.

Not listed in sources; unit shutdown for refueling.

Not listed in sources; unit shutdown for refueling.

Reactor scrammed on tur­bine stop valve closure due to an EHC trip during surveillance.

Listed as a manual shut­down to repair an EHC oil leak.

Reactor scram to repair an electrohydraulic cooling system oil leak.

Reactor scram to repair an electrohydraulic cooling system oil leak.

Personnel error during per­formance of Rx Low-Low Water Level SI caused MSIV closure.

Reactor s^ram due to tur­bine tf-.-i on load rejection from accidental grounding of the sudden pressure trip circuit.

B-16

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Browns Ferry 2 Reactor Year 5 (3/1/79 through 2/29/80) (continued)

11-21-79 5

11-29-79

12-02-79

12-17-79

02-10-80

13

12-13-79 34

36 T

37

02-12-80 37

02-15-80 37

Main Steam Isolation 5 Valve Closure

TurbinR Bypass or 10 Control Valves Cause Increased Pressure (Closed)

Pressure Regulator 13 Fails Open

Scram Due to Plant 34 Occurrences

Manual Scram—No Out-of-Tolerance Condition

Cause Unknown

Cause Unknown

Cause Unknown

36 T

35

35

35

Main Steam Isolation Valve Closure

Pressure Regulator Fails v-'losed

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Scram Due to Plant Occurrences

Manual Scram—No Out-of-Tolerance Condition

Spurious Trip Via Instrumentation, RPS Fault

Spurious Trip Via nstruraentation, RPS Fault

Spurious Trip Via Instrum.entation, RPS Fault

Source Event Description

Personnel error during perfor­mance of Rx Low-Low Water Level SI caused MSIV closure.

Main steam pressure regulator malfunction caused high neutron flux.

Suspected E H C pressure regulator printed circuit board problems caused abrupt move­ment of the turbine control valves, turbine trip, and high neutron flux scram.

Manual scram for mainte­nance to " A " recirculation pump and FCV-1-5.

Post modifications to the Primary Containment Isola­tion System.

RPS channel trip.

RPS channel trip.

RPS channel trip.

Brunswick 1 Reactor Year 1 (3/18/77 through 3/17/78)

03-18-77 24 Feedwater—Low Flow 10

04-01-77

04-06-77

04-27-77

1 T

35

36

Electric Load Rejection 1 T

Spurious Trip Via Instrumentation, RPS Fault

Manual Scram—No Out-of-Tolerance Condition

14

Pressure Regulator Fails Closed

Electric Load Rejection

Recirculation Control Failure—Increasing Flow

Turbine Trip

During startup testing of Rx Pressure Regulator at 95% power, APRM high flux level caused the Rx to scram.

Reactor scrammed during load reject test at full power.

Control operator reset recirc. pump runback too quick caus­ing FW flow and flux spikes causing the Rx to scram on Rx high flux level.

Rx scram caused by turbine trip due to ground in the main g e n e r a t o r .

B-17

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Brunswick 1 Reactor Year 1 (3/18/77 through 3/17/78) (continued)

07-04-77 5

07-28-77 15

09-16-77 23

09-30-77 15 T

11-13-77 3

11-22-77 15

11-22-77 14

12-21-77

01-13-78

19

35

02-04-78 25

Main Steam Isolation Valve Closure

Recirculation Control Failure—Decreasing Flow

35

Trip of One Feedwater 23 Pump (or Condensate Pump)

Recirculation Control 5 T Failure—Decreasing Flow

Turbine Trip 35

Recirculation Control — Failure—Decreasing Flow

Recirculation Control — Failure—Increasing Flow

12-16-77 Not Listed —

Recirculation Pump Seizure

Spurious Trip Via Instrumentation, RPS Fault

24

25

Spurious Trip Via Instrumentation, RPS Fault

Trip of One Feedwater Pump (or Condensate Pump)

Main Steam Isolation Valve Closure

Spurious Trip Via Instrumentation, RPS Fault

Turbine Trip

Feedwater—Low Flow

Low Feedwater Flow During Startup or Shutdown

Low Feedwater Flow During Startup or Shutdown

25 Low Feedwater Flow During Startup or Shutdown

Source Event Description

Not listed in source. Occurred during an outage.

Operator error while per­forming surveillance testing on primary containment isolation system steam line area high temperature.

Operator error caused con­densate booster pump low suction and a Rx scram on Rx low water level.

Startup test closure of MSlVs at full power caused the Rx scram.

Rx scram while performing Rx Protection Instrument test on Rx high pressure trip and Group 1 isolation.

Not listed in source. Occurred during an outage.

Not listed in source. Occurred during an outage.

During the ECCS Test, power was lost to the Unit 1 EHC causing a reac­tor scram.

Operator was reducing power with recirculating pumps. Reactor low water level and Group 1 isolation caused scram.

Reactor scrammed on reac­tor lov/ water level due to IB reactor feedwater's failure to respond to reactor auto level signal. Level decreased to the scram set-point. The scram occurred during normal reactor shut­down to repair a condenser hotwell drain tank leak and recalibrate a steam tunnel temperature switch.

Power being reduced for normal shutdown to clean condenser. The reactor scrammed on vessel low water level caused by reac­tor feedpump " B " not con-troUing vessel water level.

B-18

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Brunswick 1 Reactor Year 1 (3/18/77 through 3/17/78) (continued)

Cii-13-78 1 Electric Load Rejection 1 Electric Load Rejection

03-13-78 Main Steam Isolation Valve Closure

35 Spurious Trip Via Instrumentation, RPS Fault

01-05-78 37 Cause Unknown

01-07-78 37 Cause Unknown

Brunswick 1 Reactor Year 3 (3/18/79 through 3/17/80)

04-12-79

04-14-79

04-17-79

35

11

27

Spurious Trip Via Instrumentation, RPS Fault

Inadvertent Opening of a Safety/Relief Valve (Stuck)

Rod Withdrawal at Power

13

05-01-79 33 Inadvertent Startup of HPCl/HPCS

14

Turbine Bypass or Control Valves Cause Increase Pressure (Closed)

Recirculation Control Failure—Increasing Flow

07-18-79 Not Listed — 18

07-28-79 Inadvertent Closure of One MSIV (Rest Open)

35

Abnormal Startup of Idle Recirculation Pump

Spurious Trip Via Instrumentation, RPS Fault

Source Event Description

At approximately 87% power, a fault occurred on 230 kV Bus B caused by actuation of a generator primary breaker failure aux­iliary relay.

No date given in source but it comments that a shut­down was caused by a spurious signal fiom a steamline leak detector.

Not listed in source.

Not listed in source.

Not listed in sources, occurred during a refueling outage.

Not listed in sources, occurred during a refueling outage.

The reactor scrammed on high pressure due to a tur­bine runback. A wiring error was found in the stator cooling low flow run-back circuit which was in­stalled as a plant modifica­tion duiing the outage.

Reactor scrammed on an indicated APRM upscale/ thermal trip. Thermal trip signal initiated by flow com­parator problems caused by wetting of recirculating flow transmitters in north core spray room.

Reactor scrammed on high APRM flow biased signal. The high signal was caused while placing the 'B' recir­culating loop in service following a trip of the 'B ' recirculating pump M-G set.

Reactoi scram while valving in remote shatdown instru­mentation. Instrument low side isolation root valve opened as part of normal procedure for placing instru­ment in service. When valve was opened, sensitive instru­ments on same reference leg connected to reactor scrammed reactor on a false low level signal.

B-19

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Brunswick 1 Reactor Year 3 (3/18/79 through 3/17/80) (continued)

08-04-79 12

08-09-79 37

08-19-79 24

Turbine Bypass Fails 13 Open

Cause Unknown 13

Feedwater—Low Flow 24

Turbine Bypass or Control Valves Cause Increase Pressure (Closed)

Turbine Bypass or Control Valves Cause Increase Pressure (Closed)

Feedwater—Low Flow

Source Event Description

Reactor scram caused by turbine control valve failing shut, causing pressure and APRM increase.

Reactor scram caused by turbine control valve failing shut, causing pressure spike and APRM increase.

Reactor scram occurred when a technician placed a level instrument in service following maintenance on the instrument.

09-08-79 35

10-08-79 15

10-19-79 30

Spurious i'rip Via 36 Instrumentation, RPS Fault

Recirculation Control 24 Failure—Decreasing Flow

Detected Fault in Reac- 34 tor Protection System

Manual Scram—No Out-of-Tolerance Condition

Feedwater—Low Flow

Scram due to Plant Occurrences

Unit was separated from grid for pipe hydraulic snubber inspection in the primary containment.

The reactor jcrammed because of a low water level caused by reduction of feed flow. The steam flow signal to the feed control system was lost, causing the feed pumps to run back.

Reactor scram on main steam line high radiation signal Channels A and B. The radiation source was identified as an increase in nitrogen-16 carryover from the reactor water caused by an injection of filler demineralizer resin into the reactor vessel during return of the Reactor Water Cleanup System (RWCS) to service following maintenance.

11-05-79 24 Feedwater—Low Flow 24 Feedwater—Low Flow Reactor scrammed because of reactor low level apparently caused by a run-back of master feedwater flow controller.

11-14-79 30 Detected Fault in Reac- 31 tor Protection System

Loss of Offsite Power Reactor scrammed as a result of loss of power to emergency buses El and E2. Sources list date as 11-20-79.

12-01-79 36 Manual Scram—No 36 Out-of-Tolerance Condition

Manual Scram—No Out-of-Tolerance Condition

The unit was separated from grid due to high drywell leakage from reactor recir­culation suction and discharge valve leakoffs.

B-20

CJ —,.,..«r..,.t'i.

O.

Tabie B-2. (continued) -ji

EPRI Data Other Source Data

Event Date Category Title Category Title

Brun.swick I Reactor Year 3 (3/18/79 through 3/17/80) (continued)

12-12-79 Not Listed — 36 T Manual Scram—No Out-of-Tolerance Condition

Source Event Description

The unit was separated from the grid to perform a plant modification to the safety/ relief valves and a scheduled pipe snubber inspection.

llMinswick 2 Reactor Year I (11/3/75 through 11/2/76)

11-09-75 3 Turbine Trip 3 Turbine Trip During periodic turbine con­trol valve intermediate stop valve test, turbine high-vibration was received, caus­ing master trip and reactor scram.

11-15-75

11-23-75

12-27-75

35

3

3

Spurious Trip Via Instrumentation, RPS Fault

Turbine Trip

Turbine Trip

35

3

35

Spurious Trip Via Instrumentation, RPS Fault

Turbine Trip

Spurious Trip Via Instrumentation, RPS Fault

During periodic reactor high pressure trip test chan­nel "A" was in test which gave a half-scram. While removing a test rig, S wrench contacted pressure switch which gave Channel "D" full scram, resulting in full scram.

Turbine high vibration.

During Reactor Low Water Level periodic test, a techni­cian operated the wrong

01-19-76 34 Scram Due to Plant 34 Occurrences

Scram Due to Plant Occurrences

02-03-76

02-04-76

24

35

Feedwater—Low Flow 24

Spurious Trip Via 35 Instrumentation, RPS Fault

Feedwater—Low Flow

Spurious Trip Via Instrumentation, RPS Fault

valve on level transmitted. Test requires a half-scram and the erroneous valve operation caused a full reac­tor scram on high level.

A rapid increase was detected by the Stack Offgas Radiation Monitor, followed by an explosion in the stack-house. Cause was determined to be a faulty loop seal. Sources list date as 01-10-76.

Reactor scram on low reac­tor water level. False instru­ment reading was deter­mined as the cause.

Wiring changes were being made to Distribution Panel 2AHC4. During the operation a cable became disconnected in error from Breaker No. 6 which sup­plies power to Panel No. 603. This resulted in a reactor scram.

t ' ; I

B-21

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Brunswick 2 Reactor Year 1 (11/3/75 through 11/2/76) (continued)

02-05-76 25 Low Feedwater Flow 25 During Startup or Shutdown

02-05-76 26

02-07-76 3

02-10-76 5 T

02-18-76 17

03-02-76

03-14-76

05-27-76

06-20-76

06-21-76

25

07-03-76 3 T

07-11-76 34

High Feedwater Flow 26 During Startup or Shutdown

Turbine Trip 35

Main Steam Isolation 5 T Valve Closure

Trip of All Recircula- 20 tion Pump

Spurious Trip Via 35 Instrumentation, RPS Fault

Low Feedwater Flow 25 During Startup or Shutdown

Electric Load Rejection 3

Low Feedwater Flow During Startup or Shutdown

High Feedwater Flow During Startup or Shutdown

Spurious Trip Via Instrumentation, RPS Fault

Main Steam Isolation Valve Closure

Feedwater—Increasing Flow at Power

Spurious Trip Via Instrumentation, RPS Fault

Low Feedwater Flov/ During Startup or Shutdown

Turbine Trip

Source Event Description

Reactor scram on low reac­tor water level. Level recorder was hanging at normal reactor water level. Operator was unaware of this situation.

Reactor scram during startup due to APRM B&C upscale. Adjustments were being made to feedwater level.

During Reactor Low Water Level No. periodic test, a field technician erroneously valved out 2B21-N017 which caused reactor scram.

Reactor scram on main steam isolation valve closure test.

Blown control fuse in con­trol logic of discharge valves caused feedwater transients, resulting in IRM Range and Reactor scram.

Maintenance Contractor was scrubbin' floors when machine jarred instrument rack containing instruments 2-B21-N023 A and B, resulting in reactor scram on high reactor pressure.

Reactor scram on low reac­tor water level during manual shutdown.

Reactor scram on control valve fast closure trip.

Electric Load Rejection

Electric Load Rejection

Turbine Trip

Scram Due to Plant Occurrences

3

3

3T

34

Turbine Trip

Turbine Trip

Turbine Trip

Scram Due to Plant Occurrences

Reactor scram during tur­bine trip test.

Reactor scram due to l&C error while performing PT 3.1.5. Valve was not valved out causing surge on turbine trip instrument cans ing scram.

Turbine trip test.

High drywell leakage through drywell floor drains.

B-22

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Brunswick 2 Reactor Year 1 (11/3/75 through 11/2/76) (continued)

07-15-76 II Inadvertent Opening of 11 a Safety/Relief Valve (Stuck)

07-28-76 23

08-21-76

08-24-76

09-02-76

09-09-76

10-16-76

11-02-76

11-02-76

31

35

36 T

25

Trip of One Feedwater 23 Pump (or Condensate Pump)

Electric Load Rejection 35

Loss of Normal Con­denser Vacuum

Loss of Offsite Power 31

Spurious Trip Via Instrumentation, RPS Fault

Manual Scram—No Out-of-Tolerance Condition

Low Feedwater Flow During Startup or Shutdown

Main Steam Isolation Valve Closure

35

36 T

Brunswick 2 Reactor Year 4 (11/3/78 through 11/2/79)

11-06-78 34 Scram Due to Plant 1 Occurrences

Inadvertent Opening of a Safety/Relief Valve (Stuck)

Trip of One Feedwater Pump (or Condensate Pump)

Spurious Trip Via Instrumentation, RPS Fault

Loss of Normal Con­denser Vacuum

Loss of Offsite Power

Spurious Trip Via Instrumentation, RPS Fault

Manual Scram—No Out-of-Tolerance Condition

Main Steam Isolation Valve Closure

Electric Load Rejection

Source Event Description

Safety relief valve F0131C lifted due to steam, cuts in actuator pilot causing low reactor pressure and reactor scram.

An exit valve from conden­sate deep bed demineralizer failed to open causing booster pumps to trip and giving a low reactor water level scram.

One RPS channel was tripped for test. Second channel was tripped due to error in procedure and scram resulted.

While cleaning duplex strainer on the lube water system for the circ. water pumps a dip in pressure occurred causing a loss of lube water. Circ. pumps tripped, condenser vacuum was lost and reactor scrammed.

Lost E4 bus which caused loss of RPS and UPS. Reac­tor scram resulted.

Rx scram due to spurious spike on MSL high radia­tion monitor.

Performed containment leakage test.

Not listed in sources.

High steam line flow due to closure of RIP valve by maintenance.

Severe system instability on 230 kV transmission line caused a generator lockout on loss of excitation resulting in a turbine trip and a reactor scram.

B-23

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Brunswick 2 Reactor Year 4 (11/3/78 through 11/2/79) (continued)

11-30-78 Not Listed — 24 Feedwater—Low Flow

01-29-79 35

02-04-79 15

02-24-79

03-03-79

05-21-79

05-23-79

06-12-79

07-19-79

07-31-79

36

35

35 T

24

36

Spurious Trip Via Instrumentation, RPS Fault

Recirculation Control Failure—Decreasing Flow

20

Inadvertent Closure of One MSIV (Rest Open)

Feedwater—Increasing Flowat Power

Manual Scram—No Out-of-Tolerance Condition

Spurious Trip Via Instrumentation, RPS Fault

Spurious Trip Via Instrumentation, RPS Fault

Feedwater—Low Flow

Main Steam Isolation Valve Closure

Manual Scram—No Out-of-Tolerance Condition

Loss of iVormal Con­denser Vacuum

35

24

Spurious Trip Via Instrumentation, RPS Fault

Feedwater—Low Flow

Inadvertent Closure of One MSIV (Rest Open)

Loss of Normal Con­denser Vacuum

Source Event Description

Reactor scram on reactor low water level while techni­cian working on recorder. When lead to record was lifted, the feedpump level control saw zero and ran the feed pumps back.

APRM high flux scram caused by pressure spike resulting from MSIV A fail­ing closed due to an apparent stem-disk separation.

Low power switching of reactor feedpumps caused reactor water level instabil­ity leading to a recirculation pump runback and reactor high pressure spike. Reactor scrammed from pressure transient causing APRM spikes on both channels. Turbine control valve move­ment during transient may have caused the pressure spike.

Not listed in sources.

Not listed in sources. Occurred during a refueling.

Reactor scram during surveillance.

Low reactor water level due to operator error during feedpump switching.

MSIV closure caused by blown fuse resulting ficm wiring error. All others MSlVs checked and found normal.

Safety valve malfunction. Listed as a manual shutdown.

Circulating water intake pump trip followed by a turbine trip on low vacuum and subsequent reactor scram.

B-24

Table B-2. (continued)

EPRI Data Other Source Data

Event Date Category Title Category Title

Brunswick 2 Reactor Year 4 (11/3/78 through 11/2/79) (continued)

08-31-79

09-12-79

09-14-79

36

36

Manual Scram—No 36 T Out-of-Tolerance Condition

Manual Scram—No — Out-of-Tolerance Condition

Electric Load Rejection I

Manual Scram—No Out-of-Tolerance Condition

Electric Load Rejection

Source Event Description

Piping support inspections and modifications.

Nuclear service water pipe leak. Listed as a manual shutdown.

Reactor scrammed from an apparent load reject.

Cooper Reactor Year I (7/1/74 through 6/30/75)

07-01-74 24 Feedwater—Low Flow 24

07-06-74

07-11-74

07-19-74

07-20-74

07-20-74

07-22-7/

07-22-74

07-29-74

08-12-74

3T

20

36

13

20

13

Turbine Trip 3T

08-27-74 13

Inadvertent Opening of 11 a Szfety/Relief Valve (Stuck)

Feedwater—Increasing 20 Flow at Power

Manual Scram—No 36 Out-of-Tolerance Condition

Turbine Bypass or 13 Control Valves Cause Increased Pressure (Closed)

Inadvertent Opening of 11 a Safety/Relief Valve (Stuck)

Inadvertent Opening of 11 a Safety/Relief Valve (Stuck)

Feedwater—Increasing 20 Flow at Power

Turbine Bypass or 13 Control Valves Cause Increased Pressure (Closed) Valves Cause Increased Pressure (Closed)

Turbine Bypass or 13 Control Valves Cause Increased Pressure (Closed)

Feedwater—Low Flow

Turbine Trip

Inadvertent Opening of a Safety/Relief Valve (Stuck)

Feedwater—Increasing Flow at Power

Manual Scram—No Out-of-Tolerance Condition

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Inadvertent Opening of a Safety/Relief Valve (Stuck)

Inadvertent Opening of a Safety/Relief Valve (Stuck)

Feedwater—Increasing Flow at Power

Turbine Bypass or Control

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Feedwater turbine steam governor vaive malfunction.

Startup test, turbine trip from 50% power.

Relief valve failed to close after test.

Feedwater control signal upscale from power supply malfunction.

Oil in generator due to sticking float in drain tank.

Main steam bypass valve sticking.

Relief valve failed to close following test.

Relief valve opened during hot standby conditions.

Feedwater control signal malfunction.

Turbine control system did not adequately control reac­tor pressure while perform­ing turbine stop valve closure surveillance test.

High flux scram resulted from a pressure spike due to partial closure and reopen­ing of the main turbine con­trol valves.

B-25

Table B-2. (continued)

Event Date Cat

Cooper Reactor Year 1

08-30-7.:: 13

09-10-74 13

09-14-74 3 T

10-07-75 24

10-08-74 3

egory

(7/1/

EPRI Data

TiUe

74 through 6/30/75) (con

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Turbine Trip

Feedwater—Low Flow

Turbine Trip

Category

inued)

13

13

3T

35

3

Other Source Data

Title

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Turbine Trip

Spurious Trip Via Instrumentation, RPS Fault

Turbine Trip

Source Event Description

Turbine control system did not adequately control reac­tor pressure while perform­ing turbine stop valve closure surveillance test.

High flux trip from a pressure spike due to the partial closing and reopen­ing of the turbine control valves.

75% turbine trip test.

Scram resulted from a false low water level signal induced while performing a surveillance test.

Scram resuhed from reactor high pressure due to the loss of bypass valve control fluid pressure due to operator error after a turbine trip.

10-16-74 Main Steam Isolation Valve Closure

17 Trip of All Recircula­tion Pumps

Inadvertent trip of both recirc. pumps during surveillance test.

10-22-74 Turbine Trip 35 Spurious Trip Via Instrumentation, RPS Fault

False high main steam line radiation signal due to operator error during surveillance testing.

10-31-74

11-06-74

15

11

Recirculation Control 15 Failure—Decreasing Flow

Inadvertent Opening of 35 a Safety/Relief Valve (Stuck)

Recirculation Control Failure—Decreasing Flow

Spurious Trip Via Instrumentation, RPS Fault

Apparent speed control failure in recirc. system dur­ing test.

False main steam line high radiation signal during surveillance test.

1 i-14-74 35 Spurious Trip Via 35 Instrumentation, RPS Fault

Spurious Trip Via Instrumentation, RPS Fault

False high pressure signal during surveillance test.

12-08-74 3 T

12-26-74 36

Turbine Trip 3 T

Manual Scram—No 36 Out-of-Tolerance Condition

Turbine Trip

Manual Scram—No Out-of-Tolcrance Condition

Performed 100% power tur­bine trip and shutdown for maintenance outage.

Repair leak in EHC fluid piping at the No. 1 bypass valve.

01-05-75 13

02-03-75 36 T

Turbine Bypass or 13 Control Valves Cause "ncrcased Pressure (Closed)

Manual Scram—No 36 T Out-of-Tolerance Condition

Turbine Bypass or Control Valves Cause Increased Pressure (Closed)

Manual Scram—No Out-of-Tolerance Condition

Pressure spike caused by closure of main turbine con­trol valve resulted in a high flux level trip.

Shutdown for ultrasonic testing of piping per NRC bulletin.

B-26

r — J

d^iMiA-

Table B-2. (continued)

« -iJ " li=?

.bA

•'J/^'

EPRI Data Other Source Data

Event Date Categorj' Title Category

Cooper Reactor Year 1 (7/1/74 through 6/30/75) (continued)

03-15-75 10 Pressure Regulator 10 Fails Closed

05-14-75

05-27-75

13 Turbine Bypass or 13 Control Valves Cause Increased Pressure (Closed)

Turbine Trip 35

Cooper Reactor Year 3 (7/1/76 through 6/30/77)

09-18-76 Not Listed — 36 T

12-24-76 Not Listed

02-04-77 Not Listed —

02-21-77 24

03-26-77 Not Listed —

04-16-77 Not Listed

05-14-77 Not Listed —

36 T

36 T

Feedwater—Low Flow 24

35

36 T

35

Title

Pressure Regulator Fails Closed

Turbine Bypass oi Control Valves Cause Increased Pressure fClosed)

Spurious Trip Via Instrumentation, RPS Fault

Manual Scram—No Out-of-Tolerance Condition

Manual Scram—No Out-of-Tolerance Condition

Manual Scram—No Out-of-Tolerance Condition

Feedwater—Low Flow

Spurious Trip Via Instrumentation, RPS Fault

Manual Scram—No Out-of-Tolerance Condition

Spurious Trip Via Instrumentation, RPS Fault

Source Event Description

Operator error while check­ing malfunctioning pressure controls caused turbine governor and bypass valves to open then close resulting in a pressure transient that caused a high flux scram.

Turbine bypass valve inadvertently closed during reactor shutdown causing high reactor pressure scram.

Shutdown from a false tur­bine control valve fast closure scram signal caused by failure of a DEH calibra­tion valve.

Refueling.

The plant was shut down to repair an H.P . turbine drain line.

Unit shutdown to repair HPCI testable check valve.

A faulty modulator on a feedpump turbine controller failed causing low reactor water level.

Personnel error during surveillance testing.

Maintenance.

Personnel error during surveillance testing.

Humboldt Bay Reactor Year 11 (8/1/73 through 7/31/74)

05-02-74 1 Electric Load Rejection 3

06-26-74 1 Electric Load Rejection 1

Turbine Trip

Electric Load Rejection

Reactor trip when linkage between turbine control valves and the operating cylinder sheared.

115 kV system disturbance due to an improper wiring change.

B-27

i f fn .

-Cfe'. ^'t

g U;.' ,11 ^ ^ o

' « ''i>"

- • - - • • ' - ' • • ^ ^ ' .

Table B-2. (continued)

EPRI Data

Eveiu Date Category Title Category

Other Source Data

Title Source Event Description

Oyster Creek Reactor Year 2 (12/28/70 through 12/27/71)

11-16-76 34 Scram Due to Plant 34 Occurrences

Oyster Creek Reactor Year 7 (12/28/75 through 12/27/76)

05-04-76 22 Loss of A l Feedwater 22 Flow

Scram Due to Plant Occurrences

Loss of All Feedwater Flow

Manual scram due to loss of control air as a result of a rupture at the flexible discharge line coupling on 1-2 air compressor.

Loss of feedwater pumps due to air leak into conden­sate system.

B-28

• . . : ^

-y ) .

0-

— • /

o-

i^

•fr*

K\- I' ! ^^ !

4 \ "1 I'.G

t \

l=i

i:— I

I

I

•' ' if

•!J \}=} J.\:/IJ ± r ) [jri ^ J

. ' I -

. 1 '

' s

1 • . ^ ^'

• - \ 1 r / i !

• ^ • ^

V

' • . ' ^ . .

y=

/ / / /

AV . ./ A- i AM

V -.:. -'N.,. y W" /;

-:> V

-I \ '• "' * V •

I V ; <t . V / ••/ V ' ^ . • . 7 . • ' ' i •• . ' J

I * '

:r-v. • ^ : r - >

^ >

•'• - / /

{ /

V ^ :>

PUR

*i (f

I D M n E

/^ • N

II

T I T .... " T

FF R •. RC-, fil ft R R R m CC N E5B E ES OL NT m SE ATE APL ATA UE SE LTC lUD CAF COE CAF' TN IG T n o EEA TTO TMU TT.T AG EO E TOD NNT OUR OEE OUE GT., KR 5 YNE TTE RSE RRL RSR EH TV T

AN02 8IIG25 RUN - 102 HOT 9 AN02 821127 RUN 50 HOT 9 BUSI 790120 RUN 100 HOT 4 BUS I 79D2G5 RUN 100 HOT 2 BUSI 830107 RUN 100 HOT 34 CRP3 820617 RUN ,, 90 HOT • 18 DBS I 810512 RUN * 73 HOT 24 I v/ HNPI 821117 RUN IS HOT 2 IPS3 800715 RUN 82 SHD 356 IP53 811123 RUN 10 SHD 225 HG5I 820115 RUN 90 HOT 6 HG5I 820809 RUN 45 HOT 14 HGSI 830121 RUN 50 HOT 4 PALI 790201 RUN „ 100 HOT • 25 5GS2 811218 RUN 60 HOT 5 SG52 820913 RUN 78 HOT 27 5LSI 770201 RUN -140 HOT 12

'•• 5P5I 791219 RUN 98 SHD 298 -> ,•• 5P5I 8III29 RUN 90 SHD 292

5P5I 820325 RUN 96 HOT '" 15 5P5I 820413 RUN 95 HOT 25 SPSI 821129 RUN 96 HOT 10 5PSI 831215 RUN 95 SHD 125 TNPI 810710 RUN 10 HOT 167 TP53 750826'RUN • lOQ HOT 3 TP53 750826 RUN 45 HOT 8 TPS3 751002 RUN 80 HOT 4 TPS3 820519 RUN 105 HOT . - 2 TPS3 820721 RUN 102 5HD\?. 416 TP54 790822 RUN 15 5H0 >' 148 TPS4 791?19 RUN 45 HOT 122 YKRI 83l005nRUN 100 HOT 17

• DBSl 831217 RUN 105 SHD 2 ANOI 820926 RUN 78 HOT 22 3 AN02 800707 RUN 90 HOT |4 3 ' AN02,800724 RUN 95 HOT 12 3 'RN02 810115 RUN 98 HOT Z6 3 AN02 810718 RUN 48 HOT 5 3 '* 'AN02 810808 RUN 20 HOT 4 3 •

' V flN02 811025 RU^ 20 HOT II 3 V AH02 811214 RUN 100 HOT 5 3 AN02^820727 RUN 90 HOT 138 3

. '• ANOa 82121 I RUN 85 HOT 131 3 .;.;-. .,, BUSI ,761002 SUP ,, 0 SHD ,92 3 T ;,-;':,„.'!'v;,. BU5ls77q525 RUN v;,;90,H0T ;. - ? 3 :;

,U" '•• .,,'^^S"V77I207'SUP .^0 HOT' A\Q 3 » ni ic I ; £>i I n I o mi l l - (?a I . ^ T ifn!-'

/ /

u- BU5I\8I|0I2 RU|:i; 58 HOT ••f( - ', 3 I i

IV 11

(1

E-LINE EUENT DESCRIPTIONS^SORTED DV TRANSIENT CATEGORY

•-•\i

V)

! I

u

t l

I >

EUENT DESCRIPTION ti

n V'- n

* >

.3),

MCP. 13 />

LOST I RCP. RX TRIP OHvDNBP/LPD. LOSS OF HCP (5ENSITIUE RELAY). LOSS OF INUERTER CAUSED LOSS OF

"LOSS OF I HCP. 2/3 RCP BUS UNDERUOLTAGE. MCP GRND FAULT. LOSS'OF I HCP. "RCP BUT TRANSFER GREATER THAN 10% POIIER." MCPELECIRICAL SUPPLY FAULTS-LOSS OF I HCP. o v OPERATOR TRIPPED RX OH INDICATION OF MCP HI UIBRATION. LOSS OF A HCP. •D' RCP TRIPPED. INADUERTANT LOSS OF I HCP DUE TO OPERATOR ERROR. LOSS OF A RCP. LOSS OF n HCP. LOSS OF I HCP FOR TESTING. GROUND FAULT ON I HCP. LOST A HCP.. LOSS OF I HCP. LOSS OF A HCP. LOSS OF A MCP. RCP ' C TRIPPED DUE TO MANUAL RCP TRIP DUE TO LOSS OF I HCP.

OF t HCP. OF«-1 HCP, OF A \\c^: OF A.HCP,

UIBRATION.

<.•!

FAILED LEADS. -DAD BEARING OVER TEltP.

LOSS LOSS LOSS LOSS HCP LOSS OF I HCP ON OUERCURRENT. LOSS OF Z-126 HIGH LINE' LOST A FEED PUHP AND AN RCP. RODS PULLED ON LOSS OF Yl» HIGH FLUX TRIP. ROD CONTROL PROGRHR FAILED' GRP 6 RODS INSERTEP' OPERATOR ERROR DURING CRD CONTROL TESTING. DROPPED CONTROL ROD (OUE TO PCB FAILURE).

ROD. ROD (NO RDA50H GIUEN) . ROD (NO CAUSE GIUEN). " , ROD/ TRIP ON DNQR.

TO CTRL ELEMENT ASSY. CALC. (CEAC) OF THE CRDN UPPER GRIPPER C O I L S ) . OF UPPER GRIPPER COIL)

II

(1

K\

MANUAL SCRAM.

DROPPED DROPPED DROPPED DROPPED TRIP ON LOII DNBR DUE DROPPED ROD (FAILURE DROPPED ROD (FAILURE ROD DROP TEST. DROPPED ROD. DROPPED CONTROL ROD. DROPPED ROD, '

H2 PENALTY FACTOR,

I t II

( >

*/' w

Cf I D

\ i

. , - . 1 ' .

•<.v-.:':-

' V , E •,'.' j i .••::,^; •• '•••• '•>!< •'. - • '

••• ''^-N ':•'•>;' • ' ^ k ../:••• . • ,- K • -• ,.,.,.,;t •

., ( T , • •••• i FF- R...

•V . . • ^ • ^ A I . . - ' A ; ; V - . - . : ; R ' - R . ^ R ^ . : ,^ ;CC. , : 'N ' , - , ESB E ES

!lA-> SE . . ATE APL ATA ,( LTC lUDu-.. CAF COE CAF

n o EEA - "TTO THU TTT TOD NNT// OUR OEE OUE,, YNE TTE'' RSE RRL pSR

\)i

\.>

n II

u''•••-H ,

BUSI BUSI CCNI CCNI CCN2 CRP3 CRP3 CRP3 CRP3 CRP3 CRP3 CRP3 DBSl DBSl FC5I HNPI 'HNPI

•' IP52 JMF2 HGSI MNS2 HYP I NA52 NEE I NEE I NEE I NEE3

..PALI PBH2 PIN2 PIH2 P>!N2 SGS2 5GS2 5G52 SL5I 5L5I ,5L5I SNPl TP53 TP53 TP53 TPS3 TP53 TP53 TP54 'TP54

i,V

f'i

82tJ827 831227 800421 821208 820417 770404 770420 770624 77D7I0 771212 810317 830805 810624 810902 800919 801118 8211 17 800519

RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN, RUN RUN

820702.RUN 830529 830219 830125 820221 820402 820521 820606 830513

RUN RUN RUN RUN RUN RUN RUN RUN

780708-iRUN 800912 RUN 810418 RUN 810516 RUN 820502 RUN 820917 RUN 820919 RUN' 82101 I RUN 770607 RUN 780113 RUN 800904 RUN 820426 RUN 740405 RUN 74073O.,RUN 770221 RUN 790603 RUN 820515 RUN 620520-RUN 731023 RUN 731209 RUN

10 SHD 100 HOT 70 HOT 102 HOT 105 HOT 40 HOT, 50 HOT 95 SHD 90 H0,T .

.100 HOT lOO'HOT 70 'Kut 74 SHD 98.HOT 100, HOT 105 HOT 100 HOT 93 HOT 100 HOT 50 HOT 100 HOT 100 SHD 100 HOT 100 HOT 95 SHD 100 HOT 100 HOT 80 HOT 100"HOT 100 HOT 100 HOT 100 HOT 68 HOT 30 HOT 80 HOT 100 HOT 105 HOT IDG HOT . 95 HOT 100 HOT 100 HOT 100 HOT , 97 Hor 106'HOT "70 HOT I GO HOT 100 HOT

PIIR ONE-LINE EUENT DESCRIPTIONS SORTED BY TRANSIENT CATEGORY

OL UE • TN „ AG' .GT EH

<>

345 9

.16 13

'13 22 7

135 19 4 37 19

592 23 4 14 10 4-9 3

51 20 36

,573 3 12 18 10 25 7

20 35

il 4 4 4

89 7 9 3 3 5 9 4 12

1,1

T RC AA NT SE IG EO NR TY

3 3 3 3 3 3

,,..3

3 3 3 3 3 3 3 3 .3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3

- • I

IV

a

T E S T

\V >»

M

'(

EUENT DESCRIPTION

APPARENT DROPPED ROD. HI CRDH HG SET TRIPPED. UOLTAGE CHANGES ON CRDM MG SET. LOU UOLTAGE TO CONTROL RODS. THO DROPPED RODS. FAILED CRDH MOTOR. LOSS OF CRD PROGRAHMER POIIER. LOSS OF POMER TO I CRD GROUP. " LOSS OF PCHER TO I CONTROL ROD GROUP, DROPPED GROUP 5 RODS. OP.ERROR DURING CRD MAINTENANCE CAUSED RX-TRIP. CONTROL ROD DRIUE CIRCUITRY FAILURE CAUSED ONE CROUP OF.,CONTROL RODS TO DROP. LOSSrOF CRD PHR. " > GROUP.7„R0DS RATCHETED IN ' REACTOR TRIP ON LOU RGS PRESSUJiE., LOSS OF POUER TO ROD CLUTCH. " ^

RODS. \ \ RODS. / SET ERROR " --RODS (FAILURE OF CARD CAUSING LOP TO STATIONARY GRIPPER C O I L S ) . ROD DROP TRIP TEST. HI CRDH HG SET. :. " \-> SETS P A R A L L E D W OF PHASE' TRIPPED RPS BREAKERS. ROD. ROD, -. , „ u ROD, RODS. DROPPED DURING TEST,

I,'

DROPPED DROPPED CRDH MG DROPPED DYNAMIC LOSS OF CRDH HG DROPPED DROPPED DR0PP2D DROPPED GR2'R0DS REPAIRS.TO CRDH^COOLING FAN, DROPPED RODS.

ROD. RODS ROD FAILURE CONTROL ROD CONTROL ROD

w e/

• \

DROPPED DROPPED CONTROL NUCLEAR NUCLEAR CRD MOTORS. ., .. LOSS OF CRD POliER. DROPPED ROD. DROPPED RODS, . =.

•CRD HG SET.PR0BLEH5. DROPPED CONTROL ROD.

POHER TO ROD POHER TO POIIER TO POHER TO POIIER TO CRDM HG.

ALARM, INSTRUMENTATION. INSTRUMENTATION.

<> 11

.LOSS LOSS LOSS LOSS LOSS LOSS LOSS

OF OF OF OF OF OF OF

CONTROL SYSTEM. CRDM. ROD POSITION INDICATION ( R P I ) CAUSED RPS RODS DUE TO PROBLEM MITH CRDM MG SET. RODS (PROBLEM HITH CRBM HG S E T ) , <'

TRIP.

CONTROL ROD DRIUE CONTROL^ DROPPED I )

RODS?

»,j

1 1 i \

if

PIIR ONE-LINE EUENT DESCRIPTIONS SORTED BY TRANSIENT CATEGORY K\

' 1 D E N T • 1 T

FF R Al A • R CC N ESB lA SE ATE LTC lUD CAF no EEA TTO TOD NNT OUR YNE TTE RSE

TP54 770909 RUN TP54 820313 RUN ZISI 790831 RUN ZI5I 790925 RUN • ZI52 800124 RUN ZI52 801206 RUN PALI 761112 RUN PALI 780731 RUN ANOI 830907 RUN CCN2 63101 1 RUN BUSI 790126 RUN DBSl 831002 RUN REGI 820606 RUN YKRI 830120 RUN ANOI 810901 RUN CRP3 790816 RUN CRP3 790817 RUN CRP3 790617 SUP CRP3 791221 RUN DBSl 830118 RUN DBSl 630510 RUN R55I 830819 RUN SPSI 810622 RUN PBHI 820111 RUN PDH2 820528 RUN SPSI 620824 RUN 5PS2 800822 RUN 5PS2 800626.RUN SP52 810717 RUN TP53 730704 RUN ZISI 790523 RUN ZI51 790608 RUN ZISI 820706 SUP CCN2 8I04I2\RUN REGI 630916 RUN SL5I 82II14'RUN ZISI 830707 RUN AN02 800328 RUN nN02 611105 RUN AN02 820616 RUN CCNI 830827 RUN CRP3 771026 RUN CRP3 780207 RUN CRP3 790816 RUN DBSl 811228 RUN DB5I 830115 RUN DDSl 830410 RUN

t.

> e

R R E ES APL ATA COE CAF, THU TTT OEE OUE RRL RSR

100 HOT 102 HOT 97 HOT ,75 HOT 96 HOT 86 HOT ID HOT' 98 MOT 100 HOT 100 HOT 100 HOT 20 HOT 100 HOT 20 HOT

" 50 MOT 5 HOT 2 HOT 0 SHD

100 HOT 100 SHD 90 HOT 95 HOT 95 HOT 65 HOT 40 HOT 9Z HOT 40 HOT 50 HOT ' 95 HOT 100 HOT 100 HOT 100 SHD

0 HOT 100 MOT 100 HOT 102 HOT' 95 HOT 10 MOT M O HOT

svlOO HOT 40 HOT , 30 HOT 40 MOT 10 HOT

100 HOT 100 HOT

7 MOT

\

u

OL UE TN AG GT EH

2 3

26 Z6

1

' 1 '

T RC AA NT SE IG T EO E NR 5 TY T

3 3 3 3

16 • 3 8

129 140 91 173 13 16 20

. 9 5 18 II

•676 24

'% 5

23 13 4

" 16 24

' 12 14 ID Z6

206 16 169 27 8 13 16 2

21 . "^

4 4 7-

21 13 16

3 " 4 4 5

. 5 6 6 6 6 8 8 8 8 8 8 6 6 6 9 9 9 5* V 9 9 9 9 9 9 II II 11 II 12

\l 12 .. 12 12 12 12 12 12 o

II * 1

11 n

!•

\l

t \

li 5G.

EUENT DESCRIPTION

LOH UOLTAGE ON ROD CONTROL SYSTEH. LOSS OF RPI. POIIER SUPPLY FAILURE IN ROD CNTRL SYS. ROD CONTROL SYS FAILURE. TRIP OF BOTH ROD DRIUE MG SETS. ROD CONTROL MALFUNCTION. „ CRDH SEAL LEAKAGE REPAIRS. REPAIRS TO CRDH SEALS. ,LEAKING HELD ON RCP-32C SEAL. REPLACE RCP UAPOR SEAL. LOH,PZR PRESSURE DUE TO OUERFEEDING MAIN TRANSFORMER FAULT INITIATED RUNBACK TO 20% PZR RATE TRIP DUE TO UENTING DURING/HAINT. \N OUERDORATION CAUSED LOII POMER' LOHJHAIN COOLANT .INST. f^AJLURE CAUSED RX PIIR RUNDACK AND TRin ON HIGH RCS PRESSURE DUE TO FEEDHATER OSCILLATION, HIGH RCS PRESSURE DUE TO FN OSCILLATIONS. HIGH RCS PRESSURE DUE TO'FH OSCILLATIONS. FH INSTABILITY CAUSED HIGH RCS,PRESSURE TRIP. HIGH PRESSURE TRIP ON LOSS OF NIX-AC BUS^ '•.-HIGH PRESSURE TRIP ON LOSS OF 'Y4'DU5. FEED PUHP TRIP ON HIGH RCS PRESSURE." TURBINE RUNBACK HITH NO DUMP UALUE OPERAIiON ON STEAM PRESS SENSING LINE FROZE/, CAUSING GI & RX SPURIOUS SI. SPURIOUS SI. jw. SPURIOUS STM LINE DELTA P CAUSED SI AND RbACTOR SCRAI1. FEED FLOH QURGE CAUSED 51. INADUERTENT SI ONSTII HEADER DELTA P. INADUERTENT SI. ,v •• "' u ,, SPURIOUS SIGNAL CAUSED SI AND RX TRIP DURING'JESTING. SPURIOUS SI CAUSED BY HATER HAMMER. RX TRIP/SI HHILE PERFORlltNG SURUEILLANCE. HIGH SG LEUEL TRIP DUE TO EXCESSIVE BORON ADDITION, v\

( • /

TRIP ON LOH PRESSURE IN MANUAL

SYS. PRES^. HI RCS PRESS.

ROD iNSERT'iON TRIP.

RESULTED IN HIGH PZR PRE5

M

w

\>

1 ( v

'%• w <>J u

\i\

(vis t

BORIC ACID TANK TECH SPEC UIOLAT UNINTENTIONAL EHERG. BORATION. OUER BORATION AT END OF LIFE. NUCLEAR FLUX PROFILE TRIP,, "TRIP ON HIGH LPD DUE TO ASI ," TRIP ON DNBR. HIGH AXIAL SHAPE INBEX. POHER IHBALANCE-OPERATIONnL ERROR. POHER/FLOH INBALANCE DUE TO OPERATOR INACTION. PRESSURE TRANSIENT HHJLE SECURING I MCP. RPS HI FLUX TRIP DURING CRD EXCERCISE TEST, OUERFEEDING AT 100% POIIER CAUSED NEGATIUE IMBALANCE TO INCREASE TO FLUX/FLOII 5ETP0INT, XENON BURNOUT^CAUSED NEGATIVE IHDALANCE TO REACH FLUX/FLOM SETPOINT,. n

I I 'A

1>

/ ,•

PIIR OHE-LINE EUENT DESCRIPTIONS SORTED BY TRANSIENT CATEGORY -\\

) \ '

»/ .I-" v\

f:)

a

• E •.-,,. N •• T I T

FF R AI A R CC N ESB lA SE ATE LTC lUD.. CAF n o EEA TTO TOD NNT OUR YNE TTE RSE

DDSl 831109 RUN DBSl 831114 RUN SPSI 831005 RUN TMII 771 114 RUN TP53 721220 SUP TPS3 780419 RUN ZISI 820707 SUP ZIS2 810808 RUN ANOI 610621 RUN DVSI 770716 RUN DV51 770717 RUN BV51 830528 RUN HNPI 830412 RUN TNPI 811022 RUN ZIS2 630224 RUN ANOI 800822 RUN ANOI 601007 RUN ANOI 810708 RUN AHOl 830831 RUN AN02 800328 RUN AN02 800402 RUN' AN02 800816 RUN AN02 600618 RUN AH02 810316 RUN AHC2 810703 SUP AN02 811011 SUP AN02 830627 RUN BUSI 761227 RUN BV5I 770105 RUN BUSI 770510 RUN BVSI 770723 RUN BUSI 771207 RUN BUS! 780116 RUN BVSI 781229 RUN DV51 790819 RUN BUSI 79IIII RUN BVSI 810415.SUP BV5I 821018 RUN BVSI 63112rRUN BUSI 831129 RUN CCNI 820705 SUP CCNI 820822 RUN CCNI 621109 RUN CCNI 831228 RUN CCN2 810419 SUP CCN2 810821-RUN CCN2 820224 SUP

• •

R RS. E E5 --APL ATA COE CAF THU TTT OEE OUE RRL RSR

" 60 HOT 60 HOT 10 HOT

100 HOT 5 HOT

(00 MOT 0 HOT

, 30 HOT' 95 SHD 40 HOT 50, HOT 100 HOT •20 HOT 60 MOT 10 REF eU HOT 68 HOT 97. HOT" ,98 HOT 98 HOT 98 HOT 17 HOT 95 HOT 100 HOT

0 HOT . 0 HOT 100 HOT 60 HOT 50 SHD 60 HOT 90 HOT , 100 HOT < 90 H()T 95 MOT 40 HOT 25 HOT 0 HOT'

100., HOT 100'HOT 100 HOT

0 HOT 15 HOT

106 HOT 100 HOT

0 llOTn 88 HOT • 0 MOT

Si OL UE

; TN AG GT EH

71 25 7 6 1 6 6 1

236 5 14 66 5

25 11«

•PI 10 6 II 23 16 25 5 9

27 2 12 29 35

1447 ' 36 , 5 y 16

13 16 10

.v., 2 4

26 .12 17 6 9 19 39 6 16 9

\t

n

T RC AA NT SE IG CO NR TY

12 12 12 12 12 12 12 12 14 14 14

14 14 14

'is 15 15 IS 15 15 15

li' 15 15 15 15 15 15 15 15 15 15 15 15' 15 15 15 15 15 15 15 .15 -15 15 15

:^ * \ ,

«

•''.n

T E S T

\.' ')

EUENT DESCRIPTION I ' \

< I

w iV

11

(•>

<)

,->(

•f;

GROUP 3 RODS .DROVE IN IIITHOUT COHHANDi IHBALANCE INCREASED TO FLUX/FLOH SETPOINT-. GROUP 4 RODS DROVE IN IIITHOUT COHHAND* IHBALANCE INCREASED TO FLUX/FLOH 5ETP0INT. POHER SURGE THROUGH P-IO NOT BLOCKED. CNTROL HALFUNCTION CAUSED A P/F IMBALANCE. POUER ABOUE P-7 HITH TURBINE TRIPPED. CONTROL R0D5 OUT OF ALIGNMENT HITH CONTROLLING BANK. IRPH TRIP. IRPH HI FLUX TRIP DUE TO PICKING TOO MUCH LOAD. LOSS OF 2 HCP5. UNDER FREQUENCY (UF) ON MCP BUSES' LOSS OF RCS FLOH. UF ON HCP BUS' LOSS OF RCS FLOH. LOSS OF POHER TO RCP BUSES, LOSS OF POHER TO RPS BUS. INADUERTENT LOSS OF POIIER TO 2 IICPS. OPERATOR DEENERGIZED NON-ESSENTIAL BUSES CAUSING LOSS OF liCP'S. LOSS OF A FEED PUHP. LOSS OF A FEED PUMP. LOSS OF A FEED PUHP, LOSS OF A FEED PUMP, LOSS OF A FEED PUMP, LOSS OF FEED PUHP. LOH SG LEUEL DUE TO FAULTY'CONTROL OIL FITTING. BLOHH FUSE IN FH CONTROL CABINET. FEED CONTROL SYSTEH FAULT CAUSED LOII SG LEUEL. LOH SG LEVEL. ,LOSS OF A FEED PUMP. LOSS OF ONE FEED PUHP. FEED FLOH INSTABILITY OH LARGE LOAD DROP-LOH SG ,LEVEL HITH S/F HISHATCI-LOSS OF HEATER DRAIN PUMP CAUSED LOSS OF I FEED'PUHP-LOH SG LUL. LOSS OF I FEED, PUHP DUE TO OPERATOR ERROR. LOSS OF 1 FEED PUHP. LOSS OF I FEED PUHP. ,, FAILURE OF FEED FLOM INST' LOir SG LUL. LOtI FEED FLOH DUE TO HEATER DRAIN PUMP TRIP. LOSS OF I FEED PUMP. LOII SG LEUEL DURING POIIER ASCENSION. HIGH SG LUL ON STARTUP. HI SG LEVEL DUE TO FRV CONTROL PROBLEMS. FRV FAILURE. FRV FAILURE. LOSS OF A FEED PUHP. LOH SG LUL DUE TO RAPID TURBINE LOADING. LOSS OF POHER TO FRVS. LOST M2I FEED PUHP." -LOH SG LEUEL DUE TO FRV CONTROLLER PROBLEHS. LOSS OF A FEED PUHP. LOII SG- LVL HHILE TROUBLE SHOOTING FRV CONTROL CKT.

\\

i:.'

M

11

n

PIIR ONE-LINE EUENT DESCRIPTIONS SORTED BY TRANSIENT CATEGORY

I D E N T I

FF AI CC in LTC no TOD YNE

T R A N SE IVD EEA NNT TIE

R ESB ATE CAF TTO OUR RSE

R R E ES APL ATA COE 'CAF THU TTT OEE OUD RRL RSR

OL UE TN AG GT EH

T RC AA HT SE IG EO NR TY

•; '>•'

t

! >. 1}

T E S T EVENT DESCRIPTION

•"•

i>

K'i'

u

CCN2 CCN2 CRP3 CRP3 CRP3 CRP3. CRP3 CRP3 DBSl DCCI DCCI DCC2 DCC2 HBR2 KBR2 HNPI HNP) IP52 IPS2 IPS2 IPS2 IPS2 IPS2 IPS2 IP52 IPS2 IPS3 IPS3 IPS3 .IP53 IP53 IPS3 IP53 IP53 IPS3 IPS3 IP53 IF I IFl IF I

JMFl iJHFl. JHFI JMFl JMFl JMF2 JMF2

^)

820823 631120 790130 800812 610630 810731 820606 631 I 12 831002 811103 831122 810530 830127 801025 811206 610104 621108 800326 800801 810615 620402 820530 83D3I3 830508 830827 831123 770110 770220 780210 780326 760428 761218 7909C6 800304 800306 800327 811122 800729 600626 8dQ902 .810328 810908 820417 820828 821,018 810614 '810903

RUN RUN RUN RUN RUN RUN RUN RUN SUP RUN RUN RUN RUN SUP RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN' RUN RUN RUN SUP • RUN RUN RUN RUN RUN SUP RUN SUP RUN RUN RUN RUN M

75 100 95 40 75 100 95 100 0

100 60 60 60 0

65 70 100 95 92 92 98 95 95 100 95 100 too 100 30 IQQ 30 100 60 65 0

60 85 95 40 60 0

98 0

98 100 97 98

HOT. HOT HOT HOT SHD HOT HOT HOT HOT SHD SHD HOT HOT HOT HOT HOT MOT HOT HOT HOT HOT HOT MOT HOT HOT IliiT HOT HOT HOT HOT HOT HOT HOT HOT HOT MOT HOT HOT HOT HOT SHD HOT HOT HOT HOT MOT HOT

I \

I'

61 17 8 II

308 10 ' 24 II 8

286'^

9 18 7 3 5 10 37 12 II 85 4 5

29 39 60 4 7 3 4

20 6 II 7

189 16 7

85 9

"^l 16 10 52 15

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 I

I '

5 5 5 5 15 15 15 15 15' 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

LOSS OF FEED PUHP. " » LOST H22 FEED PUHP. LOSS OF I FEED PUHP. LOSS OF A FEED PUHP. LOSS OF A FEED PUMP. LOSS OF A FEED PUMP. ,-RCS FLOH IND FAILURE CAUSED A DECREASE IN FH FLOIIi RX TRIP ON'llI PRESS. FEEDHATER PUHP CONTROL FAILURE. '> LOH SG LEVEL ON STARTUP. ,, LOSS OF FEED PUHP. LOST ONE FEED PUHP. LOSS OF A FEED PUMP, OPERATOR ERROR REDUCED FEED TO ONE SG. 5/F MISMATCH HITH LOM SG LUL, „ \"-) LOII SG LUL HITH S/F MISMATCH. '' LOII SG LEVEL. LOSS OF A FEED PUHP, LOH SG LEVEL, LOSS OF A FEED PUMP. , .-/ ' \, REDUCED FEED FROM I FEED PUHP. ERRATIC CONTROL OF A FEED PUHP. '> LOSS OF A FEED PUHP. SPURIOUS RUNBACK ON tl2l FEED PUHP; LOSS OF M2I FEED PUMP. LOST A FEED PUHP. LOSS OF A FEED PUHP. LOH SG LEVEL DUE TO LOAD SUING TESTS, u HTR DRAIN PUllPS TRIPPED CAUSING LOSS OF

'( i>

/ ; , . ^

. 11

'I 1 1

I FEED PUHP-LO SG LEVEL. LOSS OF LOSS OF LOSS OF LOSS OF LOSS OF LOSS OF

1

I ii

FEED PUHP, FEED PUHP. FEED PUHP DUE TO HEATER DRAIN TK LEAK. FEED PUHP. FEED PUHP.

. FEED PUHP, ,. LOH 56 LEVEL DUE TO CONIROL SYSTEM PROBLEMS, 5/F MISMATCH DUE TO AIR IN COND SYS HHEN DRING ON COHD'PUHP. 5/F HI SNATCH HITH LOM SG LEVEL, LOH SG LVL DUE TO FEED PUMP TRIP OH LOH GHC OIL PRESS, LOH SG LUL HHILE SHITCHING FEED PUllPS, OPERATOR ERROR CAUSED LOH SG LVL, UNIT TRIPPED, IN NODE 2 ON LOH SG LUL. o , LOH SG LEVEL' ERRONEOUS SIGNAL TO FRVS. LOSS- OF A FEED PUHP. .. , LOSS OF A FEED PUMP. , LOSS OF f) FEED PUMP, ' ' LOSS OF A FEEd PUMP, LOSS OF A FEED PUHP - RELAY IN CONTROL CKT ADJUSTED.

>)

> 1

<i

• ('

t)

11

If M -, ,« "

• ' . < • ••

' ' , •

(I I D E' N T I

\ <':K. CC ' .'. in -. n^ .;• ..• LTC ,," .' no

'$y'^ : . TOD M YNE

, •• <' — r

JHF2 JHF2

,f JHF2 '' HGSI

HGSI r> 'HGSI,,

MGSI HGSI

' . MGSl I1NS2' MNS2

' *'HNS2 ' HN52 HNS2

, HYP I M H Y P I MYPI HYP! MVPl HYPI

:, ,-• "NAS2 NnS2 NnS2

.A|i/. NAS2 HEEl PALI

..nPALI o, PALI

PALI 'v , PALI - PALI .:, PAL 1 r.V PALI ^ PALI

PALI PALI

.. ,f PALI PALI PALh PALI' PBHI

,?" . REGI ..RSSI RSSI R55I

.. SG5I SG5I

T R A N: SE-fUD EEA NNT TTE

R ESB ATE CAF TTO OUR RSE

',)

811222 820330 831231 820103 820423 820925 830602 630905 630924 600710 600712 81 1016 820405 821120 760513 770116 800802 610612 830116 0311 18 810106 810827 630227 830531 820324 760510 77011? 770325 770327 V7II27 780421 780520 780608 780613 780807 781017 781216 790303 ,790407 '830519 82120,9 83011? 810617 810621 810623 6I0II9 610201

RUN, RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN SUP RUN RUN RUN^ RUN RUN' RUN RUN RUN RUN RUN RUN RUN RUN) RUN HUN 'SUP RUN -RUN RUN ftUN RUN RUN

N i\

' • • > .

•• > . ' ,

R R ' E ES APL ATA COE'CAF THV TTT OEE OUE RRL RSR

100 HOT 102 HOT 100 HOT , 52 HOT, 46 HO J 47'MOT •75 HOT '96 HOT 100 HOT 100 HOT • 40 HOT 100 HOT 15 HOT

100 MOT 98 HOT 70 HOT 100 HOT 9? HOT 100 HOT 100 HOT 5 HOT

90 HOT 97 HOT 20 HOT 0 HOT 10 HOT 50 HOT 100 HOT 10 HOT 10 HOT 10 HOT.

100 HOT 30 HOT ,50 MOT 70 HOT 65 HOT 30 HOT I 10 HOT I 10 HOT .90 HOT 0 HOT

100 HOT 75 HOT 25 MOT 35 HOT 98 HOT

. 20 HOT

1 ,; -IJ

n

IV

«

PIIR ONE-LINE EUENT DESCRIPTIONS SORTED BY TRANSIENT CATEGORY

\v

'T RC • \ >

OL UE TN

nAG GT EM

4 6 9 ID 24 - 8 14 ' 14 20 21 4

2? 7

32 17 15 25 14 28

6 19 40 li

26 13 18 32 9 6 8

20 10. 27 22 . 67 59* 2 20 83 ..5' 5

2?

AA NT SE IG T EO .,E NR 5 TY T

i>

Vi

II

i-\

i

15 15 15 15 15 15 5 5 5 5 , 5 155 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15..

EVENT DESCRIPTION

^\

LOSS OF A FEED PUHP (DURING ROUTINE TESTING OF LOCAL CTRL PIIR SNITCH). LOSS OF'FEED PUMP. LOH SG LEVEL'HIJH 5TEAH/FEED FLOM HISHATCH. LOSS OF FEED PUHP.'V LOSS OF A FEEDPUMP,; LOSS OF A FEED PUHP, ON A FALSE LOH OIL LEUEL. FEED PUHP STOP VALOE SHUT-LOH SO LEVEL. FEED PUHP SPEED CUHTROL HALFUNCTION. FEEDHATER CONTAINHKNT ISOLATION VALVE SHUT. LOSS OF ONE^FEED PUHP. LOSS OF ONE FEED PUHP; , FALSE SIGNAL DURING FHCTRL JROUBLESl'OOTING CAUSED SG LEUEL TRIP, LOH SG LEUEL, iNST NOISE SPIKE ON FRUl

FAILURE OH

i'<> \\

t.\

n f I

AIR LINE FAILURE OH FEED REG UALVE CAUSED VALVE TO FAILURE CLOSED OPERATOR ERROR iCAUSED A FED REG VLV TO CLOSE LOSS OF A FEEDHATER PUHP, LOSS OF A FEED PUHP, LOST A FEED PUHP MANUALLYJRIPPED REACTOR. LOSS OF A FEED PUMP. ,, LOH SG LEUEL, . ' , LOH SG LEVEL HITH S/F MISMATCH DUE TO INADU AIR LINE TO 'D' FRV FAILED UALUE SHUT. FEEDHATER BYPASS VALVE FAILED SHUT. FH CONTROL PROBLEH CAUSED HI RCS PI ESS TRIP.

'(

n

TRIPPED BKR.

LOSS LOSS LOSS LOSS LOSS

I OF OF OF OF OF I

FEEDHATER LOH SG HATER LOH SG HATER

FEEDHATER PUMP, FEEDHATER PUMP.'* FEEDHATER PUHP. FEED PUMP. FEED PUHP DURING PUHP TRIP.

LEUEL. LEUEL.

t', u

POHER INC. It,

^ V •, 1 '•V 1

u

LOH SG HATER LEVEL.•/ LASS OF FEED PUHP, , ,F^EDHATER PUHP TRIP. FEEDHATER PUHP TRIP, LOSS;OF I FEED PUHP DUE TO TRIP OF HEATER DRAIH PUHP. LOSS OF I FEED PUHP. '•' LOSS OF FEED PUMP. LOH-LOHTRIP SIGNAL, LOH SG LEVEL HITH STEAM/FEED FLOH HISHATCH. LOSS OF A FEED PUHP, LOSS OF,.A FEED LOSS'OF A.FEIHD LOSS OF A FEED LOSS OF A FEED

I }

>}

:^•^^ 'U

11,

PUHP. PUMP, PUMP, PUMPi

1 ' 11

u

>!> I »

' I

'I >s

HI

! • !

• : /

/I

n

'.1

I D '> E N T I

FF AI CC lA LTC l{,0 TOD m

'.J

> 1 •

T R A ,H SE ' . lUD EEA NNT TTE

',V

R ESB, Aie CAF TTO OUR RSE

11 ;

V 1

•'A R,, 'R E .(;S : APL, ATA' COECfiF)! THV TTT OEE OUE RRL RSR

5G5I SCSI 3GSI SCSI SGSl SCSI SGSl SGSl SGSl SGSl 5GS2 SGS2 5G52 5GS2 5G52 SG52 SG52 SGS2 SGS2' 5GS2 SG52 SG52 SLSI SLSI SLSI SLSI SLSI SLSI SLSI SLSI SLSI SLS2 SNPl SNPl SNPl SNPl SNPl SNPl SNPl SNPl SNPl SNP2 SNP2 SNP2 SOS I SPSI SPSI

.81020^'RUh'

81 61 61 81 81 8

81021 810301 8106(0 811017 .820621 820908 820908 830225 830909 811018

1022 I I 16 II 19 1124 1215 121?

820119 820417 820421 820706 821 I 19 770221 770430 770527 770625 770831 771122 790610 801021 821114 83090 1 81071 I 8I07II 8ni23 8III26 82042!' 830120 830124 830914 83091? 820624 820627 '830718 §10618 830207 830715

RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN PUN RUN RUN RUN RUN RUN RUN RUN RUN RUN RUN SUP SUP RUN RUN RUN SUP RUN, RUN RUN RUN RUN RUN SUP RUN RUN

95 95 95 80 95 100 100 20 12 80 58 100 100 90 66 98 55 too too 100 56 56 30 20 too 100 100 20 102 10

100 0 0

95 20 6 0

50 20 30 98 95 95 0

20 93 I >

HOT HOT SHD HOt. HOT HOT HOT HOT SHD, HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT HOT, HOT HOT MOT HOT HOT HOT HOT HOT HOT HOT HOT HOT. MOT HOT HOT HOT HOT HOT HOT HOT REF HOT'

II

7 15 II 14 64 19 8 3

15 14 8 12 4,

22 6 10 6

21 ',' 4 44 14 3 5 6 15 4 4 5 6 3

>i

11

i I

39 5

39 I 1 19 8 12 5

l-9 7 7

PHR 'dHE-LINE EUENT DESCRIPTIONS SORTED BY TRANSIENT CATEGORY \ 1 i \

1 I

* J

v^ 'f '••'! . .

T RC AA

OL NT UE ,, SE , •' VN IG oT AG', ih .e, GT NR S' EH .. TY T

u ,-. 'h Ij

.vy (1

•ij

•r-

(>

.: 1

11

0"-

n • >

EVENT DESCRIPTION • i i

S^V -.1

15 15 15 15 15 15 15 15 15 15 15 15 15 15, 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

>*

LOSS LOSS LOSS LOSS LOSS LOSS LOSS LOSS

OF' OF OF OF OF OF OF OF "ATHS"

"NUCLEAR

FEED FEED FEED FEED FEED FEED FEED FEED

PUHP. PUHP PUHP. PUMP. PUMP, PUHP. PUHP, PUHP.

< \

>\

•>! n (i

> V

o

' >

FEEDHATER CONTROL PRODLEHS AT LOH POHER' HO AUTOHATIC SCRAH, STEAH GENERATOR CONTROL",

FEED PUHP. LOSS OF LOSS OF A FEED PUMP. LOSS OF A FEED PUMP. , LOSS OF A FEED PUHP. LOH SG LEVEL. LOSS OF A FEED PUHP. .. LOSS OF A FEED PUHP. LOSS OF A FEED PUMP. LOSS OF A FEED PUMP, LOSS OF A FEED PUHP. LOSS OF A FEED PUHP, LOSS OF A FEED PUHP, LOH SG LEUEL DURING LOAD INCREASE. FEED INSTABILITY DUE TO LOSS OF HEATER DRAIH PUHP. FEED SYSTEH IHSTABILITY, LOSS OF I FEED PUMP. ' LOSS OF A FEED PUMP, LOSS OF A FEED.PUHP, SG LEUEL TRANSIENT-LO SG LEVEL ON POMER ASCEHSIOH. SPURIOUS CONTROL SIGNAL TO FRU, LOH SG LEVEL ON PHR INCREASE. LOSS OF A FEED PUHP. LP HEATERS ISOLATED